1. Introduction

“ Users should approach all software with prudent caution and
healthy skepticism, for the history of science and engineering,
including the still-young history of software engineering, is
littered with failed promises.” Henry Petroskit

1.1 An Overview: The Role of Computational Aerodynamics

What is computational aerodynamics (CA)? Theoretical aerodynamics has aways provided insights
to aerodynamicists through solutions of the governing equations of fluid mechanics. However,
before computers became widely available the application of theoretical aerodynamics to specific
problems was frequently impractical. Nevertheless, theoretical results from simplified model prob-
lems provided important insights which aerodynamicists used as a basis for developing aerodynamic
concepts and understanding experimental results. However, aerodynamic design was carried out ex-
perimentally; primarily in wind tunnels. Starting nearly thirty years ago, and becoming increasingly
important in the last decade, computational aerodynamics has become an important precursor and
supplement to the use of the wind tunnel. Computational aerodynamics applies specific solutions of
the governing equations of fluid mechanics to the design and analysis of vehicle systems. Usually
this means the numerical solution of governing equations rather than numerical evaluation of
analytically derived solutions. As soon as computers became available aerodynamicists started using
them. The first computational aerodynamics computer programs that were reasonably general and
easy to use became widely available in the late '60s, and started providing valuable design
information for aerodynamics. Typically, they provided three-dimensional solutions for linear aero-
dynamics problems, and two-dimensional solutions of the nonlinear boundary layer equations. As
with any new technology, this capability arose before engineers understood how to integrate it into
the existing design process. Initially proponents claimed that computational aerodynamics would re-
place wind tunnels. It was well into the * 70s before the early promise matured into a realization of
the difficulties that would have to be overcome for computed solutions to replace wind tunnels. The
wind tunnel is still in use, and, NASA has recently announced its intention to build two new wind
tunnels. In the ensuing years computational aerodynamics has become an identifiable new
technology, making important contributions to flight vehicle design. Now, there is a distinct body of
knowledge that provides afoundation for work in the field.
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Computational aerodynamics is one of the most important technologies in the development of
advanced vehicles. Many engineers are actively involved in design and analysis using computational
aerodynamics. Although numerous books have appeared describing the basic theory of
computational fluid dynamics (CFD), guidance on the application of these methods is scarce. How-
ever, most engineers working in computational aerodynamics are applying these methods, and not
developing new algorithms. There is a difference between CFD algorithm development and applica-
tion skills. CFD algorithm developers have their specific interests and organizations. They are trying
to solve fundamental algorithm problems and usually do not use their codes to do aerodynamic de-
sign and analysis. As aresult, they generally have a poor understanding of the needs of and demands
on the user’. Users must understand the algorithms and assumptions employed in the methods, and
an education in the effective use of the computational aerodynamics methods in engineering design
and analysis. The ability to approach aerodynamics problems using computational methods, assess
the results, and make engineering decisions requires very different skills and attitudes than those
associated with fundamental algorithm development.

Although you cannot use a computational aerodynamics code blindly and expect to obtain valid
results, skilled engineers can obtain valuable results when computational aerodynamicsis used with
some skill, knowledge, ingenuity and judgment. The computer power available to every engineer
today is greater than the total computing power available to the engineers who put men on the moon
in the Apollo program, and even to those who designed the space shuttle. Unfortunately, it is possi-
ble for an engineer using this large computational power to make an error and not catch it. Several
structural failures arising from faulty use of computational structures methodology have been docu-
mented recently.! Thus, significant responsibility accompanies the use of these immense computa-
tional capabilities.

It is impossible to anticipate the variety of requests that arise for computational aerodynamics
analysis. Although we emphasize aircraft here, computational aerodynamicsis also used in the anal-
ysis and design of missiles, cars, rotorcraft, submarines and ships. In addition to externa flows, CA
isused for internal flow problems, including inlets, turbomachinery, and nozzles. Although in aglo-
bal, long-term sense, computational aerodynamics should replace the wind tunnel, for now thisis not
the case. Indeed, experimental and computational methods form a good complement to allow
aerodynamicists to investigate problems and assess designs.

Typical major goals of computational aerodynamics include:

* vehicle design, i.e. development of optimum airfoils and wings for external performance,
and inlets, diffusers, and nozzles for internal performance and aero-propulsion integration

» performance: estimation of the drag, lift, and moment characteristics of the vehicle
* definition of loads for structural design (including structural deformation under |oad)

*  Although many developers lack interest in computing drag accurately, afew notable exceptions exist.2
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* aeroelastic analysis, including flutter and divergence—requiring coupling with structural
analysis and control system design analysis methodology)

» definition of aerodynamic characteristics for evaluation of stability, control, and handling
characteristics (i.e, provide the math model for flight simulation).

The current capability doesn’'t allow computational aerodynamics to accurately satisfy all these
goals. Severa difficulties prevent the use of computational aerodynamics in the most general
situations, and engineering judgment must be exercised to obtain useful results. Difficulties prevent-
ing complete numerical simulation include both geometric and fluid mechanics complexity (one
simple definition of aerodynamics is 50% flowfield, 50% geometry). The simplest fluid mechanics
idealizations are available to provide information at the conceptual and preliminary design stages.
Advanced computational methods, which are typically difficult to use and don’t yet predict drag
well, are used in a different role. The advanced methods are perhaps best used to investigate the
detailed physics of the flow. The availability of detailed results over the entire surface, and aso
everywhere in the flowfield, provides a crucial supplement to wind tunnel testing. Used together,
with wind tunnel data providing key anchor points to access and understand the accuracy of the
computational method, significant advances in aerodynamic design have been demonstrated. Thus,
advanced computational aerodynamics is truly an area where Hamming's adage,’ “the purpose of
computing isinsight, not numbers’ istrue.

1.2 Current Status of Computational Aerodynamics

The capability of computational aerodynamics is continually improving. But, the claims of meth-
odology developers not intimately acquainted with the problems of applying advanced methods
should be viewed with caution. Algorithm developers frequently make overly optimistic claims.
However, significant technology development resources are being directed toward improving the ca-
pability of CFD, and we can expect that in the future we will be relying much more heavily on CFD
results alone to make engineering decisions. For example, the recent three-stage, air-launched,
winged space booster Pegasus™? was designed using computational methods alone. No wind tunnel
tests were done. The initial launches were successful, and it appeared that the accuracy of the analy-
sis was adequate for this unmanned vehicle. However, after a subsequent launch failure, a dispute
arose over whether the aerodynamics had been accurately predicted, or whether the control system
was to sensitive to imperfections in the aerodynamic model. The problem was in the lateral-
directional characterisitcs, an area often neglected by code devel opers.

A recent AIAA Progress Series volume edited by Henne* describes the state of the art in 1990
through many examples of applications (especially note the comments of Ray Hicks, a veteran CFD
user and early advocate of the use of CFD in aerodynamics). For example, “normal” 2D airfail
analysis and design can now be done reliably using computational methods.

T Hamming authored a numerical methods book many years ago. The quotation cited is the frontispiece of the book.
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A prospective computational aerodynamics user should understand the limitations. Bradley and
Bhateley® have reviewed the situation and in 1983 proposed a classification scheme in terms of the
types of flowfield. They divided the flowfield into seven categories, and categorized the capability
to compute each type of flow over avariety of geometries of increasing complexity. Their capability
chart is given in Table 1. The only capability they rated as good was attached flow over simple
shapes. The capability today is better, but the classification idea is still valid and the capability is
till the samein relation to each category.

Table 1. One point of view regarding computational aerodynamics capability.

Status of Computational Capability
Mixed Mixed Complex
AtFtiag\?vec Segiaéﬁed V,:(fg\?\,x Vortex | Vortex | Dynamic| Geometry
Attached | Separated Coupling
AX?{&“QSHC good fair poor poor poor fair N/AL
V\ﬁ?}?}?gggy good fair fair fair poor fair poor
TA??S%?? good fair fair fair poor fair fair
Fighter . . .
Aigr]cr oft fair poor fair fair poor poor poor
Specid _
Purpose fair poor poor poor poor poor poor
Aircraft
from Bradley and Bhateley, reference 4
1 not applicable

Case studies provide another way to assess computational aerodynamics impact. Shevell® identi-
fied severa aerodynamic design problems that arose in flight on various transport aircraft. He exam-
ined these problems to determine if the use of computational aerodynamics would have avoided these
problems. His conclusion was that uninformed computational aerodynamics would likely not have
prevented these problems. They included subtle aspects of attached flow airfoil and wing aerodynam-
ics, the ability to compute deep stall characteristics of T-tail aircraft, the use of nacelle strakes to im-
prove high lift and fuselage strakes to improve high alpha directional stability. The impact of CFD is
being felt however. Rubbert and Goldhammer” have reviewed the situation at Boeing, and Busch® has
reviewed the use of CFD in the design of the YF-23. In the case of the YF-23, an Euler analysis was
used quite successfully. Thus, inviscid codes are proving to be of significant value at the project level
in aerodynamic design.
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However, the conceptual design community has voiced frustration with CFD.° At the conceptual
design level decisions are made based on rapid evaluation of the performance potential of a variety of
configurations, rather than the detailed study and development of a particular design over a number of
years. At this level advanced CFD methods have not yet proven useful. The problem can be traced to
the inability of the codes to predict drag directly in a conceptual design sense. Part of the problem here
IS a miscommunication between the conceptual design aerodynamicists and code developers.
Conceptua designers want to know what level of performance can be expected from a configuration
after the aerodynamic design is done. The aerodynamic design of a single configuration may take
months (or years). Although work is in progress to improve the design situation, current advanced
CFD methodology is essentially an analysis tool. To discriminate between a series of different
candidate configurations using CFD a rapid design capability with accurate estimation of the eventual
drag level achievable must be available. Linear theory methods provide some of this capability, but
nonlinear methodology for complete configurations on the time-scale of aday is not yet available.

Although absolute values of drag are currently considered too difficult to compute using CFD, the
AGARD Panel on CFD and Drag*® suggested that CFD-based drag prediction was very effective when
“embedded in an increment/decrement procedure involving experimental results for complete
configurations, and CFD results for simplified configurations.” Another useful application of CFD in
this context is the assessment of wind tunnel model support effects and wall interference, which was
done for the YF-23.8

1.3 Objectives and Guiding Principlesin Using Computational Aerodynamics

The objective of this text is to provide an overview of computational aerodynamics as currently
practiced, and an understanding of the basis for this technology and the terminology. We will em-
phasize the assumptions used in the various methods. We provide both the foundations and
motivation for further study in computational aerodynamics. We will aso use the available
computational aerodynamics methods to develop an understanding of applied aerodynamics using
computational methods. Although the objective is an emphasis on applications, the underlying theo-
ry is provided in some detail. Code implementation details are continually changing. However,
much of the fundamental theory is now becoming well defined, and an understanding of the
foundations of the methods is essential.

What is more important, we include many examples showing what steps users must take to
determine if the answers they are obtaining in their applications are reasonable. How will you know
if the answer is right when an engineering decision must be made based on computational aerody-
namics? As discussed above, blind acceptance of computed results will lead to problems. Similarly,
as described by Hancock,* advances in computational capability have led to increased demands on
experimental aerodynamics. More experimental data must be taken and the conditions must be much
more exacting than the level of aerodynamic testing frequently conducted in the past. Examples of
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the resulting interplay between computational and experimental work were given recently by Neu-
mann.'? In addition, code validation has become a field in its own right. Code assessment for the
range of validity and accuracy is difficult and time consuming. However, the importance of this step
cannot be overemphasized. The issues are described in detail in the paper by Bobbitt,'* and the im-
portance of code validation was reinforced in the 1993 Dryden L ecture,'* which addressed code vali-
dation and defined the NASA Ames approach to the problem. The sidebar below isfrom arecent ar-
ticle by Petroski.! Each engineer must test a code before using it to make a decision.

“ Perhaps the most damaging limitation is that software can be misused or used inappropriately
by an inexperienced or overconfident engineer.”

“ No software can be proven with absolute certainty to be totally error-free, and thusits design,
construction and use should be approached as cautiously as that of any major structure, machine
or system on which human lives depend. Although the reputation and track record of software
producers and their packages can be relied on to a reasonabl e extent, good engineering always
involves checking them out. If the black box cannot be opened, a good deal of confidencein it
and understanding of its operation can be gained by testing.

The proof tests to which software is subjected should involve the simple and ordinary as well
as the complex and bizarre. A lot more might be learned about a finite element package, for ex-
ample, by solving a problem whose solution is known rather than one whose answer is un-
known. In the former case, something might be inferred about the limitations of the black box;
in the latter, the output from the black box might bedazzle rather than enlighten. In the final
analysisit is the proper attention to detail—in the human designer’s mind as well asin the com-
puter software—that makes the most complex and powerful applications work properly.”*

Thus the objective of any computational aerodynamics work must be:
* Istheanswer right?

* Assuming the answer is correct, what is computational aerodynamics
revealing about the physics of the flowfield?

In this text current codes are described for each class of methods. This provides the reader with a
basis for understanding what capability to expect, and a starting point in searching for an appropriate
method. Readers should understand that these surveys are subject to rapid change when describing
methods currently considered advanced.

1.4 Typical Stepsto Using Computational Aerodynamics, the Art of the Analyst

Given aflowfield or aircraft to examine, we start with aphysical problem, and then represent the
physical situation with a mathematical model. We then obtain a solution for the mathematical
problem and use that solution to deduce something about the physical problem. As noted above, skill
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and experience are required to carry out this sequence of steps. In particular, judgment has to be
used to select the method to be used. Sometimes, within the allotted budget and time, a CFD solu-
tion cannot be used to obtain the desired results. That’s why you have engineers and not engineering
aides performing the analysis.

The process is given by Rubbert and Tinoco,”™ and is illustrated in Fig. 1, as requiring the
following steps:

« Start with therea flow around the aircraft.

» Create aphysica model of the flowfield, perhaps (and traditionally) considering it
as an inviscid transonic flow, a boundary layer flow and a wake.

* Create the simplified mathematical model(s) to be solved.
» Carry out the numerical solution.
» Examine the results.

* Interpret the sequence of physical model, mathematical model, and numerical solu-
tion, together with the computed results to provide the final aerodynamic solution.

Notice here that the numerical solution of a computational problem is a small part of the total
engineering process. Successful aerodynamicists must master the entire sequence of steps.

. Simplified
|Rea| Flow I—.l Physical M odel I'»‘ MathemaE[)icaI M odel I

i

| nter pretation | Results l‘— Numerical Solution

Figure 1. Stepsin applying computational analysisto aerodynamics (Ref. 14).
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1.5 Design vs Analysis. Computational Aerodynamicsin Vehicle Design
Classical: repetitive analysis to design

Although computational fluid dynamics has become a major area of research, its use in the early
stages of aircraft configuration development is not generally understood. An incredible variety of
problems arise in advanced design, and this precludes the standard use of any simple, uniform
procedure. Since the conceptual and preliminary design phases determine the basic configuration
architecture, thisis the area where improved design methods can make the biggest impact.

New configurations must exploit advanced technology to achieve improved performance over
existing designs. In an ideal situation the new aircraft will incorporate new component concepts that
have been developed extensively in basic R&D programs. One example is the use of advanced
transonic airfoils that in the '60s and early ’ 70s were developed in the wind tunnel. Today they are
designed reliably using 2D computational codes such as GRUMFOIL 16 Another example is the
incorporation of the SC3' concept in a highly swept fighter design requiring efficient supersonic
maneuvering.

A key to the successful development of a configuration is the participation of an experienced
team that can project the possibilities for advanced performance without performing the work in
detail. This experience base must be the result of having worked extensively with advanced vehicle
design and computational methods. Hopefully, with this experience, reliable projections of the
performance that can be obtained using computational design methods can be made with confidence.

Linear theory methods are used in conceptual design on adaily and even hourly basis. The aero-
dynamicist works with the configuration designer to develop a properly balanced design with
optimum trimmed performance. This part of the problem can usually be treated well enough for con-
ceptual design using linear methods. However, the high angle of attack characteristics and
determination of acceptable control power is still a challenge for all levels of computationa aerody-
namics codes.'® Currently, the “timescale” for using advanced codes is too long for conceptual de-
sign, approaching the time required for a wind tunnel test. It may require weeks or even months to
obtain reliable solutions over a complete new geometry. Figure 2 presents an analogy between wind
tunnel testing and computational methods.*® The geometry definition required for advanced analysis
is equivalent to the requirements for fabricating a wind tunnel model. This definition can be time
consuming. Thus advanced codes are normally used to assess only a few specific features of a new
vehicle concept. That feature might be a unique configuration idea, where you need to evaluate the
viability of a new concept to reduce risk, and assure the program managers that the vehicle concept
is redistic. Usually there is only time to examine one aspect of the design using advanced codes
during the conceptual design phase.
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Figure 2. Analogy between computational and experimental aerodynamics,
based on afigure by Bengelink.®

The Grumman X-29 forward swept wing airplane provides an illustrative example. The key idea
in the Grumman proposal for a forward swept wing arose due to work on an aft swept wing design
using an extremely high performance airfoil, the Grumman “K” foil. That airfoil was developed in
1974, initially by Don MacKenzie and then by MacK enzie working with Paul Bavitz. They used the
hodograph method (see Chap. 11), and an early transonic viscous code developed by Bavitz?® when
he was on assignment from Grumman to NASA Langley working for Whitcomb. Wind tunnel work
by Glenn Spacht (1977) led to the readlization that the full performance of this airfoil could be
realized only if the wing had a highly swept trailing edge, combined with reduced sweep on the
leading edge. An inverse-taper, aft-swept wing or a conventionally tapered forward-swept wing
planform provided the only means of meeting these requirements. Today, that conclusion could have
been reached using 3D computational methods. The airfoil technology development was done using
advanced methods. The rest of the design was done using more conventional (at that time) linear
aerodynamic methods, verified and refined during wind tunnel tests.

Thus, computational aerodynamics was directly responsible for the airfoil design which was the
core technology that led to the development of the X-29. Nevertheless, the wing design was done
with the aid of at least some wind tunnel work. Two other aspects of the design besides the point
performance development required testing. To define the aerodynamic model required to design the
control system, the aerodynamic characteristics were documented over the complete range of angle
of attack and sidedlip for every combination of control surface deflections in an extensive wind
tunnel test program before the first flight” was possible (note that the control system design is now
frequently the reason for programs delays of advanced aircraft—detailed definition of the aerody-
namic characteristics is required). Wind tunnel testing was also required to define the load distribu-
tions for structural design. The critical design loads usually occur at conditions well away from the
design point and involve many loading conditions under separated flow conditions.

* Thefirst flight took place on December 14, 1984, ten years after the airfoil was designed.
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Examples of the interplay between configuration design and computational aerodynamics in the
near future are the use of tailored forebodies developed using computational aerodynamics to
provide specific levels of directional stability at high angle of attack, or components designed to
achieve significant regions of laminar flow. The actual preliminary design phase would then
integrate these components into the configuration without extremely intense computational aerody-
namics work.

The use of computational aerodynamics becomes routine once the configuration geometry is
well defined. Computational aerodynamics is heavily used in conjunction with wind tunnel tests
once the program moves into a demonstration/validation stage. Often the codes are used to design
incremental modifications to the wind tunnel-tested configuration. Many examples of configuration
refinements and modifications using computational aerodynamics have been documented at this
stage. Perhaps the best example is the design of the nacelle-wing installation on the recent Boeing
transports, and especially the new big-engine 737.1°

Advanced: Direct design and optimization

More important, but lagging behind the development of computational aerodynamics as an anal-
ysistool, isthe use of the computer to design and optimize the configuration directly. In thisrole the
computer is used in a fundamentally different way than as the computational equivalent of a wind
tunnel. Thisis the most efficient use of computational aerodynamics in vehicle design. Many ideas
have been proposed and it is currently an area of active research, but relatively few methods have
actualy been completely developed. We will discuss and compare these methods in the following
chapters. Here, again, the most successful applications have been for airfoils. Further discussion and
references can be found in the paper describing “ Smart Aerodynamic Optimization,”?! and in the re-
cent work in the area by a pioneer of analysis methods, Anthony Jameson.?%23

1.6 A Brief History of Computing Systems and Computational Aerodynamics

The development of computational aerodynamics is closely linked to the development of
computers, and more recently computing systems and software. Recall that computers were, at least
in part, originally developed for aerodynamics work: the creation of accurate ballistic shell trajectory
tables. The other original reasons to develop computers were for cryptography, and subsequently for
the nuclear weapons program.

Perhaps the most important early computational aerodynamics work conducted in the '50s and
'60s was the work on “the blunt body problem.” At that time the prediction of the heat transfer and
flight characteristics of ballistic missiles and manned space capsules entering the atmosphere were
the “hot” items in fluid mechanics. Much of this work was done in machine and assembly language.
Compilers were not advanced, frequently containing bugs themselves. Programmers thought that
compilers produced code that executed much more slowly than code written by professional pro-
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grammers in machine or assembly language (the original developers of programmable computers,
Von Neuman and Turing, assumed that machine level instruction was sufficient—they never
considered high level languages to be necessary). Patching bugs in the executable code was
considered possible! These computers were slower and had much less storage than an Apple ][ Com-
puter. Trying to solve problems that exceed the capability of the computer is a standard feature of
computational aerodynamics. Despite rapid advances in computing technology, aerodynamicists
always demand more speed and storage; even with the current Cray C-90.

Vortex lattice methods for aircraft applications were reported in 1963 (in Sweden, and at Boeing
and Grumman in the US). At that time the vast mgority of advanced fluid mechanics work was
associated with the space program. Other methods were also under development, with Douglas
being aleader.

| first used a computer in 1966 at McDonnell Aircraft in Saint Louis, Mo. We were doing trajec-
tory analysis for hypersonic vehicles. The aerodynamic characteristics were calculated by hand
using Newtonian flow theory. Cards were used for input, and some cases were run localy in Saint
Louis (we had a“priority” of 5 minutes anight of CPU time, and no one talked about what computer
was used). Long jobs were run on an underutilized company computer in Houston and output was
flown back on the company plane, which made frequent trips to Houston (these were the days of
Project Gemini).

The introduction of the IBM System 360 in the mid *60s revolutionized access to computers for
non-specialists. This was the first widely available, easily used computing system. VPI acquired a
System 360 at that time, and an addition was made to Burruss Hall to house the computer center.
Until then the university computer had been housed in a temporary wood building near the present
site of Derring Hall. Initially, the only access to the computer was through submission of a box of
cards. Jobs were run in a batch mode, and FORTRAN |1 was being supplanted by FORTRAN IV. It
took hours or even days to get a job back. Students should understand that the computing power
available through this process was much less than they have on today’s PCs. With the introduction
of FORTRAN 1V the scientific computing community started using a language that would be stable
for many years. CDC introduced the CDC 6000 series computers at about this time, and the CDC
6600 became the computer of choice for scientific computing. Seymour Cray was one of the key de-
signers of that computer. Later the CDC 7600 was introduced, and the CDC 7600 at NASA Ames,
using the SCOPE operating system, was the best system | ever used. Our access to the CDC 7600
was dtill by submission of card decks. We used a CDC development environment known as UP-
DATE, that was an approach to what is known today as version control. It worked very well.

By 1970 aerodynamicists were solving linearized inviscid three dimensional incompressible
flow problems routinely, and two dimensional boundary layer methods were available. The most
important problem being tackled in 1970 was the computation of transonic flow. The first solutions
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began to be reported around 1970, and the first practical solution procedure was reported in 1971.
The first half of the '70s was dominated by the development of solutions for two-dimensional
transonic flow. Three-dimensional transonic small disturbance theory solutions also began to appear.

At a major conference at NASA Langley™ in 1975 one speaker drew on the rapid advances in
capability to present a chart which could be used to project that computational aerodynamics would
be fully developed by 1984.

A joke by the CFD researchers at NASA Ames in the mid-70s reflects the attitude of the
time:

Question: “What do you use wind tunnels for?”
Answer: “They are places with lots of space, where you store your computer output”

Weéll, this shows that prediction istricky, especially when it involves the future. (Y B)

The early explosive advance in capability did not continue, and progress slowed. Advances
became much more difficult. Why? Computational fluid dynamics (CFD) development became

more rigorous, and:
1) Complexity of three-dimensional flowfieldsis not just “one more dimension.”
» agorithmsfor the Euler equations were difficult to develop
» computer storage requirements made remarkable demands on computers
* handling this much information, pre- and post- computation isajob in itself
i) Separated flow solutions were required.
» numerical agorithms required further development
* after the storage requirements began to be overcome, the inevitable limits of
turbulence model s became apparent
i) Red life arbitrary geometry presented surprising challenges.
* grid generation became a disciplinein its own right
iv) Software development isthe “tar pits’ of engineering (see Chap. 3)
» as more people work on a code the productivity decreases dramatically,
individuals can no longer single-handedly create a complete new code
The situation today is again fluid. Key new developments in computing revolve around the

dramatic advances in workstation technology, graphical interaction with results, and the computation
of solutions using massively paralel processing technology. After working in an essentially stable

* « Aerodynamic Analysis Requiring Advanced Computers,” March 4-6, 1975. (see NASA SP-347)
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computing environment for twenty years, computational aerodynamicists will be using exciting new
computer hardware and new software products in the near future.

One advance in productivity is the adoption of UNIX as a common operating system on most
current scientific computing systems. Although this can be an emotional subject, computational
aerodynamics users benefit greatly. Code developers and computer systems people typically work
with a single operating system. But, as a user, | have been in the position of having to compute on
many different systems, frequently all in the same day. As an example, consider an actual case
where proficiency in IBM CMS and TSO, VAX VMS, and Cray COS were required during the
course of asingle day’s work effort. Each system had a different text editor! UNIX and vi, the com-
mon text editor, eliminates this problem.

1.7 Typical Method/Code Development Cycle

Code development is along process. Initial efforts to develop the algorithm are only a portion of
the effort. Figure 3 shows the typical process. Initial demonstration of a new algorithm is often done
by a single CFD researcher and may take a year or two. Technology development istypically carried
out by several engineers, applying the method using pilot codes tailored to solve a specific problem.
The code itself is continually adjusted to obtain improved results and handle unforeseen situations.
This activity may also last one or two years.

If the method provides a significant improvement compared to existing codes, it may be devel-
oped into a production code. Frequently computer science majors direct this activity. An attempt is
made to anticipate future requirements, and make avery general code. This may also take years.

Once the production code is finished, the user has a code which typically cannot be changed
without major coordination with support groups. Since five years may have elapsed since the meth-
od was originated, more advanced methods may already be available in the technology development
stage, and the production code may not be used as often as expected. Instead, the latest capability
may be available in anew pilot code. Thus pilot codes are frequently used in advanced vehicle anal-
ysis and design to get the best possible answers. How this problem is best handled requires the use
of engineering judgment. The continually changing software problem adds another complication to
the practice of computational aerodynamics.

One significant philosophical change emerged in code development over the last decades. Initial-
ly, each code had its own input geometry definition and graphics package to examine the results. Be-
cause this information is common to most codes, these tasks were separated, and the codes began to
be designed so that the geometry/mesh generation became distinct from the flow solver. In addition,
the graphical analysis was separated. Essentially, the results were stored as databases to be examined
with another program. This allowed for more efficient code devel opment. For the flow solver part of
the problem this meant that the code required pre- and post-processing software. Thiswork could be
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done independently of the flow solver. This approach, illustrated in Fig. 4, alows much more flexi-
bility. Generally, it's much better for the user, although for some simple calculations it’s much sim-
pler if the flow solver handles grid generation and graphical output. This is sometimes possible in

two-dimensional analysis, but rare for three-dimensiona analysis, where the amount of data generat-
ed can be overwhelming.

An important consideration is the teamwork approach. Figure 4 showed the split of the code
tasks. The use of ateam to develop codesisjust asimportant as the codes themselves. Whitfield has
recently described his own experiences.?* He found that using teams with individuals responsible for
specific parts of the work is the key to good productivity. In particular, geometry definition and grid
generation are areas where considerable skill and dedication are required. In hislab one individual is
responsible for all the grid generation work. This is a graduate student or research engineer level ac-
tivity, and productivity has improved using this approach. Similarly, post processing using computa-
tional flow visualization has been done by dedicating people to do thiswork exclusively. In this case
undergraduate students are capable of handling the job. Consistent with my own experience, Whit-
field has found that the codes do not produce results, but people produce results using the codes. The
human element is at least important as the software and hardware. Finally, to smplify problems
comparing results from different flow models, Whitfield is now using only Euler or Navier-Stokes
solutions, and has stopped using the smpler flow models shown in Fig. 4.

Level of Effort

>

Enabling Technology

Basic Research: |deas Evaluated
Algorithm Devel opment

Initial Demonstration

Technology Development
Applications Research,

- assessment of potential through
evaluation of method with experiment,

and use in key applications - users modify code
asrequired

Softwar e Development: Putting It Together
Decision to make a"production code" for

general use - professional code design,

computer science typesinvolved (maybe in control)

Mature Capability
Project Application,
Time continuous code support
and extension

Figure 3. Code Development Process
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Flow Solver Options

Linear Potential

Full Potential

Post-Processing

Geometry/Mesh/Grid |—p» Euler Equations N Graphical Analysis

Setup for analysis

Navier-Stokes Egns.

Figure 4. Typical split of functionsin a CFD software system.

1.8 Overview of the following chapters

This text provides a systematic development of computational methods starting with early “pre-
CFD” methods of computational aerodynamics that are still useful in aerodynamic design and analy-
sis. These methods are used to introduce essential aspects of applied aerodynamics for airfoils and
wings and an introduction to drag calculation methods. The basic ideas of CFD and grid generation
are then discussed, followed by a presentation of viscous effects and transonic flows in aerodynam-
ics. Finally, a discussion of extensions required to treat high speed aerodynamics problems is pre-
sented. In each case the theory is described, fundamental assumptions identified, a numerical imple-
mentation is presented, and examples illustrating the use of the method to understand aerodynamic
design and analysis are given. Having acquired insight into basic applied aerodynamics, a brief tuto-
rial covering the current advanced methods is presented. We conclude with areview of good compu-
tational aerodynamics procedures required to use computational aerodynamicsin practice.

Upon the completion of the text you should be able to assess a problem for analysis using com-
putational aerodynamics, formulate the problem, select a method, and obtain a solution. Then you
should be able to use engineering judgment to decide if you have avalid engineering answer.

1.9 Exercise

Pick an airfoil. Select any airfoil of your choice for which you can find geometry, and the
experimental pressure distributions, and force & moment data.

Plot the airfail.

Plot the pressure distribution at one angle of attack.

Plot the force and moment data over arange of angles of attack. Make sure to
include the drag polar.

Turn in acover sheet describing airfoil and data source (make sure to

include the test conditions: Reynolds number, Mach number and transition
details, i.e., fixed or free transition. If fixed, where isit fixed?)).

wN e

>
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Caution: You will use these data to compare with results from a computer program, and
this data set will play arolein several assignments, so pick an airfoil you can use all semes-
ter. See Appendix A for additional information on airfoils, Appendix B for sources of data,
and Appendix C for directions on the presentation of results (all of which aren’'t repeated
here).
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2. Getting Ready for Computational Aerodynamics:

from AIAA 82-0315, by D.R. Carlson

Fluid M echanics Foundations

We need to review the governing
equations of fluid mechanics before
examining the methods of computa-
tiona aerodynamics in detail. Devel-
opments in computational methods
have resulted in a dlightly different
approach to the fundamental conser-
vation statements compared with pre-
computer classical presentations. The
review also establishes the nomencla-
ture to be used in the rest of the chap-
ters. The presentation presumes that
the reader has previously had a course

in fluid mechanics or aerodynamics. Many excellent discussions of the foundations of fluid me-

chanics for aerodynamics application are available. Karamcheti! does a good job. Other books

containing good discussions of the material include the books by Bertin and Smith,? Anderson, 3

and Moran.* The best formal derivation of the equationsis by Grossman.®

2.1 Governing Equations of Fluid M echanics

The flow is assumed to be a continuum. For virtualy al aerodynamics work thisis a valid

assumption. One case where this may not be true: rarefied gas dynamics, where the flow has

such low density that the actual molecular motion must be analyzed. This is rarely important,

even in aero-space plane calculations. Aeroassisted Orbital Transfer Vehicles (AOTV's) are the

only current vehicles requiring non-continuum flowfield analysis.
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2- 2 Applied Computational Aerodynamics

The fluid is defined by an equation of state and the thermodynamic and transport properties,
i.e., theratio of specific heats, y, viscosity, i, and the coefficient of heat conduction, k. Govern-
ing equations and boundary conditions control the motion of the fluid. The governing equations
are given by conservation laws:

* mass continuity
* momentum Newton's 2" Law, F=ma
* energy 1st Law of Thermodynamics

Coordinate systems are also important in aerodynamics. The general equations of fluid mo-
tion are independent of the coordinate system. However, simplifying assumptions frequently in-
troduce a directional bias into approximate forms of the equations, and require that they be used
with a specific coordinate system orientation relative to the flowfield.

Cartesian coordinates are normally used to describe vehicle geometry. In this chapter we will
work entirely in the Cartesian coordinate system. It is frequently desirable to make calculations
in non-Cartesian coordinate systems that are distorted to fit a particular shape. General non-
orthogonal curvilinear coordinates are discussed in Chapter 9. Even when using Cartesian coor-
dinates, the X, y, and z coordinates are oriented differently depending on whether the flow is two-
or three-dimensional. Figure 2-1 shows the usual two-dimensional coordinate system. The stan-
dard aerodynamics coordinate system in three dimensionsisillustrated in Fig. 2-2.

—

Mm Rk

Vo COSO

Figure 2-1 Coordinate system for two-dimensional flow.

In general Cartesian coordinates, the independent variables are %, y, zz and t. We want to
know the velocities, u, v, w, and the fluid properties, p, p, T. These six unknowns require six
eguations. The six equations used are provided by the following:

continuity 1 equation(s)
momentum 3 "
energy 1 "
equation of state 1
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A

y4

Figure 2-2 Standard coordinate system for three-dimensional flow.

Assumptions frequently reduce the number of equations required. Examples include incom-
pressible, inviscid, irrotational flow, which can be described by a single equation, as shown
below. Prior to the 1980s almost all aerodynamics work used a single partial differential equa-
tion, possibly coupled with another equation. An example of this approach is the calculation of
potential flow for the inviscid portion of the flowfield, and use of the boundary layer equations to
compute the flowfield where an estimate of the viscous effectsis required.

2.2 Derivation of Governing Equations

We now need to develop a mathematical model of the fluid motion suitable for use in numer-
ical calculations. We want to find the flowfield velocity, pressure and temperature distributions.
The mathematical model is based on the conservation laws and the fluid properties, as stated
above. Two approaches can be used to obtain the mathematical description defining the govern-
ing equations.

I. Lagrangian: In this method each fluid particleis traced as it moves around the body.
Even in steady flow, the forces encountered by the particle will be afunction of its
time history as it moves relative to a coordinate system fixed to the body, as defined
in Figs. 2-1 and 2-2. This method corresponds to the conventional concept of New-
ton’s Second Law.
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2- 4 Applied Computational Aerodynamics

[1. Eulerian: In this method we look at the entire space around the body as afield, and
determine flow properties at various points in the field while the fluid particles stream
past. Once this viewpoint is adopted, we consider the distribution of velocity and
pressure throughout the field, and ignore the motion of individual fluid particles.

Virtually all computational aerodynamics methods use the Eulerian approach. The use of this
approach requires careful attention in the application of the conservation concepts, and Newton’s
second law in particular. Since these two approaches describe the same physical phenomena,
they can be mathematically related. Karamcheti! provides a particularly good explanation of the
ideas underlying approaches to the governing equations in his Chapters 4-7. Newton's Law gov-
erns the motion of afixed fluid particle. However, to establish a viable method for computation,
aerodynamicists employ the Eulerian approach, and define a control volume, which maintains a
fixed location relative to the coordinate system. The connection between the rate of change of the
properties of the fixed fluid particle (velocity, density, pressure, etc.) and the rate of change of
fluid properties flowing through a fixed control volume™ requires special consideration. The sub-
stantial derivative, discussed below, is employed to define the rate of change of fixed fluid parti-
cle properties as the particle moves through the flowfield relative to the fixed coordinate system.
An integra approach to the description of the change of properties of a fluid particle relative to
the fixed coordinate system is available through the use of the Reynolds Transport Theorem,
which is described by Owczarek® and Grossman® (section 1.2).

The conservation equations can be expressed in either a differential or integral viewpoint.
The differential form is the most frequently used in fluid mechanics analysis and textbooks.
However, many numerical methods use the integral form. Numerically, integrals are more accu-
rately computed than derivatives. The integral form handles discontinuities (shocks) better. The
differential form assumes properties are continuous. We will use aspects of each approach.

* The concept of a“control volume” arose as an engineering requirement for a means to formulate the physical
description to allow calculations to be made. It differs from the viewpoint adopted by physicists. An explanation
of the concept’ s originsis contained in the book by Walter G. Vincenti, What Engineers Know, and How They
Know It: Analytical Studies from Aeronautical History, John Hopkins Univ. Press, 1990. The chapter is entitled
“A Theoretical Tool for Design: Control Volume Analysis 1912-1953.”
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2.2.1 Conservation of Mass. the Continuity Equation

In this section we derive the continuity equation from a control volume viewpoint (in 2D),
and then we look at the equivalent integral statement and the use of the Gauss Divergence Theo-
rem to establish the connection. Other derivations are given by Moran® (sections 2.2, 2.3, 2.4)
Anderson? (chapters 2 and 6), and Bertin and Smith? (chapter 2).

The statement of conservation of massisin words smply:

net outflow of mass decrease of mass
through the surface = within the
surrounding the volume volume.

To trandate this statement into a mathematical form, consider the control volume given in
Fig. 2-3. Here, u isthe velocity in the x-direction, v is the velocity in the y-direction, and p isthe
density.

Figure 2-3. Control volume for conservation of mass.”

The net mass flow rate, or flux,” (out of the volume) is:

[X-out] - [X-in] + [Y-out] - [Y-in] = change of mass (decrease)

=% rxav, (2-1)
at

* Note that convention requires that control volumes be described using dashed linesto illustrate that the bound-
aries arefictitious, and fluid is flowing freely across them.

** A flux is aquantity which flows across the boundary of a defined surface. Typically we think of mass, momen-
tum and energy fluxes.
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Use a Taylor series expansion of the mass fluxes into the volume around the origin of the
volume. The flux per unit length through the surface is multiplied by the length of the surface to
get:

O dpu_AX[O
[X'OUt]_ﬂ)quEE%ﬁw
.o d - dpu AX
[X-in]= g)u ax %%&Y

_d o apv _aYd
[Y -out] = ﬁ)v+a_y %EAX

0 U
[Y-in]=ﬁ>v—aa—i:/5%( X . 2-2)

Adding these terms up we get:
Gus DUy, 90U Xy
+ QV+E¢D X - D apv[ﬁ{EAX———AXAY. (2-3)

Summing up and canceling AXAY we get:

dpu apv _0p
ax dy ot (2-4)
or in three dimensions;
0 0 0 0
_p+ puJr pV+ pW _ (2:5)

ot odx dy 0z
This is the differential form of the continuity equation. The more general vector form of the

equationis:

%m [{pV)=0. (2-6

Alternately, consider the arbitrary control volume shown in Fig. 2-4. The conservation of
mass can then be written in an integral form quite smply. The surface integral of the flow out of
the volume simply equals the change of mass given in the volume:

ﬂpVDﬁdS— ——pr dv . (2-7)
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surface
\ area

volume

Figure 2-4. Arbitrary fluid control volume.

This is true without making any assumption requiring continuous variables and
differentiability. It'sfor al flows, viscous or inviscid, compressible or incompressible.

To relate this expression to the differential form, we make use of the Gauss Divergence
Theorem, which assumes continuous partial derivatives. It isgiven by:

ﬁA ﬁdS: J]’J.DU\ av (2-8)
\'
and the equivalent statement for ascalar is:
ffonds= [[foradpav. (2-9)
\'

Using this theorem, the differential and integral forms can be shown to be the same. First, re-
write the surface integral in the conservation of mass, Eq. (2-7), as.

ffov Mds= ([0 Tpv)av (2-10)

using the divergence theorem, Eq. (2-8). The continuity equation integral form thus becomes:

f{f OpV)dv = —aﬂt J"\[J'pdv (2-11)

and since v refers to afixed volume, we can move d/0t inside the integral,

f{f@j ToV) + %)Edv -0, (2-12)

For this to be true in general, the integrand must be zero, which is just the differential form! Fur-
ther discussion, and other derivations are available in Moran,* sections 2.2, 2.3, and 2.4, Ander-
son,* section 2.6, and Bertin and Smith?, Chapter 2.
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2.2.2 Conservation of Momentum, and the Substantial Derivative

In this section we derive the general equations for the conservation of momentum. Thisisa

statement of Newton's an Law: The time rate of change of momentum of a body equals the net
force exerted on it. For afixed massthisis the famous equation

F=ma=m— (2-13)
Dt -

Substantial Derivative
We need to apply Newton's Law to a moving fluid element (the “body” in the 2M | aw state-
ment given above) from our fixed coordinate system. This introduces some extra complications.

From our fixed coordinate system, look at what D/Dt means. Consider Fig. 2-5 (from Karamche-
ti1). Consider any fluid property, Q(r ,t).

() at+ At

Particle Path

Figure 2-5. Moving particle viewed from afixed coordinate system.
The change in position of the particle between the position r at t, and r+Ar at t+At is:
AQ=Q(r+ As,t+ At) —Qr,t)_ (2-14)

The space change Asis simply equal to VAt. Thus we can write:

AQ=Q(r+ VALt + At) —Q(r,t) (2-15)

which isin aform which can be used to find the rate of change of Q:

BQ_ im AQ _ lim Q(r +VALt +At) —-Q(r 1)
Dt at-0At At-0 At (2-16)
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Note that the rate of change is in two parts, one for a change in time, and one for a change in
space. Thus we write the change of Q as a function of both time and space using the Taylor se-
ries expansion as:

Qr +VALt+At) =Q(r,t) +%—Q At +... +6—Q

VAt + ... (2-17)
th 0s :

rt

where the direction of sisunderstood from Fig. 2-5. Substituting into Eq. (2-16) and taking the

limit, we obtain:

im&9- 2@, Ry
At-0 At ot £§__
loca time variation with
derivative, or  change of position,
local derivative ~ convective derivative (2-18)

substantial derivative

This is the important consideration in applying Newton’s Law for a moving particle to a
point fixed in a stationary coordinate system. The second term in Eg. (2-18) has the unknown ve-

locity V multiplying aterm containing the unknown Q. Thisisimportant.

The convective derivative introduces a fundamental nonlinearity into the system

We now put this result into a specific coordinate system:

9
6_2 = e, TQ. (2-19)

wheree,, denotes the unit vector in the direction of V. Thus, V = Ve, and:

29y, v mo. (2-20)
0s

Thus, we write the substantial derivative, Eq. (2-16), using Egs.(2-18) and (2-20) as.

D _ o0
— =—— +(V ), 2-21
o =5 TV D (2-21)
which can be applied to either a scalar as:
DQ _dQ
— ==+(V 2-22
Dt ot ( )Q ( )
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or to avector quantity as:
DV \Y4
VoV vmv. (2:23)
Dt ot
In Cartesian coordinates, V = u, v, w, and the substantial derivative becomes:

Du odu Ju Jdu ou
— =+ +V— +W—

Dt ot “ax 'ay "oz

Dv ov ov ov ov
= +V— +W—

u_
ox 09y 0z

Dt ot

mV:a—W+ua—V\/ +vﬂv+wa—W (2-24)
Dt ot ox oy oz,

To solve equations containing these nonlinear terms we generally have to either use finesse,
where we avoid solutions requiring Eq. (2-24) by using other facts about the flowfield to avoid
having to deal with EQ.(2-24) directly, or employ numerical methods. There are only a very few
gpecial cases where you can obtain analytic solutions to equations explicitly including the non-

linearity.

Forces
Now we need to find the net forces on the system. What are they?

* body forces
* pressure forces
* shear forces

Each of these forces applies to the control volume shown in Fig. 2-6 given below. Thet isa
general symbol for stresses. In the figure, the first subscript indicates the direction normal to the
surface, and the second subscript defines the direction in which the force acts. Fluids of interest

in aerodynamics are isotropic. To satisfy equilibrium of moments about each axis:
(2-25)
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y
Tyy
A
_»Tyx
Tyzoa” Ty
Ty
> Ty
T T >
T, x| X x

V4

Figure 2-6. Control volume with surface forces shown.

The connection between pressure and stress is defined more specifically when the properties
of afluid are prescribed. Figure 2-7 shows the details of the forces, expanded about the origin
using a Taylor Series. The force f is defined to be the body force per unit mass.

Oty Ay
YA Tyy a_y?
A Tyxﬁ’;vx%v
_______:y 0Ty AX
T e
T _ 90 X IAY ——y—> | . Txx+aTXX_
X ax 2 I f I ox 2
0Ty AX
S T (e
oo Ot by *
yX y 2
LT
Wooay 2
x>

Figure 2-7. Details of forces acting on atwo-dimensional control volume.
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Considering the x-direction as an example, and using the Taylor series expansion shown in
Figure 2-7, the net forces are found in a manner exactly analogous to the approach used in the
derivation of the continuity equation. Thus, the net force in the x-direction is found to be:

0 0
p XAy f, +&(T)<X)AxAy+ a—y(TyX)AyAx. (2-26)

Now we combine the forces, including the z-direction terms. Substitute for the forcesinto the
original statement, of F = ma, EQ.(2-13), and use the substantial derivative and the definition of
the mass, m= pAxAyAz. Then the x-momentum equation becomes { writing Eq.(2-13) asma = F,

the usual fluid mechanics convention, and considering the x component, ma, = FX} ,

Du o) 0 0
PAXAY Az = pAXDYAZTy + = (T5) X AyAZ+ a—y(Tyx)AyAxAH S\ T2y Az
(2-27)

The AxAyAZ' s cancel out and can be dropped. The final equations can now be written. Com-
pleting the system with the y- and z- equations we obtain,

0
p&l:prJraTxer ryx+arzx
Dt ox oy 0z
Dv 0Ty 0T,y 0Ty,

_:f+
Pot =Py T ox dy 0z

Dw _ GTXZ + ot yz ot z (2_28)

These are general conservation of momentum relations, valid for anything!

To make EqQ. (2-28) specific, we need to relate the stresses to the motion of the fluid. For
gases and water, stressisalinear function of the rate of strain. Such afluid is called a Newtonian
fluid, i.e.

T=U— (2-29)
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where U is the coefficient of viscosity. In our work we consider 1 to be afunction of temperature
only. Note that in air the viscosity coefficient increases with increasing temperature, and in water
the viscosity coefficient decreases with temperature increases.

To complete the specification of the connection between stress and rate of strain, we need to
define precisely the relation between the stresses and the motion of the fluid. This can become
complicated. In general the fluid description requires two coefficients of viscosity. The coeffi-
cient of viscosity arising from the shear stressiswell defined. The second coefficient of viscosity
is not. This coefficient depends on the normal stress, and is only important in computing the de-
tailed structure of shock waves. Various assumptions relating the coefficients of viscosity are
made. The set of assumptions which leads to the equations known as the Navier-Stokes equa-
tions are:

* The stress-rate-of-strain relations must be independent of coordinate system.

» When the fluid is at rest and the velocity gradients are zero (the strain rates
are zero), the stress reduces to the hydrostatic pressure.

» Stoke's Hypothesisis used to eliminate the issue of mean pressure vs thermo-
dynamic pressure (thisis the assumption between viscosity coefficients).

Details of the theory associated with these requirements can be found in Schlichting’” and Gross-
man.® Using the conditions given above leads to the following relations:

2 ou
Tm:—p—§HDW +2I15(

2 ov
Tw=—p——=pON +2u—
vy p 3H May

2 ow 2-30
Tzz=—p—§HDN’ +2|1a—Z (2-30)

and

Ty =Ty = A
oo ”Ha_y ax

0

(v owL
- = + oW (2-31)
YT Ty TR Ty
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Combining and neglecting the body force (standard in aerodynamics), we get:

Du__dp 6@2__2D 0 U Dhu OVEOD@V au%
Dt ox axtThax 3" 0 aylthy T axd azP'Cax "oz

Dv 0 Uu ov@M o O DODEBW ovL

pa__a_)/+$<ﬁlll§ki/ ax% ayHZ“_"” azHiﬁé_erO_zE

Dw__dp, 9 0w au% 0 U Dov awm+a§ ow DDVE
Dt 9z axBOox & oy thz oyl ozt oz 3 E (232

These are the classic Navier-Stokes Equations (written in the standard aerodynamics form,
which neglects the body force). They are i) non-linear {recall that superposition of solutions is
not allowed, remember D/Dt}, ii) highly coupled, and iii) long! As written above it's easy to
identify F = ma, written in the fluid mechanicsformma = F.

When the viscous terms are small, and thusignored, the flow istermed inviscid.
The resulting equations are known as the Euler Equations

There are also alternate integral formulations of the equations. Consider the momentum flux
through an arbitrary control volume in a manner similar to the integral statement of the continu-
ity equation pictured in Fig. 2-4 and given in Eq.(2-7). Here, the momentum change, pV, is pro-
portional to the force. The integral statement is:

0
ﬁ pV (V)ds+ a_tJ’-\I/Ip Vav = F = Koume + Faurface. (2-33)

and this statement can aso be converted to the differential form using the Gauss Divergence
Theorem. Note that we use the derivative notation g /dt to denote the change in the fixed “po-
rous’ control volume that has fluid moving across the boundaries.

The derivation of the Navier-Stokes Equations is for general unsteady fluid motion. Because
of limitations in our computational capability (for some time to come), these equations are for
laminar flow. When the flow is turbulent, the usual approach is to Reynolds-average the equa-
tions, with the result that additional Reynolds stresses appear in the equations. Clearly, the addi-
tion of new unknowns requires additional equations. This problem is treated through turbulence
modeling and is discussed in Chapter 10, Viscous Effects in Aerodynamics.

Thursday, January 16, 1997



report typos and errorsto W.H. Mason Fluid Mechanics Foundations 2- 15

2.2.3 The Energy Equation

The equation for the conservation of energy is required to complete the system of equations.
Thisis astatement of the 1st Law of Thermodynamics. The sum of the work and heat added to a
systemwill equal the increase of energy. Following the derivation given by White:®

dEt = o) Q + év\—JN
change of fotal energy ~ change of heat added ~ change of work done. (2-34)
of the system on the system

For our fixed control volume coordinate system, the rate of changeis:

D& _5+w
Dt (2-35)
where:

Et:p%+%vz—ng

and e is the internal energy per unit mass. The last term is the potential energy, i.e. the body
force. In aerodynamics this term is neglected. Et can also be written in terms of specific energy
as.

(2-36)

E; = pey, (2-37)
where:
1 2
=e+=V
eV (2-38)
To obtain the energy equation we need to write the RHS of EQ.(2-35) in terms of flow prop-
erties. Consider first the heat added to the system.” The heat flow into the control volume is
found in the identical manner to the mass flow. Using Fig. 2-8 for reference, obtain the expres-
sion for the net heat flow.

YA ——————— —
AX I
Go—s  + |V —Gw
- Y
X
>

Figure 2-8. x-component of heat flux into and out of the control volume.

* Here we neglect heat addition due to radiation. See Grossman® for the extension to include this contribution.
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The heat fluxes are:

_% 0q Ax
Uxip, kTS Y

ox 2
and the net heat flow into the control volume in the x-direction is %~ xour O
- % AXAy -

Similarly, using the same analysis in the y and z directions we obtain the net heat flux into
the control volume (realizing that the AxAyAz terms will cancel):

0 0
0% , % 0%

.: = - -
Q Oox oy oz[ g (2-40)

Now relate the heat flow to the temperature field. Fourier’s Law provides this connection:
q=-kOT (2-41)

where k is the coefficient of thermal conductivity. Eq.(2-41) is then put into Eq.(2-40) to get the
heat conduction in terms of the temperature gradient:

Q=-00=+00kaT). (2-42)

Next find the work done on the system. Using the definition of work = force x distance, the
rate of work is:

- . (2-43)
W = force x velocity

Using the control volume again, we find the work, which is equal to the velocity times the
stress. The work associated with the x-face of the control volume (for two-dimensional flow) is:
WX ZUTXX +ery_ (2_44)

The complete description of the work on the control volume is shown in Figure 2-9.
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i+ (v,
YA y‘
ut +i(UT )ﬂl
yX ay X9
— ———————:1\VT +i(VT )—
| | Xy 1) Xy 2
AX
UT (urxx) 4—: AY —— I_> UT, + (urxx)?
I |
AX AX
VT — VI ) — vl
Xy a( Xy) > \ 7YY/ >~
g~y i
0 Dy
VTW_a_y(VTW)7

Figure 2-9 Work done on a control volume.

Using the x-component of net work as an example again, the work done on the system is

WXiI"I = onut, Or.

ow,, AX ow,, AX ow.
B Ty e Ty = -Gy &

Including the other directions (and dropping the AxAyAzterms, which cancel out)*:

W:-divwzai)((ur)o(+wxy)+%(myx+vryy). (2-46)

Substituting Egs.(2-37) and (2-38) into (2-35) for Et Eq.(2-42) for the heat, and Eq.(2-46)

Dp! e+ 3V? )
=0 {kOT) - divw - (2-47)

Dt

for the work, we obtain:

* Here we are using White' s notation. Realize there is a difference between Wand w.
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Many, many equivalent forms of the energy equation are found in the literature. Often the equa-
tion is thought of as an equation for the temperature. We now descibe how to obtain one specific
form. Substituting in the relations for the T'sin terms of p and the velocity gradients, Egs. (2-29)
and (2-30), we obtain the following lengthy expression (see Bertin and Smith? page 41-45). Mak-
ing use of the momentum and continuity equations to “simplify” (?), and finally, introducing the
definition of enthalpy, h = e + p/p, we obtain a frequently written form. Thisisthe classical ener-
gy equation, which is given as:

Dh Dp _

—-——= 0O0okdm) + ®
P Dt Dt ~—¢—m ) . Tesioati (2-48)
heat conduction ~ VIScous dissipation
(always positive)
where
EQ @1 B_D_FM [BV_'_QJE?_'_@W ov g
O goxt 0yd % oy [ Day az0C
d=p0 i
= g 209u_ov_ow[F C
0 z 6 X B& ay 6ZH C (2-49)

The energy equation can be written in numerous forms, and many different but entirely
equivalent forms are available. In particular, the energy equation is frequently written in terms of
the total enthalpy, H, to good advantage in inviscid and boundary layer flows. A good discussion
of the energy equation is also given by White®

Thereisalso an integral form of this equation:

ﬂ'p(e+V2/2)(VD§)ds +%J’ﬂp(e+vzl2)dv: Q+W. (2-50)

Here again note that we use the derivative notation g /9t to denote the change in the fixed “po-

rous’ control volume that has fluid moving across the boundaries.
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2.3 Boundary Conditions

If al flowfields are governed by the same equations, what makes flowfields different? Bound-
ary conditions are the means through which the solution of the governing equations produce dif-
fering results for different situations. In computational aerodynamics the specification of bound-
ary conditions constitutes the major part of any effort. Presuming that the flowfield algorithm se-
lected for a particular problem is aready developed and tested, the application of the method
usually requires the user to specify the boundary conditions.

In general, the aerodynamicist must specify the boundary conditions for a number of different
situations. Perhaps the easiest (and most obvious physicaly) is the condition on the surface. The
statement of the boundary conditions is tightly connected to the flowfield model in use. For an
inviscid steady flow over a solid surface the statement of the boundary condition is:

VR [h =0 (2-51)

which simply says that the difference between the velocity of the component of flow normal to
the surface and the surface normal velocity (the relative velocity, V) is zero. This simply means

that the flow is parallel to the surface, and is known as the non-penetration condition. If V isthe
fluid velocity and V¢ is the surface velocity, then this becomes,

(V-Vg)m=0- (2-52)

Finally, if the surfaceis fixed,

VvV =0. (2-53)
If the flow is viscous the statement becomes even simpler: V = 0, the no-dlip condition. If the
surface is porous, and there is mass flow, the values of the surface velocity must be specified as
part of the problem definition. Numerical solutions of the Euler and Navier-Stokes solutions re-
quire that other boundary conditions be specified. In particular, conditions on pressure and tem-
perature are required, and will be discussed in later chapters.

As an example, recall that to obtain the unit normal the body is defined (in 2D) in the form
F(x,y) = 0, the traditional analytic geometry nomenclature. In terms of the usual two-dimensional
notation, the body shape is given by y = f(x), which is then written as:

F(x,y)=0=y-f(x) (2-54)
and
_ ]
n= ioF| (2-55)
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Conditions also must be specified away from the body. Commonly this means that at large
distances from the body the flowfield must approach the freestream conditions. In numerical
computations the question of the farfield boundary condition can become troublesome. How far
away is infinity? Exactly how should you specify the farfield boundary condition numerically?
How to best handle these issues is the basis for many papers currently appearing in the literature.

Another important use of boundary conditions arises as a means of modeling physics that
would be neglected otherwise. When an approximate flowfield model is used, the boundary con-
ditions frequently provide a means of including key elements of the physicsin the problem with-
out having to include the physics explicitly. The most famous example of this is the Kutta
Condition, wherein the viscous effects at the trailing edge can be accounted for in an inviscid
calculation without treating the trailing edge problem explicitly. Karamcheti® discuss boundary
conditions in more detail.

2.4 Standard Formsand Terminology of Governing Equations

To understand the literature in computational aerodynamics, several other aspects of the
terminology must be discussed. This section provides several of these considerations.

2.4.1. Nondimensionalization

The governing equations should be nondimensionalized. Considering fluid mechanics theory,
nondimensionalization reveals important similarity parameters. In practice, many different non-
dimensionalizations are used, and for a particular code, care must be taken to understand exactly
what the nondimensionalization is.

Sometimes the dimensional quantities are defined by ( )*’s or (')’s. In other schemes the
non- dimensionalized variables are designated by the special symbols. In the example given here,
the non-dimensionalized values are denoted by an ()*. In this system, once the quantities are de-
fined, the *’ s are dropped, and the nondimensionalization is understood.

Many different values can be used. We give an example here, and use the the freestream ve-
locity and flow properties, together with the reference length as follows:

S S L
T P M * _ €
T*:— * = * = =
To P P H Moo % u2 (2-56)
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Each code will have a set of reference nondimensionalizations similar to these. A specific ex-
ampleis given below in Section 2.4.3. Frequently, the speed of sound is used as the reference ve-
locity. Making sure that you understand the nondimensionalization is an important part of apply-
ing the codes to aerodynamics problems properly.

2.4.2. Use of divergence form

The classical forms of the governing equations normally given in textbooks usually are not
used for computations (as we gave them above). Instead the divergence, or conservation, form'
isused. This form isfound to be required for reliable numerical calculation. If discontinuitiesin
the flowfield exist, this form must be used to account for discontinuities correctly. It is a way to
improve the capability of the differential form of the governing equations. For example, across a
shock wave the denity and velocity both jump in value. However, the product of these quantities,
the mass flow, is a constant. Thus we can easily see why it is better numerically to work with the
product rather than the individua variables. In this section we show how the divergence forms
are obtained from the standard classical form. We use the 2D steady x-momentum equation as
the example:

puU— +pVv—=——, (2-57)

This equation is written using the following identities:

dpuu _ ,9u,,9pu (2-58)
0X 0x 0Xx
or:
o(pu?
oudY = ( )_uap”, (2-59)
dXx 0x ox

and similarly with the second term:

opvu ou odpv
— V_ + u_ _
oy P oy oy (2-60)

or
du_odpw _ dpv
pv oy oy u—ay . (2-61)

* Be careful here, the continuity, momentum and energy equations are all conservation equations. The terminolo-
gy can be confusing. Conservation form refers to the situation where the the variables are inside the derivatives.
That’swhy | prefer the use of divergence form to describe this mathematical arrangement. Conservation formis
the more widely used terminalogy. They are both the same.
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Substituting (2-59) and (2-61) into (2-57):

2
Jdpu _uapu+apvu_u6pv+ﬂ):0 (2-62)
0Xx 0X oy oy 0X

which can be written:

dpu> dpw dpu dpv, Ip
+ -u + +—==0
ox ay ( X ax) 0Xx : (2-63)

=0 from continuity

Finally, the x-momentum equation written in divergence form for 2D steady flow is:

ol +p) afpvy _

2-64
0x oy (269

The equations must be written in divergence form to be valid when shock waves are present.
2.4.3. Sandard Form of the Equations

Even after writing the govering equations in divergence form, the equations that you see in
the literature won't look like the ones we' ve been writing down. A standard form is used in the
literature for numerical solutions of the Navier-Stokes equations. In this section we provide one
representative set. They come from the NASA Langley codes cfl3d and cfl3de. Professors
Walters and Grossman and their students have made contributions to these codes. The Navier-
Stokes equations (and the other equations required in the system) are written in vector diver-

gence form as follows:

0Q ,3(F-F), 3(G-G)  d(H-Hy)

=0 2-65
ot 0x oy 0z (2-63)

where the conserved variables are;

O 0O density C

E B X - momentum E
Q=0OpvO=0 y - momentum C
0 o Z- momentum L

O C

% [total energy per unit volumel

(2-66)
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The flux vectorsin the x-direction are:

Inviscid terms Viscous terms
O pu 0O O 0 C
., .2 U U L
P! P 0 o [
F=0 puw 0O F, =0 Tyy L
0 yyw O 0 . C
O PW o 0 xz '
@EHD)U@ [T xx + VI xy +WTy; —0xE (2-67)

Similar expressions can be written down for the y- and z-direction fluxes, with the y-direction
given as:

Inviscid terms Viscous terms
O pv 0O O 0 C
U [l U L
o PW 4 0 Tyx C
G=0pV*+p0 G, =0 Ty [
H VW D U I L
l t yz L (2-68)
@Et"'p)vl QT + VT yy + WTy7 = qu
and in the z-direction:
Inviscid terms Viscous terms
O pw 0O O 0 L
U U U L
o PWU 0 T C
H=0 pw [ HV = sz L
Oo2 + p0 0 T, C
H [l (l . L (2-69)
@EMD)WE BT 5 + VI gy +WT 7~ Oz
The equation of state (perfect gas) iswritten in this formulation as:
o= -1)[Et —p(u?+V? +w2)/2]_ (2-70)

To complete the flow equations, we need to define the nondimensionalization, and the shear
stress and heat transfer nomenclature.

Shear stress and heat transfer terms are written inindicial (or index”) notation as:

00 C
Tyx, = M, gl au D+ A aukéij[ (2-71)
I Re g 9% GX,D Xy E

* Index notation is a shorthand notation. X denotes x,y,zfor i =1,2,3.
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and:

. __D M, Eﬁ(az)__ﬂ M, gﬁi
= RePr(y -D0 0% [RePr(y - px

The molecular viscosity is found using Sutherland’s Law:

. OFOP0F, +e0 _,,H1+8/T,) O
W=l/Hp=0=0 F=——s=(T) - O
0,0 OT+¢C T+E/T) g

(2-72)

(2-73)

where Sutherland’s constant is ¢ =198.6°R = 110.4°K. The tilde, ("), superscript denotes a
dimensional quantity and the subscript infinity denotes evaluation at freestream conditions. The

other quantities are defined as: Reynolds number, Re, =p .G.L/[l,, Mach number,

My =Gy, / &, » and Prandtl number, Pr :ﬁ(”:p/ k. Stoke's hypothesis for bulk viscosity is used,

meaning )\ +2u /3 =0, and the freestream velocity magnitude s, G, :[0020 + 2+ W2

The velocity components are given by:

u /&, U, = M, cosa cosf3
v=V/a, Ve, = —M, Sinp
w /3,

W, = M, sina cosf3

and the thermodynamic variables are given by:

P=pP/ P P =1
p=p/pa, Pe=1/y
T:'I:/'I:m:yp/p = a2 T, =
and,
Ey = Et/ Poodl E,, =1y(y -1]+ M5/ 2

]1/2.

(2-74)

(2-75)

(2-76)

This completes the nomenclature for one typical example of the application of the Navier-

Stokes equations in an actual current computer code. Note that these equations are for a Carte-

sian coordinate system. We will discuss the necessary extension to general coordinate systemsin

the Chapter 9, Geometry and Grids: Major Considerations Using Computational Aerodynamics.
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2.5 The Gas Dynamics Equation and the Full Potential Equation

For inviscid flow (and even some viscous flow problems) it is useful to combine the equationsin
a special form known as the gas dynamics equation. In particular, this equation is used to obtain
the complete or “full” nonlinear potential flow equation. Many valuable results can be obtained
in computational aerodynamics (CA) using the potentia flow approximation. When
compressibility effects are important, a specia form of the governing equation can be obtained.
This equation is based on the so-called gas dynamics equation, which we derive here. The gas
dynamics equation is valid for any flow assumed to be inviscid. The starting point for the deriva-
tion isthe Euler equations, the continuity equation and the equation of state.

2.5.1 The Gas Dynamics Equation

We demonstrate the derivation using two-dimensional steady flow. (Thisis not required. Fur-

thermore, the notation % which is known as index notation, denotes x,y,zfor i = 1,2,3). To start,

we make use of athermodynamic definition to rewrite the pressure term in the momentum equa-

tion.
dp _ dpU ap
- U= 2-77
ox 0 pHsaxi (2-77)
and recall the definition of the speed of sound:
2_ 0pU
a =— -
6pHS (2-78)
allowing aplaxi to be written as:
9p_ 29 (2-79)
0 X; 0X;
We next write u times the x and v times they momentum equations:
2
uzﬂj-{-uvﬂj :—Eﬂ):—ui%
0X dy pox p 0X
2 2-80
Vué/-}-vzﬂ/:—\_/ﬂ):—vi@ ( )

0x oy p oy p oy
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and use the continuity equation by expanding it from

dpu 9oV _,, (2-81)
ox 0y
to
op Ju 0p ov
— +p—+v—+p— =0 2-82
uax pax Vay pay ( )
or

Jop  0p Ju dv

U—+V—=—pPp—-p—. 2-83
ox 0y ox P ay ( )
Now add the modified x- and y- momentum equations given above:
2 2
294w Y 20V &0 A 0p
0x oy 0Xx oy p 0X pay
2
acUdop opL
=——[U— +v—_[. 2-84
p H’Jax Y ayE (284
Substitute into this equation the rewritten continuity equation from above:
>du  du ov  ,0v_ a?0 du avC
U—+uW—+W— +V'—=—-— Fp— —p—E
ox y X ay p ox oy
= a2@+a2ﬂ/. (2-85)
ox ay
Finally, collecting terms we obtain in two dimensions:
(u?-a’) ou +uv(ﬂj + a—V) + (V2 —az)ﬁ/ =0
0Xx oy 0x ay (2-86)
or in three dimensions:
-+ w2 - (12 - 2) LY e @Y+ DYy @+ 2 @Y Yy 2
0Xx 0z oy dy 0Xx 0z 0y o0x 0z
(2-87)

This equation is known as the gas dynamics equation.
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2.5.2 Derivation of the Classical Gas Dynamics-Related Energy Equation
The special form of the energy equation that is used to close the system is given by (in 2D):

a®=ag- (y—;l (%! (2-88)

and we need to show exactly how thisrelation is obtained. Start with the form of the energy
eguation for inviscid, adiabatic flow:

DH _
ot (2-89)
which yields H = constant, where H is (in two dimensions) the total enthalpy, defined by:
I YA R
H_h+§01+v)_ (2-90)

Thus we have a purely agebraic statement of the energy equation instead of a partial differential
eguation. Thisisan important reduction in complexity.

For athermally and calorically perfect gas, h = cpT, and cp = constant. Substituting for the
enthalpy, we get

Cplg =Cpl +-{u + V2 N
0 J ) (2-91)
Recalling that a2 =yRTandR= cp -Cy withy = cp/cv, we write
a*=-L(c,-c,|T =0—[c,T 2-92
(p CV) 8¢ oO° (2-92)
or:
O
Cpl = B—Di 2-03
0% ~Cv O ﬁ 1] (&%)

and substitute into the total energy equation ( H = constant), Egn. (2-91),

a2

y—l

(u? +v?) (2-94)

a5
y -1

I\)II—‘

or:

ag -a%+ @%@uz +v2) (2-95)
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and finally, solving for a (and including the third dimension):
2_2 -1, 2 2
a? =& - () +v2 + W) (2-96)
which is the equation we have been working to find.

2.5.3 Full Potential Equation

The gas dynamics equation is converted to the classical nonlinear potential equation when we
make the irrotational flow assumption. The potentia flow assumption requires that the flow be
irrotational. Thisisvalid for inviscid flow when the onset flow is uniform and there are no shock
waves. However, we often continue to assume the flow can be represented approximately by a
potential when the Mach number normal to any shock wave is close to one (M < 1.25, say). Re-
call that the irrotational flow assumption is stated mathematically as curl V=0. When thisis true,
V can be defined as the gradient of a scalar quantity, V=[®. Using the common subscript nota-
tion to represent partial derivatives, the velocity components are u = q)x , V= CDy and w = <DZ.
Using the gas dynamics equation, the non-linear or “full” potential equation is then:

(D = &) Py +(Df —a)Dyy +(DF = @)D, +20, O D, + 2D, D,Dy, + 20,0, D, =0.

(2-97)

Thisisthe classic form of the equation. It has been used for many yearsto obtain physical in-
sight into a wide variety of flows. Thisis asingle partial differential equation. However, it isa
nonlinear equation, and as written above, it is not in divergence (or conservation) form.

2.5.4 Equivalent Divergence Form and Energy Equation

The equivalent equation written in conservation form makes use of the continuity equation.
Thisisthe form that is used in most computational fluid dynamics codes. Written here in two di-
mensionsit is:

0 0

— (pP,) +— (pP,) = 0. 2-98

aX(p x) ay(p y) (2-98)
The relation between p and the potential is given by:

1
p=[1-(L)(@% + %)™ (2-99)

which is a statement of the energy equation. Note that the full potential equation is still nonlinear
when the density varies and p must be considered a dependent variable.
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2.5.5 Derivation of another form of the Related Energy Equation

It isinformative to demonstrate the derivation of the energy equation given above. To get this
standard form, understand the specific non-dimensionalization employed with this form:

~

P _ U Y
p—p—o, Pz PyE (2-100)
where a* denotes the sonic value. Start with the previous energy equation and work with dimen-

sional variables for the moment:

a?=a2- (V_;l)( 2 +v2) (2-101)
or
2 2
a y =1 u® +V2
= =1-(—=—)( ). (2-102)
a 2 7 &
Now, get arelation for a, in terms of the eventual nondimensionalizing velocity a*:
2_.2 -10 2 2
8 =a ’ﬁ/—z u? +v?) (2-103)

:a2

when the velocity is equal to the speed of sound a = a*. Combining terms:

aozza*2 +%1%*2 :§+VT_1%*2 (2-104)
a2= @%1%*2. (2-105)

Replace ao2 in the energy relation with a* 2in the veloci ty term (denominator of Eq. 2-102). And

or.

in the first term use:

%EE? =T (2-106)
o To,
recalling a“ = y RT, to get:
l_l_y—l u? +v2
To 2 V_2+1a*2 (2-107)
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or
%zl—@ﬁ%@%g+%ﬁé (2-108)

Recall for isentropic flow (a consistent assumption if the use of ® isvalid):

s= const (2-109)
and

p _ _ Po
— =const = —>
pY pd

(2-110)

Now, we introduce ( ) to denote dimensional quantities and convert to the desired nondimen-

siona form:
OO0 OO OF DyL
FPo=520 =p-0 (2-111)
Opod [Pol ol
or
¥ 00t
— =00 (2-112)
To PO

Using Eg. (2-112) we write the energy equation, Eg. (2-108), as:

0p ™ Oy -10ha ﬁz v @2[
=1- -
oo g T 1%‘; +§.; E (2-113)

Using the nondimensionalizing definition given above, we finally obtain:
1
_l _
p=[1-E) @5+ o) (2-114)

Thisis an energy equation in p to use with the divergence form of the full potential equation.

It is also an example of how to get an energy equation in atypical nondimensional form used in
the literature.
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2.6 Special Cases

In this section we present a number of special, simplified forms of the equations described
above. These simplified equations are entirely adequate for many of the problems of computa-
tional aerodynamics, and until recently were used nearly exclusively. The ability to obtain sim-
pler relations, which provide explicit physical insight into the flowfield process, has played an
important role in the development of aerodynamic concepts. One key idea is the notion of small
disturbance equations. The assumption is that the flowfield is only slightly disturbed by the body.
We expect this assumption to be valid for inviscid flows over streamlined shapes. These ideas
are expressed mathematically by small perturbation or asymptotic expansion methods, and are
elegantly described in the book by Van Dyke.® The figure at the end of this section summarizes
the theoretical path required to obtain these equations.

2.6.1 Small Disturbance Form of the Energy Equation

The expansion of the simple algebraic statement of the energy equation provides an example
of asmall disturbance analysis. In this case the square of the speed of sound (or equivalently the
temperature) is linearly related to the velocity field. Start with the energy equation:

-1
a? =8~ (L=)f +v) (2-115)
and
2 2 10 2 ov_ 2  ¥Y-1 2 2.116
a5 =congt = a +§/T@u +v )-am+—2 us- ( )

Letingu=U_+Uu,v=V:
a’=al+ y—z_lUi - @V—z_lﬁus, +2U U +ul+ v’2] (2-117)
and combining terms:
-1
a?=a2- ﬁ/_z ouu+u?+ vy, (2-118)

At this point the relation is still exact, but now it is written so that it can easily be ssmplified.
The basic ideawill be to take advantage of the assumption:

U<U. v <U, (2-119)
and thus,
U, Y J 0 2.120
—_—< |:| -~ -
0. -H ( )
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where the above equation becomes:

2_ .2 -1 2., .,2
a :aoo—@/—@ZUmu’+ u“+ve ]
2 neglect assmall (2-121)
henceforth

Thisis alinear relation between the disturbance velocity and the speed of sound. It is a heuristic
example of the procedures used in a more formal approach known as perturbation theory.

2.6.2 Small Disturbance Expansion of the Full Potential Equation

We now use a similar approach to show how to obtain a small disturbance version of the full
potential equation. Again consider the situation where we assume that the disturbance to the
freestream is small. Now we examine the full potential equation. First, we rewrite the full poten-

tial equation given above (in 2D for simplicity):

(@7 - @)Dy + 20D D, + (D] - ), =0- (2-122)

Now write the velocity as a difference from the freestream velocity. Introduce a disturbance
potential ¢, defined by:

O =UX+q@XYy)
Py =u=Uy + ¢ (2-123)
by =v=g,

where we have introduced a directional bias. The x- direction is the direction of the freestream

velocity. We will assume that 0, and (py are small compared toU _ . Using the idea of asmall dis-

turbance to the freestream, ssimplified (and even linear) forms of a small disturbance potential
equation and an energy equation can be derived.
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As an example of the expansion process, consider the first term. Use the definition of the dis-
turbance potential and the simplified energy equation as:

(CD a)DU +(px %w @V—lﬁzu u]ﬁ

(U2 +2U.0, +9f -8 + 1220, (2-124)
=@x

Regroup and drop the square of the disturbance velocity as small:

(®% - a?) OUZ -

ao% +2Uoo(px +(y _1)Uoo(pX
Ou2 -a2

+[2+ (v —1)]Ustpy
v TR

(2-125)
2
Dividing by a
2 .20 ;42
E-l.g‘}—a—ZDD%—1+(y+l)%9K
8o G0 [ Qs B Ao
2 Uoo(px
UMg =1+ + YM(——
b+ M= >
—_—
Yoo O
3w Ug
U, L
2 2 =%
U{Mp —1)+(y +1)My L. 2-126
(M2 -1)+ b +OmETEE (2-126)

Rewrite the potential equation, Eq. (2-122) dividing by af, . Then replace the coefficient of the
first term using Eq. (2-126):

X & o, Py 32/ a’
(= -—) Py + 22—y +(— ——)Py =
22 T G o
(2-127)
2 U@ OU . -
M2 1)y +)M5,
% )(vl) .
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Now, by definition

Pox =P Pyy = By, Pyy = Py (2-128)
while:

P [ U )

—IMQOD,‘F&D _y:Moo& (2-129)

Ao O Us O & Uso

and using the same approach demonstrated above we can write:

LpZ 520 o0y C
Qa:{ —£%D—1+ (v—l)MooHJ—E. (2-130)

Putting these relations all into the potential equation we obtain:

E\/I -1+(y +)M Z&EFXX-I-ZM Ell+ HJ—(pr+H-1+y -1)M H)yy

(2-131)

where the cp)z(, cpi terms are neglected in the coefficients. This equation is still nonlinear, but isin

aform ready for the further simplifications described below.

2.6.3 Transonic Small Disturbance Equation

Transonic flows contain regions with both subsonic and supersonic velocities. Any equation
describing this flow must simulate the correct physics in the two different flow regimes. As we
will show below, this makes the problem difficult to solve numerically. Indeed, the numerical so-
lution of transonic flows was one of the primary thrusts of research in CFD over the decades of
the ' 70s and '80s. A small disturbance equation can be derived that captures the essential nonlin-
earity of transonic flow, which is the rapid streamwise variation of flow disturbances in the x-di-
rection, including normal shock waves. Therefore, in transonic flows:

9.9 (2-132)

ox ady
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The transonic small disturbance equation retains the key term in the convective derivative,
u(u/ax) , which alows the shock to occur in the solution. Retaining this key nonlinear term the
small disturbance equation given above becomes:

@1—M )= y+])M2&EPXX+<pW:o. (2-133)

Note that using the definition of the potentia from Eq.(2-123) we can identify the nonlinear
term, u(@u/a0x) , which appears as the product of the second term in the bracket, u =g, , and the

(Pyx term, whichis ou/ox .

This is one version of the transonic small disturbance equation. It is still nonlinear, and can
change mathematical type (to be discussed in section 2.8). This means that the sign of the coeffi-
cient of @ can change in the flowfield, depending on the value of the nonlinear term. It is valid

for transonic flow, and, as written, it is not in a divergence form. Transonic flows occur for Mach
numbers from .6 to 1.2, depending on the degree of flow disturbance. They also occur under
other circumstances. At high-lift conditions, the flow around the leading edge may become local-
ly supersonic at freestream Mach numbers as low as .20 or .25. Transonic flow occurs on rotor
blades and propellers. At hypersonic speeds the flow between the bow shock and the body will
frequently be locally subsonic. These are aso transonic flows. The transonic small disturbance
equation can be solved on your personal computer.

2.6.4 Prandtl-Glauert Equation

When the flowfield is entirely subsonic or supersonic, all terms involving products of small
guantities can be neglected in the small disturbance equation. When this is done we obtain the
Prandtl-Glauert Equation:

(1-M2)@+ @y =0 (2-134)

Thisisalinear equation valid for small disturbance flows that are either entirely supersonic
or subsonic. For subsonic flows this equation can be transformed to Laplace's Equation, while at
supersonic speeds this equation takes the form of a wave equation. The difference is important,
as described below in the section on the mathematical type of partia differential equations
(PDES). This equation requires that the onset flow be in the x-direction, an example of the impor-
tance that coordinate systems assume when simplifying assumptions are made. Thus, use of sim-
plifying assumptions introduced a directional bias into the resulting approximate equation.
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The extension to three dimensionsiis:

(1-M2) @ + @y + @ = 0. (2-135)

2.6.5. Incompressibleirrotational flow: Laplace's Equation

Assuming that the flow isincompressible, p is aconstant and can be removed from the modi-
fied continuity equation, Eq.(2-97), given above. Alternately, divide the full potential equation
by the speed of sound, a, squared, and take the limit as a goes to infinity. Either way, the follow-
ing equation is obtained:

P+ By =0 (2-136)

This is Laplace's Equation. Frequently people call this equation the potential equation. For
that reason the complete potential equation given above is known as the full potential equation.
Do not confuse the true potentia flow equation with Laplace’ s equation, which requires the as-
sumption of incompressible flow. When the flow is incompressible, this equation is exact when
using the inviscid irrotational flow model, and does not require the assumption of small distur-
bances.

2.6.6 The Boundary Layer Equations

The last specia case retains a viscous term, while assuming that the pressure is a known
function and independent of the y-coordinate value. These are the Prandtl boundary layer equa-
tions that describe the flow immediately adjacent to the body surface. For 2D, steady flow they
are:

opu dpv
—+—=0 -
ax oy (2-137)
uau+ Vau__6p+6 [0 oul 51383
PUox P dy  0x ayBIGyE (2-138)
ap
0:——_ _
oy (2-139)

The related energy equation must also be included if compressibility effects are important.
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All the equations presented in this section provide physical models of classes of flows that,
under the right circumstances, are completely adequate to obtain an accurate representation of
the flow. Many, many other approximate flow models have been proposed. Those presented in
this section represent by far the majority of methods currently used. In recent times, numerous
versions of the Navier-Stokes equations (taken here to include the time-averaged Reynolds equa-
tions to be discussed in Chap. 10) have also been used. These equations will be discussed as ap-
propriate in subsequent chapters. Figure 2-10 given below summarizes the connection between
the various flowfield models.

General Governing Equations
Navier-Stokes Equations
Newtonian fluid, compressible, viscous, unsteady, heat-conducting

| |
inviscid flow treat turbulence via
assumption Reynolds averaging and
' turbulence model
Euler Equations I
I Reynolds Equations

note: aeros 1. drop body force terms (sometimes called N-S)
| 2. use divergence form

« onset flow uniform . . | f#
« shocks are weak (Mn<1.25) restrict viscous effects

| to gradients
Irrotational Elow normal to bodies, directional bias

v=0b '
L Thin Layer N-S Egns.

Potential or FULL Potential Eqn. I
(Gas Dynamics Equation)

introduce Prandtl BL assumption

| | * pressure is const. across layer
incompressible flow small disturbance approx « leading viscous term only

I I |
Laplace's Egn. sub/super & trans, incl.
apiaces man P-G grj TSDE Eqns. Boundary Layer Egns.

(includes integral egn.
representation)

Figure 2-10. Connection between various approximations to the governing equations.
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2.7 Examplesof Zones of Application

The appropriate version of the governing equation depends on the type of flowfield being in-
vestigated. For high Reynolds number attached flow, the pressure can be obtained very accurate-
ly without considering viscosity. Recall that the use of a Kutta condition provides a smple way
of enforcing key physics associated with viscosity by specifying this feature as a boundary con-
dition on an otherwise inviscid solution. If the onset flow is uniform, and any shocks are weak,
M, <1250r 13, then the potential flow approximation is valid. If a slight flow separation ex-
ists, a specia approach using the boundary layer equations can be used interactively with the in-
viscid solution to obtain a solution. As speed increases, shocks begin to get strong and are
curved. Under these circumstances the solution of the complete Euler equationsis required.

When significant separation occurs, or you cannot figure out the preferred direction to apply
a boundary layer approach, the Navier-Stokes equations are used. Note that many different
“levels’ of the N-S Equations arein use.

To avoid having many different codes, some people would like to have just one code that
does everything. While thisis agoal, most applications are better treated using a variety of meth-
ods. A step in the right direction is the use of a system that employs a common geometry and
grid processing system, and a common output/graphics systems.

2.8 Mathematical Classification or the" Type" of Partial Differential Equations (PDES)

A key property of any system of PDEs is the “type’ of the equations. In mathematics, an
equation “type”’ has a very precise meaning. Essentialy, thetype of the equation determines the
domain on which boundary or initial conditions must be specified. The mathematical theory has
been developed over a number of years for PDES, and is given in books on PDES. Two examples
include Sneddon'® (pages 105-109), and Chester!! (chapter 6). Discussions from the computa-
tional fluid dynamics viewpoint are available in Anderson, Tannehill, and Pletcher'? (chapter 2),
Fletcher'3 (chapter 2), and Hoffman'* (chapter 1).

To successfully obtain the numerical solution of a PDE you must satisfy the “ spirit” of the theory
for the type of a PDE. Usually the theory has been developed for model problems, frequently lin-
ear. For PDEs describing physical systems, the type will be related to the following categoriza-
tion:
1. Equilibrium problems. Examples include steady state temperature distributions and
steady incompressible flow. These are similar to boundary value problems for ordi-
nary differential equations.
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2. Marching or Propagation Problems. These are transient or transient-like problems.
Examples include transient heat conduction and steady supersonic flow. These are
similar to initial value problems for ODEs.

The types are dliptic, parabolic, and hyperbolic. A linear equation will have a constant type. The
nonlinear equations of fluid flow can change type locally depending on the local values of the
equation. This “mixed-type” feature had a profound influence on the development of methods
for computational aerodynamics. A mismatch between the type of the PDE and the prescribed
boundary conditions dooms any attempt at numerical solution to failure.

The standard mathematical illustration of type uses a second order PDE:

AQy +B@y + Coyy + D@ +E@y + Fp+G =0. (2-140)

where A, B, C, D, E, F, and G can be constants or functions of x, y, and ¢. Depending on the val-
ues of A, B, and C, the PDE will be of different type. The specific type of the PDE depends on
the characteristics of the PDE. One of the important properties of characteristics is that the sec-
ond derivative of the dependent variables are allowed, although there can be no discontinuity of
thefirst derivative. The slopes of the characteristics can be found from A, B, and C. From mathe-
matical theory the characteristics are found depending on the sign of determinant:

Characteristics Type
(82 - 4AC) >0 real hyperbolic
=0 real, equal parabolic (2-141)
<0 imaginary elliptic

Hyperbolic: The basic property is alimited domain of dependence. Initial data are required
on a curve C, which does not coincide with a characteristic curve. Figure 2-11 illustrates this re-
quirement.

characterisitics

Figure 2-11. Connection between characteristics and initial condition data planes.
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Classical linearized supersonic aerodynamic theory is an example of a hyperbolic system.

Parabolic: This is associated with a diffusion process. Data must be specified at an initia
plane, and march forward in a time or time-like direction. There is no limited zone of influence
equivalent to the hyperbolic case. Data are required on the entire time-like surface. Figure 2-12
illustrates the requirement.

initial
dat

AN

A

>
t

Figure 2-12. Initial data plane for parabolic equation.

In aerodynamics, boundary layers have a parabolic type.

Elliptic: These are equilibrium problems. They require boundary conditions everywhere, as

shown in Figure 2-13. Incompressible potential flow is an example of a governing equation of el-

| boundary conditions required I
/ completely around the flowfield |
I
I I
O i
/I — boundary |

(0.0)
I I
I
I

liptic type.

conditions
required on
solid surface

Figure 2-13. Boundary conditions required for elliptic PDEs.
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Consider the following examples. For the Prandtl-Glauert equation:

(1= M2 )@y + @y =0 (2-142)
and:
M <1 eliptic

>1  hyperbolic (2-143)

For the transonic small disturbance equation:

[
Eﬂ—Mi)—(y +1)MO%L(JP—XH¢)O(+%: 0

sign depends on the solution

- locally subsonic: eliptic . (2-144)
- locally supersonic: hyperbolic

Thisisan equation of mixed type. It is required to treat the physics of transonic flows.

Type plays akey role in computational approaches. The type can be used to advantage. In the
case of the Euler equations, the steady state Euler equations are hard to solve. It is standard pro-
cedure to consider the unsteady case, which is hyperbolic, and obtain the steady state solution by
marching in time until the solution is constant in time.

Alternate approaches are available for systems of first order PDEs. Classification is some-
times difficult to determine. The type of an equation is determined with respect to a particular
variable. The type of equations with respect to time may be completely different than their type
with respect to space. The type of the equation often helps to define the appropriate solution
coordinate system. The different types of the equations given above are responsible for the dis-
tinct numerical approaches that are adopted to solve different problems.

2.8.1 Elaboration on Characteristics
This section provides additional details that provide some insight into the reason that the de-
terminant of the coefficients of the second derivative terms define the type of the equation.

Considering:
APy +B@y + Coyy + D@y +EQy+ Fp+G =0 (2-145)

» Assume @is asolution describing a curve in space
* These curves “patch” various solutions, known as characteristic curves

* Discontinuity of the second derivative of the dependent variable is alowed, but no dis-
continuity of the first derivative
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The differentials of @, and (pywhich represent changes from x,y to x + dx, y + dy along char-

acteristics are:
gy = G2+ 2T% dy = b gy (2-146)
ox
doy = 99y 4+ 2% <py dy Pyx0X + Gy dly - (2-147)
Y™ ox
Express (2-145) as
AQyx +B@yy + Coyy =H (2-148)
with:
H=-(Dgy +Epy+ Fo +G) (2-149)

Assume (2-148) is linear. Solve (2-148) with (2-146) and (2-147) for second derivatives of ¢

AQy +B@y +Coyy =H
Xy +dy@yy = doy

dXpyy + dypyy = d@y (2-150)
or
O 0OytCL
o oEen g,
dx dy%% BdCPyE (2-151)

and solve for Qe (pXy q)yy Since second derivatives can be discontinuous on the characteristics,

the derivatives are indeterminate and the coefficient matrix would be singular:

A B CO
W dy 0.=0. (2-152)
0o dx dyO
Expanding:
A(dy)® - Balxdy +C(dx)* =0 (2-153)

and the slopes of the characteristics curves are found by dividing by (dx)2:
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A&%’g— B%/E+C=O. (2-154)

Solve for dy/dx:

_ B+yJB?-4AC
G,B 2A

dy
dx

(2-155)

and hence the requirement on VB? —4AC to define the type of the PDE as related to the charac-
teristics of the equation. See the references cited above for more details.

2.9 Requirementsfor a Complete Problem For mulation

When formulating a mathematical representation of a fluid flow problem, you have to con-
sider carefully both the flowfield model equations and the boundary conditions. An evaluation of
the mathematical type of the PDEs that are being solved plays akey role in this. Boundary condi-
tions must be properly specified. Either over- or under-specifying boundary conditions will
doom your calculation before you start. A proper formulation requires:

* governing equations

* boundary conditions
» coordinate system specification.

All before computing the first number! If thisis done, then the mathematical problem being
solved is considered to be well posed.
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2.10 Exercises

1. Convert the unsteady 3D Euler equations from classical non-conservative form to divergence
form.

2. Egn. (2-70) is an unusua form of the equation of state. It is from viewgraphs defining the
equations used in cfl3d. Turn in your derivation of this equation. Is there atypo?

3. Show how Eqgn. (2-76) can be obtained.
4. Why is Egn. (2-97) not in divergence form?

5. Show that point source and point vortex singularities are solutions of Laplace's equation in
two dimensions.

Recall that a point source can be expressed as:

cp(xy):fln(xzwz)
Tt

and apoint vortex is:

o(xYy)= %Ttan_lﬁ)%ﬁ

6. Consider the point source of problem 2. What is the behavior of the velocity as the distance
from the source becomes large? What is the potential function for a point source? How doesiit
behave as the the distance from the source becomes large. Comment from the standpoint of
having to satisfy the “infinity” boundary condition in a program for a potential flow solution.

7. Find the classification type of the following equations:

Laplace: UXX+ Uyy =0.

Heat Eqn. : Uy: o Uxx’ o red

WaveEqn.: U= c2U creal
XX vy’ '
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3. Computers, Codes, and Engineering

3.1 General Comments

Success in using the methods of computational aerodynamics also depends on an ability to use
computers effectively. In this chapter we present some guidelines for the effective use of
computing systems. Software development and computing systems are called the tarpits of engi-
neering by Brooks! He describes the problems of software development through analogy with
the ancient tarpits. Figure 3-1, from Brooks book, shows the prehistoric beasts, completely
bogged down in the primordial ooze. Almost al computer software development jobs get bogged
down in a similar quagmire. His book of essays on software engineering is required reading in
many places. Unfortunately for the beginner, a true appreciation of the essays comes only with
experience. Reading Brooks's book may help avoid the stickiest traps. Students should under-
stand that software development and maintenance/support costs completely overshadow the cost
of computer hardware.

A great,
but copyrighted,
figure of the grand creatures, bogged down in the tar.

Figure 3-1. Mural of the La Brea Tarpits, by C. R. Knight, from Brooks.
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Before providing detailed suggestions for code development and use, a couple of comments

based on previous experience with studentsisin order:

i. Accuracy. Students are told a lot about roundoff error. In making students understand that

A Story There were al sorts of rumors
about the poor accuracy of the trigonometric
functionsin Applesoft, the Apple version of
BASIC. So after | got an Apple][ computer,
and converted an airfoil analysis program that
| had developed for a programmabl e calcula-
tor, | was willing to accept 2~3 place accura-
cy. After al, it was BASIC, and this method
relied heavily on trig functions. Telling this
story at work, a colleague winked knowingly,
shook his head and told me to find the bug. |
gaveit onemoretry. The result? | found the
bug. In fact, | learned something important:
the order of precedence of operationsin
BASIC (the unary minusin particular) as
compared to FORTRAN. It wasjust luck that
the test case agreed as closely asit did. The
moral? More often than not, it’s not machine
roundoff that causes poor accuracy!

computers process finite length numbers, the message students get is that computers aren’t accu-

rate. Rubbish. Roundoff error has become a
favorite excuse (aerodynamicists frequently
use unknown Reynolds number effects in a
similar fashion). Don’'t accept three place ac-
curacy. The computer isnot adliderule. More
than likely, poor accuracy indicates bugs. At
the very least it denotes poor numerical prac-
tice, which should be fixed before you find
the case where the code goes entirely wrong.
The issue here is not whether the theory war-
rants plotting the output to more than three
places, the issue is whether the code is cor-
rect. When roundoff error is a problem, it
usualy arises as the result of taking the dif-
ference of two large numbers. In aerodynam-
ics, most algorithms operate accurately using

64-bit arithmetic. This is single precision on
scientific machines (Cray), but is known as double precision on commercial machines (IBM).
Double precision must be specified to use 64-bit arithmetic on those computers. Investigation of
the accuracy of a particular computer is left to the reader as an exercise.

ii. Disdain for “ canned” programs. This may reflect some instructor’s attitudes. Students
should realize they won't be the authors of most programs they use. At best they will be making
modifications and fixing bugs. They may be combing existing codes to develop design systems.
Current codes are often the result of many man-years of development work (even hundreds of
man-years for some engineering codes). Adopt a positive approach to using other people’ s codes.
This requires learning how to use the code, demonstrating a desire to make it work on your spe-
cific problem (this often requires considerable ingenuity), and knowing how to check code
accuracy against other results. Y ou must gain confidence in a code before making an engineering
decision that may mean millions of dollars, possibly lives and the future of the company (an ex-
aggeration, but not an excessively large one). Because of the importance of maintaining software
integrity, many engineers are not even alowed to modify the source codes they use. Frequently
they won't even be allowed to see the code.

iii. Time. Trying to use a computer program for the first time takes more time than you ex-
pect. Working with computers is a sequential (and intense) process. It's very hard to skip steps.
When you know you are going to need to use a program, try it out as soon as you can. Don’'t
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delay. Brooks! poses the question (and answer): “How do computer projects get a year behind
schedule? One day at a time.” There are amost always unexpected delays. Letting problems
dlide is a sure recipe for disaster. This is especially true when a student waits until the night be-
fore an assignment is due to try out a program for the first time. Usually, difficulties can be easi-
ly resolved if you can contact someone, or if you can step back and calmly reassess the situation.
That’s hard to do in the middle of the night with a deadline looming. This also holds true for de-
veloping codes. Code development is deceptively time consuming. A good rule of thumb states
that the last 10% of the code development work takes at least 90% of the time.

iv. UNIX. UNIX is the current operating system of engineering. Learn UNIX and the vi edi-
tor. Without this skill you won't be an effective engineer. This is the only operating system that
isnearly universal. It' s used on all workstations and most advanced computing machines.

v. It's a dynamic world.” Computational aerodynamics codes are always changing. Every
new problem seems to require code extensions. One problem with computer science majors
working on codes (or directing software projects) is their assumption that codes are “finished”.
In aerodynamics, if acodeis used it’s never finished. Someone will always need one more modi-
fication. Be prepared to change your code. This aso means paying attention to defining versions
of programs as well as backing up your programs. In addition, scientific computing isin a period
of rapid change. After along period of thinking in terms of sequential, or “scalar,” computations,
most aerospace engineers now have access to computers which offer increased performance
through advanced computer architectures. To use these architectures effectively requires using
algorithms and software designed to take advantage of the specific machine capability. Examples
are vector and parallel processing. Engineers graduating today will be using massively parallel
computing machines over a significant portion of their careers. Computational aerodynamics re-
quires that you stay abreast of scientific computing developments.

3.2 Introduction to Softwar e Engineering

The process of developing and maintaining computer programs is known as software engi-
neering. This field is developing approaches to code development that are intended to delay get-
ting bogged down in the tarpits described by Brooks. Before proceeding, we need to outline the
elements of software engineering and provide an overview of the proper approach to developing
a code which will prove useful after the original programmers have gone on to other projects.
Our discussion is based on Chapter 13 of the book by Darnell and Margolis® and Chapter 11 of

* The choice of FORTRAN, C or C++ as your programming language is frequently an issue (Sometimes an emo-
tional one!). Usually the particular circumstances dictate which language to use. If you know FORTRAN or C,
there are many books available to help you learn the other. Y ou can gain proficiency with afew evenings' study
and some practice. Studying code is also valuable, and if the circumstances require you know it, that usually
means that lots of codeis already available to study. Essentially, FORTRAN isimportant because many, many
existing aerodynamics codes are written in FORTRAN. C isimportant because there are more graphics and
data acquisition software tools written in C. In either case, object oriented programming will be used by engi-
neersin the future, and, if you program, you will continually learn new programming methods. C++ isalittle
harder to learn if you are used to FORTRAN or C, but may be better for constructing large, complicated, multi-
disciplinary systems. Although Javais not yet relevant for scientific computing, it could become important be-
cause of itsrapid development and cross-platform capability. Always be prepared for change.
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the book by Stroustrup.® The problem is that real software systems are incredibly complex. The
“problem analysis, overall program design, documentation, testing, maintenance and manage-
ment dwarfs the actual writing and debugging of code.”® Software development is done by peo-
ple, and relies on common sense and personal commitment. While we list numerous activities
below, software development procedures must not be allowed to discourage creativity.

Darnell and Margolis break software engineering into the following elements:

 Product specification: The product (program) that is going to be developed must be de-
fined before work starts. Unless the goal of the project is specificaly and realistically de-
fined the project will fail. How it looks to the user must be defined before the details of the
code required to implement the solution are designed. The user needs to be involved at this
point to make sure there is no misunderstanding about exactly what and how information
goes in, and exactly what comes out of the program. Vague language must be avoided.
Use of “fast” or “easy to use” as specifications will inevitably result in arguments, and
possibly lawsuits, when the product is delivered. Nevertheless, the specification will likely
be revised as the customer and designers interact during the development. Availability of a
new tool results in a change in the process as soon as it’s used. The specification includes
an abstract of the problem, the equations to be solved, the input and input interface, the op-
eration of the program as it appears to the user (screen design, subroutine calls and argu-
ment lists, etc.), output file descriptions, error messages, and plans for future extensions.

» Software design: Once the product is defined, the software can be designed. This includes
the major divisions of functionality, the major data structures, and the numerical/computa-
tional algorithms to be used. Quoting Stroustrup,® " The most fundamental problem in soft-
ware development is complexity. There is only one basic way of dealing with complexity:
Divide and conguer.” Thus the problem should be split up. But to be effective, the com-
munication of the various pieces requires that the interface between pieces be well de-
signed. The result will be a program with a clean internal structure and clear connections.

* Project planning and code estimation: The estimation of code development timeisamajor
problem. Even experienced programmers usualy grossly underestimate the time a soft-
ware job will take. One of the problems is the enormous difference in productivity be-
tween programmers. Brooks continues to be the key source of insight in this area.r One of
the keys to tracking software schedules is to use specific measurable milestones. Typically
the schedule can be broken into:

1/3 product specification and scheduling

1/6 coding

1/4 component testing and early system testing
1/4 compl ete system integration and testing

» Software tools for software production: To improve productivity use tools available on
your system. These include lint programs to double check source code, profilersto evalu-
ate where the time is being spent in programs, and tools to examine the function call tree.
Most systems have make routines* which make sure that the latest versions of routines are
being used without compiling the entire code after every change. Learn how to use these
tools.
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» Debugging techniques: Software development suffers from poor productivity. Research is
continually being directed toward ways to improve productivity. Development and use of
debugging techniques is one area where we can expect continual improvement. Compilers
generally include debuggers. Take advantage of the best debuggers available.

 Testing: Software validation is a difficult job. “The program that has not been tested does
not work.”2 The code must be correct, and it must be usable. The devel opers need to estab-
lish a set of test cases to use during code development. Once the accuracy of the code is
established, the usefulness of the code is evaluated by having others useit. Thisusually in-
volved an alpha and a beta test group. The apha group is usually part of the organization
that developed the code, while the beta group is usually made up of customers for the
product. Users that call the developers frequently to complain are often selected to be part
of the beta group. It is amazing how many problems these groups can unearth. Although
bugs are never completely eliminated, the problems found in the testing process can quick-
ly reduce the initial bugs that are found after the product is released. Special consider-
ations for computational aerodynamics codes will be described below.

» Performance analysis: particularly in computational aerodynamics, the time and memory
required to solve problems must be defined and evaluated compared to other methods. The
question is always going to be asked. Y ou must have an answer, and it will help determine
if the new code will be competitive.

» Documentation: The methods and the code should be documented separately. The product
specification should include most of this information. The user’s manual should strike a
balance between being too long, discouraging use, and being too short, so that it doesn’t
help the user. Generally the user’s manual and overview documentation should be written
by a new user of the code. The developers and long-time users do not bring the viewpoint
of a new user to the documentation, and usually do a poor job. Documentation should in-
clude sample input and output files for the key cases and options available to the user.

» Source control and organization: As the code development effort proceeds the code
changes become hard to keep track of, especially when the work is done by a team. Once
the initial code development effort is completed, the code will be changed much less fre-
guently, often by people not on the original development team. Without a formal process
to track the history of the code changes and to ensure that the proper version is distributed
there will be problems. In UNIX there is a system known as sccs/rcs which can be used.®
Commercial products are available to help do the so-called version control. Use of version
control requires self-discipline that is difficult to do in a student environment. But devel-
opment of good habits from the beginning will greatly improve the development of of a
professional approach to software engineering.

Above al, any code should be developed for:
» Readability
* Portability
* Maintainability.

When designing a computer solution to a problem, it is important to make sure that the
problem is completely defined before the computer programming begins. Evin Cramer of Boeing
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recently described the proper procedure. Most code projects should adopt a team approach,
where the team consists of the core team, an extended team, and the customers. The extended
team represents consultants who provide fast answers to questions that arise in the development
process. The customer, or user, needs to be involved from the beginning to provide specifications
and to make sure that the final product solves the right problem and the interface fits the user ex-
pectations.

Tackling the problem, it is important to keep the parts of the problem separate. First define
the engineering problem. Next, look for a solution method. Once the solution method is selected,
then develop the mathematical definition of the problem precisely. Only now should the code de-
velopment effort start. In designing the computer code she suggested that modern simulation
methods be used, and that simulation (analysis) methods be kept separate from the optimization
formulation and strategy. This approach resultsin a modular and easily upgradeable code.

3.3 Specific Approachesto Code Development

Now we provide methods for code development applicable to computational aerodynamics.
Perhaps the most important requirement is to use a disciplined approach. Because programming
does not obey a specific natural law, the programmers must establish the process. At the heart of
effective programming is self-discipline and personal responsibility. One approach to good pro-
gramming practice has been developed by Watts Humphrey.” Since most code projects will be
done by teams, consider the minimum team effort to be divided between interface design, numer-
ical methods coding and code verification.

Considering specifics, engineers should develop a clean, coherent style for their coding.
When engineers write poor code they provide the computer science maors with evidence to sup-
port their claim that engineers shouldn’t be allowed to touch source codes. That's okay if the
computer science people work for you. If they take control of the organization, and engineers de-
pend on them for software support, it isn’'t. Engineers can also work on codes. It smply requires
agood common sense approach and self discipline.

The code segments in Figures 3-2 and 3-3 illustrate both the old fashioned, terrible, coding
style frequently found in codes written by engineers, and a modern, good, code style. Consider
first Figure 3-2. This atrocious example actually existsin a series of widely used codes.

In this example:
* variables names don’t mean anything
* the statement numbers are out of order
* thelogic is virtually impossible to follow
« computed go tos and arithmetic ifs are used amost exclusively”
* there is no white space or structure to the statements

| was assigned to modify this code (this segment is part of over 2000 lines of similar code) as
one of my first assignments in an aerodynamics devel opment group after graduating from school.

* arithmeticsifs have been declared obsolescent in FORTRAN 90, see Section 3.10.
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In contrast, consider Figure 3-3, an example of code in a modern program. Here, the code
appears well structured, white space is well used, and the variable names seem to be systemati-
cally defined. It's a good example of current code practice. | have also modified this code. Al-
though the program is much longer, the job was much easier.

68 | F( 1. - UFUT(K)/ RK- 1. OE- 3) 69, 70, 70
69 | F( TFUT(K)/ RK**2- 1. OE- 6) 71, 70, 70
70 1 F(K-1(6))72,72, 71

I F(1(9 )) 76,76, 110
110 DI V=1./ ( X+XSTEP- ORDI N( Z, A( 2) , XFUT))
IF(1(9 )-1)76, 76, 77
77 DI V=SLOPBL(Z, A(2), | (5), XFUT)/ ORDI N( Z, A(2) , XFUT)
IF(1(9 )-2)76, 76, 1055
1055 DI V=ORDI N( Z, A( 2) , XFUT)
76 11=1(6)+1
| F(1(6).CE. (18-1)) GO TO 73
| (6)=I8-1
73 161=1(6) +1

DO82 J=1, 161
Y=1. +. 25* (UFUT(J+1) +UFUT(J) ) * (WEUT( J+1) +WEUT(J))

82 V(J+1) =(UFUT(J+1) *V(J) - Y* (TFUT(J+1) - TFUT(J)) - . 5* (WEUT( J+1) +WFUT( J)
1) * (TFUT( J+1) +TFUT(J) ) * Y* (UFUT( J+1) - UFUT(J) ) *. 5- . 25* (UFUT( J) +UFUT
2(J+1))**2* A(1) * (VDLPDX* (1. - Y*AY/ A(12)/ (Y-1.)) +DI V) ) / UFUT(J)

94 A(5) =TAUW0/ RK2/ (1. +RK5)

| 625=I (6)/ 4

DO 1056 J=I 625,16

| F(UFUT(J) / RK- . 995) 1057, 1056, 1056
1057 L=J

RL=FLOAT(L)
1056 CONTI NUE

TAUO=TAU0+DTW
| F(TAUW0) 9411, 9411, 9412
9411 1 Q=1
GO TO 28
9412 ALPHA=ALPHA+DA
A162=2. * A( 16)
| F(ABS( DU UFUT( 1)) - A(16)) 1042, 1042, 1041
1042 | F( ABS( DTW TAU0) - A( 16) ) 1043, 1043, 1041
1043 | F( ABS( DA/ ALPHA) - A162) 1044, 1044, 1041
1044 WFUT( 1) =F7
TFUTP=TFUT( 1)
TFUT( 1) =( TAUO+ALPHA *A(1))/ (1. +. 5% UFUT( 1) * WFUT( 1))
| F(TFUT(1).GT.0.0) GO TO 1039
RVAX=\\R* RMAX
GO TO 34
1039  CONTI NUE
| F(ABS( 1. - TFUT( 1)/ TORD) - 2. *A( 16) ) 1045, 1046, 1046

Figure 3-2. An example of aterrible programming style.
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if (ivisc(3).gt.0) then

tau = vmu(j,i)*const/vol (j,i)*sk(j,i,4)**2
vhorm = ub(j,i)*sk(j,i,1)+vb(j,i)*sk(j,i,2)+wb(j,i)
dcx = dex+tau*(ub(j,i)-vnornrsk(j,i, 1))
dcz = dcz+tau*(wb(j,i)-vnornrsk(j,i,3))
dcy = dcy+tau*(vb(j,i)-vnorntsk(j,i,2))
end if
c

chdl = chdl +abs(sk(j,i,3))*sk(j,i,4)

swetl = swetl +sk(j,i,4)

cxl = c¢xl| +dcx

cyl = cyl +dcy

czl = czl +dcz

50 cm = cm -dcz*(xa-xnt) +dcx*(za- znt)

xas = xas/float(jte2-jtel)

yas = vyas/float(jte2-jtel)

zas = zas/float(jte2-jtel)

cds = cxl *cosa+czl *si na

cls = -cxl *si natczl *cosa

cms = cn

chds = chdl

swets = swetl

cl = cl+cls

Figure 3-3. An example of good programming style.

Kernighan and Plauger® have written a book containing basic rules for good programming
practice. Their book should be read before starting to do serious programming. We repeat some
of their rules here:

» Write clearly - don’t betoo clever
¢ Choose variable names that won't be confused

» Write first in an easy-to-understand pseudo-language; then trandate in-
to whatever language you are using

* Modularize. Use subroutines

* Write and test abig program in small pieces

* Make input easy to proofread

» Makesure al variable areinitialized before use

» Don't stop at one bug (keep looking!)

» Don't test floating point numbers for equality

« Makeit right before you make it fast”

» Don't sacrifice clarity for small gainsin efficiency

» Make sure comments and code agree

» Don't just echo the code with comments—make every comment count

* With proper planning and code design, these shouldn’t have to be contradictory requirements.
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Consider also the following rules from Roache® which are directed toward CFD:

* Start simple
* Debug and test on a coarse mesh first
* Print out “enough” information:
- some at each step
- lots sometimes
- print good diagnostic functionals
* Always check on the finest mesh possible before releasing code
(thisis part of the “testing at the boundaries’ requirement)
* Test convergence to machine accuracy
e Try to check all option combinations in a production program’
 Check convergence/stability over the widest possible range of parameters
* Test accuracy against:
- exact solutions
- approximate solutions
- experimental data
 Avoid unnecessary hardware dependence

Additional comments on style and language peculiarities of FORTRAN are discussed in the
book of Numerical Recipes.’® Here we consider only FORTRAN. Although other languages are

becoming more popular for engineering computing, most existing code is written in FORTRAN,
and knowledge of FORTRAN isrequired in computational aerodynamics.

Other good practice:

« Avoid system-dependent code.”™ Any useful code will be put on different systems. The
user’s own system will change. Over the long term, system dependencies aimost al-
ways cause more trouble than the apparent short term gain.

* An exception to the system-dependent rule: Consider using standard math libraries.
Computing centers have libraries of mathematical subroutines available for the solu-
tion of most standard math problems. These programs are written by professionals,
and take advantage of machine-specific advantages of a particular system. They help
you avoid numerical accuracy problems. However, never use one of these subroutines
in your code without first using it in apilot code on a problem you can use as a check,
to make sure you understand how the program is supposed to be used. The text by Ka-
haner, et al 1, provides examples of this approach, and a disk of useful subroutines.

» Don't get carried away with the computer science possibilities. Concentrate on the

specific development job. Keep it simple. Many very bright engineers have lost the
forest for the trees when working on computer codes.

* Thisis essentially impossible to do with commercial codes, where millions of option combinations may be pos-
sible. That’swhy code design is so important. However, any code should be tested as much as possible. Certain-
ly, aset of standard test cases must be developed to check code madifications (fixing one bug often resultsin
the addition of another).

An important exception is code written to take advantage of vectorization and parallel processing. If you are
using a computer with these features, the code should be modified to use the machine specific techniques to

achieve maximum computing speed. However, the compute-intensive portion of any program is usually a small
part of the overall code. That's the only portion that should be made machine specific.

**
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Specific programming standards have been established at VPI for instruction in FORTRAN in
ESM 3074. Generally these are good rules. However, considering that new engineers with jobs
in computational aerodynamics will mainly work with existing codes, students should be ex-
posed to widely used, although poor, programming practices.

Many of the ESM 3074 guidelines duplicate items given above. Several require comments:

Item
* No FORTRAN 77 extensions allowed

* ALL variablestype declared.

* FORMAT statements to be placed
together, just before END statement

» All DO loopsend in CONTINUE

* GO TO statement

« COMMON

* DIMENSION
* EQUIVALENCE

e Computed GO TO/Arithmetic IF”

* Hollerith formats™

Comment

* OK for learning FORTRAN. But some
are standard. Should know NAMELIST.”
Workstation manufacturers had to add
NAMELIST as one of thefirst upgrades to
their systems. It’s avery nice way to
handle input, and iswidely used in
existing aerospace engineering codes.

» Although good programming practice,
it is highly unusual to see thisin most
existing FORTRAN programs. Students
should understand that programs that do not
type-declare variables are not “wrong”.

* Thisisaholdover from the days of
cards. Sometimesit isinefficient at display
terminals. FORMATS are best near the
WRITE statements (but not obscuring
executable code). Another way isto use
another series of statement numbers, e.g.
put all FORMATSIin a2XXX series.

* A little harsh, just make code clear. Indent
nested loops. But FORTRAN 90 requiresthis.

» Guiddline allows. Use of GO TO should
be minimized, if not eiminated. Use
IF.. THEN.. EL SE for clarity.

COMMON is till widely used. Y ou should
know how they work. Especialy since many
lrob“(ems occur dueto errorsin COMMON

ock use.

Still widely used.

Still seen in some codes. Should know..
Don’'t use in computational aerodynamics.

Still seen, know what they are, don't use.

Should know, no one would ever use again.

* NAMELIST isstandard in FORTRAN 90, see Section 3.10.
** Also declared obsolescent in FORTRAN 90, see Section 3.10.
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3.4 Debugging Your Own Code

Thereis art and talent involved in debugging programs. However, experience is also an im-
portant ingredient. This is detective work. One of the problems is the difficulty in distinguishing
between errorsin an analysis and the code implementation. In general:

* To find out what’ s wrong, you need to know what’ s right. Check carefully.

» Use modern systems which include debuggers. Learn to use them!
Typicaly they are part of software tools packages to enhance code
development productivity. Consider using alint program to examine
your source files. These programs were originally developed for C
programs, but now there are usually equivalent packages for FORTRAN
(FTNCHEK isavailable on good UNIX systems).
* Asalast resort if you don’t have debugging tools, use lots of write statements.
* Plot your resultss EVERYWHERE.
 Stop and think, be patient and don't panic.
» Don’t wait until the whole code is written, test small parts separately.

3.5 Looking at Other People’ s Codes

When you do have the source code, take time to look at the structure of the program and
sketch the flow of the information. Also study the program for style. Thisis the best way to find
ways to improve your own programming style. Try to get afeel for the organization of the com-
putation. Make a chart of SUBROUTINE and COMMON Block structure, as well as external
1/O unit use. Figure 3-4 illustrates an example of a program tree that | make to help understand
program structure. Clearly thisis not a conventional flowchart, it's useful! Table 3-1 provides an
example of the related COMMON block map. Both of these provide a basis for finding a bug or
modifying a code.

In executing the code (even it you don’t have the source), observe carefully where things
start to go wrong. Study your input data carefully. Try changing your input data. With
complicated analysis work, start simple and build up, i.e., if an entire airplane is going to be ana-
lyzed, do the wing, then the fuselage, and then put them together, etc. Identify when the results
become “strange”, and aways have a mental model of the expected flowfield and a “back of the
envelope’ idea of what the answer should be.

3.6 Getting help.

Sometimes it helps to let someone else ook at the code. One typical problem is not seeing
a misspelled variable name. If you wrote the code, and have been staring at it for an hour, you
might not see it. Y ou can frequently overcome this problem by looking at an XREF, and spotting
avariable used only once. If you want someone else to look at your code, bring it all:
- the exact source code that was run
- all code and input documentation
- the exact input file
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- detailed description of the method of running
- all the output, and exact system messages.
Without this information you are wasting someone’s time. More often than not, after col-

lecting all the information in preparation for getting help, you'll either find your mistake, or
more likely, the next step in the debugging process will become obvious.

PANELV2
INDATA - readsin data or defines internally generated airfoil
SETUP - define geometry for calculation
SLOPY 2 - interpolates input points to panel points
ARCLNG - arc length
SPLIFM - splinefit
SPLIF - inverse spline
o
BODY - internal geometry definition
NACAA4D - 4 or 5 digit airfoils
® (modified dightly)
——— afmod - modify airfoil if desired
l— BUMP - smooth thickness
® function
—— COFISH - define influence coefficients
—— LUDCMP - do LU decomposition for solution of equations
—
| COFRHS - given a, define RHS of system of equations
another \| [ LUBKSB - solvethe system for singularity strengths
a? by back substitution
—— VELDIS- compute surface velocities
OUTP-  find force and moment results, output results

Figure 3-4. Routine tree for a small program to help understand the program structure.
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Table 3-1
Typica COMMON block map (program PANELV2)

. COMMON Block Names
Routine

Names ' sop [ NuM | PAR| cor | orp| 10U | cPD
PANELv2 X X
INDATA x
SETUP
SLOPY2
ARCLNG
SPLIFM
SPLIF
BODY
NACA4D
afmod x
bump
COFISH | x | x x
LUDCMP
COFRHS | x | x x
LUBKSB
VELDIS
OUTP

M| M| X
AR AR

x
x x

M| x

M| ™
M| ™
M| ™
M| ™

3.7 Cost, Time, and M oney

A serious effort using computational aerodynamics methods will take a significant invest-
ment in your time. Try to make sure that it will payoff. Spend time before starting work assess-
ing whether your approach will produce the results you need. Which method will produce the in-
formation in time for it to be useful? There are still many situations where codes can’t produce
reliable information in time - although in many cases they can.

Next, develop a sense for what the required execution time and resources are to do a calcu-
lation. Insight into how long a job takes and how much core storage is required are also keys to
effective use of computational aerodynamics. How long will it take to get your results? How
much will it cost? Figure 3-5 appeared on my desk one day over a decade ago. Computing dead-
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lines are still with us. Consider any special problems. You may need too much of the machine
and be put into a specia (slow) queue. Trying to do code work at the last minute is always dan-
gerous. Two stories illustrate that Murphy’s Law applied to software work. Once, after getting
overtime pay approved and a priority to
get fast turnaround, a team of six engi-

Don't take getting a new code too lightly. neers arrived on Saturday morning, only

Even when you don’t write the code, and to discover that the code wouldn't run be-
think it will be easy to use, before you can

G )

use the code you will have to make a sur- cause a systems programmer took the
pringly big investment in time before you “clock” routine off the system for the
have enough confidence in the resultsto use weekend. The disturbance this caused

the code to make engineering decisions. was unbelievable. A contract deadline on

an important Air Force contract hung in
S / the balance. We had to get the job done.
This is an example where the computer systems people can wreck the job. A more common oc-
currence is to have systems programmers move codes to different disk packs. Naturally, the engi-
neer working against a deadline will discover this in the middle of the night, with no way to get
help.

Asking a code developer how long his code takes to run may not make much sense without
getting the qualifiers. A code developer may quote atime for a grid too crude to use for an appli-
cation, or without reaching areliable level of convergence. What's the batting average? Redlize
that an advanced code may reguire many submissions on a single case to get everything straight-
ened out. In those cases, the CPU time of the last submission that produced the final result is not
meaningful. Y ou need to consider the CPU time (and calender time) of all the runs leading up to
the final run that produced the desired results.

A cartoon of unknown origin:

"Peopleask meifit'stough | syreitis, | [but we aerodynamicists

meeting a deadline every day. thrive on pressure.”
Framel: Man at a Frame2: Frame 3. Man being
terminal, supposed to Hereponds | |carried on a stretcher
be a newspaper man into the computer room

Figure 3-5. Computational aerodynamics always means deadlines.
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3.8 Validation/Verification

Always check a new code against test cases for which you know the correct answers before
starting to use it for the analysis cases which made you get it. It is amazing how many times en-
gineers, under time pressure, try to skip this step. Trying to use a code on a project without hav-
ing prior experience with it is a sure recipe for disaster.

The process of establishing credibility in a computer code has come to be known as code
verification/validation/certification. Trying to establish code accuracy on a scientific basis is
noble goal, but is a very tricky proposition. Attempts to correlate code results with experimental
data on high performance designs that push the flowfield to extreme conditions often shows the
importance of using codes and experimental together to understand the relative importance of
competing flowfield features.

Establishing a scientific basis for “certifying” codes for use has only recently started to re-
ceive significant attention.!>!4 In fact, the semantics of this area are still the subject of discus-
sion, see for example the paper by Roache.® In general:

» code verification means solving the specified equation right
» code validation means solving the right equation (modeling the physics correctly)

» code certification means establishing the range of applicability of avalidated/verified
code

The wide range of ideas about what constitutes code validation is clear in the difference of con-
tent in papers addressing the subject. Among numerous papers, the one by Aeschliman, et al 6
deserves consideration.

In practice, code users should develop alibrary of test cases. For a particular code the sen-
sitivity to the key solution control parameters should be well understood. They should also get to
know the tricks used in computational aerodynamics. Be wary of code validation cases presented
by the code developer. One old trick: a famous transonic test case included data at a span station
that showed a double shock. For years the code devel opers presented results for this case without
including this span station of data: the most interesting data on the wing! They got poor agree-
ment at that station, so they ignored the data at that station. Another trick: researchers often com-
pare results with data and not other theories. They may present comparisons of results for Euler
or Navier-Stokes solutions without including computations for those same cases from simpler
theories. The impression: that they are presenting results for cases that couldn’'t previously be
computed. The truth: often small disturbance, full potential, and full potential/boundary layer
methods are able to demonstrate results as accurate as the solution of the more exact equations.”

Sometimes using the complete equations precludes the use of enough grid points or
sufficient run time to obtain fully converged results using the Euler or Navier-Stokes equations.
Thus a more approximate method with improved resolution may be better. Also, some numerical

* One of my colleagues who develops CFD codes objects to this statement. However, my obervations at national
meetings with numerous presentations on CFD methods continue to confirm this view.
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methods used to treat more exact equations introduced more numerical errors than results ob-
tained using better numerical techniques with more approximate equations. This last problem is
disappearing with the development of improved numerical methods.

More discussion is presented in Chapter 14, Using Computational Aerodynamics. Review
and Reinforcement. There we will provide details of the issues associated with code validation
for computational aerodynamics. Appendix B provides references to cases that can be used to
validate calculations.

3.9 Presenting Analysis Results: visualization, time, grids and conver gence, etc.

Can you understand your results by looking at a table of numbers on a computer screen?
Make maximum use of graphics to examine your results. Try to look at all the results. Computer
graphics and computational flow visualization provide powerful means of examining results. But
be cautious. Contour plots can provide a good means of assessing sharpness of shocks, presence
of wiggles, and for checking that there are no incorrect flow gradients next to farfield
boundaries. The origina standard computational flow visualization graphics package is
PLOT3D,* which originated at NASA Ames Research Center. PLOT3D has now been absorbed
into a newer program: FAST. Computational flow visualization is part of arapidly growing area
known as scientific visualization. This area has recently been reviewed by Edwards.*®

Watch out however, fancy color flowfield plots can be deceiving. Detailed surface pressure
and force and moment comparisons should be made with appropriate experimental data and
other calculations to assess a code’'s accuracy. Beware of pretty pictures. They are extremely
valuable, but they do not provide the quantitative assessment required for engineering decision
making. In a recent article on this subject,®® we find this statement: “According to Tufte,” the
danger in the movieland of computer-generated graphics lies in ‘ dequantification’: the numbers
get lost in a fascination for shapes and effects. Scales are dropped, meaningless colors are
added....” Honest, effective presentation of results requires skill. This is an important part of
computationa aerodynamics. Globus and Raible have assembled a satirical ook at the misuse of
visualization in “13 Ways to Say Nothing with Scientific Visuaization.” %

To demonstrate the integrity of the calculation you must always present plots of the conver-
gence history and results of grid convergence studies. Even though you may not be able to afford
to converge iterative procedures to machine accuracy for al your calculations, you should dem-
onstrate the effect of not doing this by presenting examples of not doing this for cases representa-
tive of the current problems you are studying. Examples of convergence with the number of pan-
els, mesh points, and iterative solution convergence are presented throughout the rest of the text.

* Edward R. Tufte has written two fascinating books on graphical presentations: The Visual Display of Quantita-
tive Information (1983), and Envisioning Information(1990). Both books are published by the Graphics Press,
Cheshire, Connecticut. They present a more mature (and honest) view of graphics presentation than is available
in most technical publications.
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3.10 Modern Computing Developments

Computer architectures for scientific computing are entering a period of rapid change. Tra-
ditional scalar processing available on personal computers (and many standard mainframes) is
being replaced by vector, parallel, and massively parallel machines. To use these machines effec-
tively, the user must develop methods (and program them) to exploit the specific advantages of
these machine architectures. An introduction to these issues for computational fluid dynamics
has been given by Rizzi and Enquist,?* and in an entire AGARD volume.?? The field is changing
quickly. Some of the latest information is contained in a book based on a recent conference edit-
ed by Simon.> A review of the situation, including descriptions of two current advanced com-
puters, was given in arecent BY TE article.?* Advances in computational agrodynamics are being
driven by the High Performance Computing and Communications (HPCC) Project. An overview
of this program is described in the paper by Holst, Salas and Claus.?® . Here we review a couple
of aspects of the computing hardware and languages important to computational aerodynamics.

The key issue in advanced computing is how to increase the computation speed. Several
ways of measuring speed are important. This includes the basic processor speed, the size of
memory, and the speed of the data transfer through the machine. Although the “raw” computa-
tion speed is mideading, it is nevertheless used to quantify the speed of computers. With ad-
vanced computers there is a large difference between the peak speed and the maximum sustain-
able speed obtained in practice. The following table shows the large increases in speed obtained
over the last thirty years.

The basic speed is quoted in floating point operations per second, or flops. They are de-
fined as:

flops or defined as:

1 million 1x10° Megaflop or Mflop
1 billion 1x10° Gigaflop or Gflop
1 trillion 1x10%2 Teraflop or Tflop

The goa of the HPCC Project is to demonstrate one Teraflop of sustained computing speed.
Typical results obtained by famous machines asinitially released have been:

year machine speed
1964 CDC 6600 1 Mflop
1968 CDC 7600 4 Mflops
1976 Cray 1 27 Mflops
1983 Cray X-MP 70 Mflops

The current speed record was set recently at Sandia Labs using an Intel Paragon computer.
Thus remarkable gains are being made. The history of advances is shown in Fig. 3-6. The top
line is the peak performance including advanced approaches (vector and parallel architectures).
The bottom curve shows that the scalar, or serial, computing method is starting to reach its limit.
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Figure 3-6. The history of computer speed increase and current goals.?®

Vector Computing

Essentially, the original sequential computing architecture is being replaced by machines
which can perform calculations simultaneously. The first step in this direction was the use of
pipelining. In performing specific operations, the computer may take severa clock cycles (the
basic measure of time on a computer) to complete the instruction. During part of this time some
of the CPU may be sitting idle. The idea of pipelining is to take advantage of the idle cycles to
begin the next instruction before the machine has completed the previous instruction. This can
produce a speedup in the throughput of the CPU. Typically, this procedure is applied to arrays,
where the same operation is repeated, and is implemented in DO loops. This is known as code
vectorization. To be effective, the operations must allow for simultaneous calculations. If the cal-
culations are not independent, it may not be possible to vectorize the loop.

The VPI IBM 3090 computer (vtvm1) has vector capability. As an example of the potential
of vector processing, the program vtest, presented here in Fig. 3-7, was run with several different
compiler options (it isin caps because it was copied from the IBM screen).

The following results were obtained using the fortvs2 compiler:

compiler command execution time (hundredths of a second)
fortvs2 vtest 889
fortvs2 vtest (novector 892
fortvs2 vtest (novector opt(2) 252
fortvs2 vtest (novector opt(3) 251
fortvs2 vtest (vector opt(3) 33
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C
C VECTOR PROCESSI NG CHECKS - WH. MASON, FEB. 1, 1992

PARAMETER (| LOOP = 9000, JLOOP = 1000)
DI MENSI ON A( | LOOP) , B(| LOOP) , C( | LOOP)

1,JLOOP
1,1 LO0P

10 A(1) = A(:I)'+ B(1)*C(1)

CALL TI MECK(N)

WRI TE( 6, 100) N
100 FORMAT(/5X, ' TIME = ', 14, 3X,' | N HUNDRETHS OF SECONDS' /)

STOP
END

Figure 3-7. A sample code used to illustrate benefits from vector processing.

These results provide several messages. Clearly, use of the vector compiler option resultsin a
significant reduction in computing time. However, the standard scalar execution optimization op-
tion (novector) aso makes a large difference in execution time. This ssmple example illustrates
the potential of vectorized computing. Practical cases would not produce this much improve-
ment. This example aso illustrates the potentia for presenting misleading comparisons. Compar-
ison of unoptimized scalar results to optimized vectorized results overpredict the effects of vec-
torization by more than a factor of three. Discussions of vectorization can be found in mono-
graphs? and computer manuals.?’

Parallel Computers

Another approach to increasing processing speed is to perform calculations on several pro-
cessors simultaneously. This is known as parallel computing. The recent article by Miel?® pro-
vides a good overview. There are two approaches of interest:?® “arrays of processing elements
operating in unison with a single program (SIMD or Single Instruction Multiple Data), and ar-
rays of cooperating computers running independently with distinct program memories (MIMD or
Multiple Instruction Multiple Data).” Parallel computing is becoming practical, and a number of
parallel processor computers are now available. Research is currently being conducted to under-
stand how to do computational aerodynamics easily on these machines. Within the very near fu-
ture computational aerodynamicists will be using these machines routinely. This will require the
development of new computer languages and solution algorithms. A major government initia-
tive, the High Performance Computing and Communications (HPCC) program, is addressing
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these problems. Expect rapid progress. Current practical aspects of parallel computing in aerody-
namics are discussed in the newdletter of the Numerical Aerodynamic Simulation Program, lo-
cated at NASA Ames.

In computational aerodynamics two other aspects need discussion. First, the machines can be
used in either “coarse” or “fine” grain parallelization modes. The course-grained mode is of par-
ticular interest in aerodynamic and multidisciplinary design. Here, many solutions are required
using the same program with different inputs. This is done to find the sensitivity of the design to
various design variables. Thus the same code is run on each different processor or node at the
same time. This approach is the easiest way to exploit the capability of parallel computing. Fine
grain parallel computing requires that the code be changed to make a single cal culation using nu-
merous nodes.

The other aspect of concern in parallel computing is scalability. Here, the issue is whether the
speedup obtained using a small number of processors can be extrapolated to cases where a large
number of processors are used. Experience shows that the performance achieved with a small
numbers of processors, say twenty to thirty, does not scale up linearly when hundreds or thou-
sands of processors are used. One standard computer science rule-of-thumb, Ahmdahl’s Law,
says that the speedup decreases to afinite limit, which depends on the fraction of the code where
serial computations are required. Figure 3-8 shows that if even small parts of the code require
sequential computation, the speedup using parallel processing will not increase without limit. In
the figure R is the fraction of the code requiring serial computation and N is the number of pro-
cessors used. If none of the code requires serial computation, then R = 0, and the linear trend is
maintained. Otherwise, a slowdown is inevitable. Some computational scientists are currently
trying to demonstrate that for CFD this “law “ is not valid, and the trend can be shown to be ap-
proximately R= 1/N.

Experience at Virginia Tech using the coarse-grain approach isillustrated in Fig. 3-9.° Here
we show results obtained by a student, after considerable effort, on the Virginia Tech Intel Para-
gon parallel computer. The results were obtained for some typical aerodynamics programs. The
results look good for this low number of processors. One of the bottlenecks in obtaining increas-
ing speedup with increasing numbers of processors is the use of disk 1O by some codes written
for older machines.

Finally, note that progress is being made making calculations on networks of workstations.
Supercomputing is moving from very large, very expensive machines to distributed processing
on machines that individually are much smaller and cheaper.

Language evolution

After years of little change, the computing languages are changing also. There are two rea-
sons for this. First, the C language introduced many desirable features. Many of these have been
adopted in FORTRAN 90, which also includes as standard many extensions that were so com-
mon that most users thought they were part of FORTRAN 77. Extensions that are now standard
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include NAMELIST, IMPLICIT NONE and INCLUDE statements. Other new features are: stan-
dard calls for date and time routines, new symbols for relational operators, long variable names,
and many new intrinsic functions. In addition, several of the worst features of FORTRAN are
being declared obsolete, and are likely to be dropped in the future. Free format code is now al-
lowed, so FORTRAN 90 code will not necessarily look like FORTRAN code hasin the past. The
new capabilities may lead to codes that are 50% shorter than current programs. The second rea-
son for change is the emergence of paralel computers. Although FORTRAN 90 will not address
parallel computing explicitly, it provides a basis for compiler builders to develop extensions for
usein parallel computing.

—— S(Amdahl'slaw, R =0)
—8— S (Amdahl'slaw, R = 0.01)

10000 £ —m— S(Amdahl'slaw, R = 0.10)
—a— S(Amdahl'slaw, R = 1/N) //
1000 A
5 s
Speedup (5) | /
100
10 E W
- R: fraction of the code requiring
- seria calculations
1 | |

1 10 100 1000 10000
Number of Processors (N)

Figure 3-8. Theoretical speed up due to parallelization.®

FORTRAN 90 is much bigger than FORTRAN 77, and some effort will be required to learn
the new features. One book to read in making the transition is by Kerrigan.®® In addition, the is-
sues for languages specifically designed for parallel computing are addressed in a recent ICASE
Report.3! The two flavors of FORTRAN being developed for parallel computing are High Per-
formance FORTRAN (HPF) and FORTRAN-S. A standard FORTRAN for parallel computing
will not be available for some time. The HPF research is being conducted at the Center for Re-
search on Parallel Computation at Rice University.”

* A web viewer can use the URL: gopher://softlib.rice.edu/ to access reports from Rice. Other reports are avail-
ablein HTML format via URL: http://softlib.rice.edu/ . A list of reportsis available by sending email to soft-
lib@cs.rice.edu. In the message of the body type send trlist.ps. Y ou will get a postscript file with the list of re-

Wednesday, January 22, 1997



3 - 22 Applied Computational Aerodynamics
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Figure 3-9. Experience at Virginia Tech with course-grained parallel computing.?®

To keep abreast of current developments in hardware and language developments, students
should use the internet. In particular, the web pages associated with NASA’s Numerical Aerody-
namic Simulation facility (NAS) provide information on current developments. The NAS activi-
ty can be reviewed at

http://www.nas.nasa.gov/home.html

See the NAS Newsletter in particular. Appendix F also has addresses home pages containing the
latest information on computational developments for aerodynamicists.

ports.

* The addreses are subject to change, thisis avery dynamic environment. However, with the addresses of the var-
ious pages listed in Appendix F, you should be able to locate these pages.
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3.11 Exercises

1. Determine the accuracy of your computer/compiler. Find the size of the smallest number that
the computer can distinguish from 1, i.e., what is the smallest value of € such that it produces
the correct result when testing for 1 +¢& > 1 ? Recall that to have meaning, the computer and
compiler, including the version number, must be included in your summary of results.

Hint: try a program similar to the following:

c
c conpi |l er precision
c
wite(6,100)
epsnth =1.0
do 10 i 1,999
epsnch epsnth/ 2.0
epsl 1.0 + epsnth
if(epsl .le. 1.0) go to 20
10 wite(6,110) i,epsncth

20 conti nue
wite(6,120) epsnth

100 format (/5x, "' Estimate of conputer/conpiler accuracy'/
1 [9x,"1",9x%, "' eps')

110 format (5x,i5, 5%, eld.7)

120 format (//5x,"' Approx. nmachine zero is ',el4.7)

stop
end

2. A practical matter: Do not put TAB characters in your FORTRAN code or a data set to be
read in by a FORTRAN code. Some editors do this automatically in the default mode. Some
compilers allow TABS in source code, many do not. If you have TABS in your code, this se-
verely limits the portability of the code. In this exercise, find out how your editor treats tabs.
Write a program to read in a ssimple data set in 6F10.5 format. Determine what happens if you
use TABSto put datain the correct column. Understand this now as an isolated test case, be-
fore using codes described later in thistext. Thiswill avoid alot of late night frustration.
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4. Incompressible Potential Flow
Using Panel M ethods

4.1 An Introduction

The incompressible potential flow model provides reliable flowfield predictions over awide range
of conditions. For the potential flow assumption to be valid for aerodynamics calculations the
primary requirement is that viscous effects are small in the flowfield, and that the flowfield must be
subsonic everywhere. Locally supersonic velocities can occur at surprisingly low freestream Mach
numbers. For high-lift airfoils the peak velocities around the leading edge can become supersonic
at freestream Mach numbers of 0.20 ~ 0.25. If the local flow is at such alow speed everywhere
that it can be assumed incompressible (M £ .4, say), Laplace’s Equation is essentially an exact
representation of the inviscid flow. For higher subsonic Mach numbers with small disturbances to
the freestream flow, the Prandtl-Glauert (P-G) Equation can be used. The P-G Equation can be
converted to Laplace' s Equation by a simple transformation.* This provides the basis for estimating
theinitial effects of compressibility on the flowfield, i.e., “linearized” subsonic flow. In both
cases, the flowfield can be found by the solution of asingle linear partial differential equation. Not
only isthe mathematical problem much simpler than any of the other equations that can be used to
model the flowfield, but since the problem is linear, a large body of mathematica theory is
available.

The Prandtl-Glauert Equation can also be used to describe supersonic flows. In that case the
mathematical type of the equation is hyperbolic, and will be mentioned briefly in Chapter 12.
Recall the important distinction between the two cases:

subsonic flow: elliptic PDE, each point influences every other point,

supersonic flow:  hyperbolic PDE, discontinuities exist, “zone of influence”
solution dependency.

In this chapter we consider incompressible flow only. One of the key features of Laplace’s
Equation is the property that allows the equation governing the flowfield to be converted from a 3D
problem throughout the field to a 2D problem for finding the potential on the surface. The solution
is then found using this property by distributing “singularities’ of unknown strength over
discretized portions of the surface: panels. Hence the flowfield solution is found by representing
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the surface by a number of panels, and solving alinear set of algebraic equations to determine the
unknown strengths of the singularities.” The flexibility and relative economy of the panel methods
IS so important in practice that the methods continue to be widely used despite the availability of
more exact methods (which generally aren’t yet capable of treating the range of geometries that the
panel method codes can handle). An entry into the panel method literature is available through two
recent reviews by Hess,? the survey by Erickson,* and the book by Katz and Plotkin.®

The general derivation of the integral equation for the potential solution of Laplace’ sequation is
given in Section 4.3. Complete details are presented for one specific approach to solving the
integral equation in Section 4.4. For clarity and simplicity of the algebra, the analysis will use the
two-dimensional caseto illustrate the methods following the analysis given by Moran.® This results
in two ironic aspects of the presentation:

» Theagebraic formsof the singularities are different between 2D and 3D, dueto 3D
relief. Y ou can’'t use the actual formulas we derive in Section 4.4 for 3D problems.

» The power of panel methods arises in three-dimensional applications. Two-
dimensiona work in computational aerodynamicsis usually donein industry using
more exact mappings,  not panels.

After the general derivation, a panel method is used to examine the aerodynamics of airfoils.
Finally, an example and some distinctive aspects of the 3D problem are presented.

4.2 Some Potential Theory

Potential theory is an extremely well developed (old) and elegant mathematical theory, devoted to
the solution of Laplace's Equation:

N% =o. (4.1)
There are several ways to view the solution of this equation. The one most familiar to
aerodynamicists is the notion of “singularities’. These are agebraic functions which satisfy
Laplace’ s equation, and can be combined to construct flowfields. Since the equation is linear,
superposition of solutions can be used. The most familiar singularities are the point source, doubl et
and vortex. In classical examples the singularities are located inside the body. Unfortunately, an
arbitrary body shape cannot be created using singularities placed inside the body. A more
sophisticated approach has to be used to determine the potential flow over arbitrary shapes.
Mathematicians have developed this theory. We will draw on a few selected results to help
understand the devel opment of panel methods. Initially, we are interested in the specification of the
boundary conditions. Consider the situation illustrated Fig. 4-1.

" The singularities are distributed across the panel. They are not specified at a point. However, the boundary
conditions usually are satisfied at a specific location.
" These will be mentioned in more detail in Chapter 9.
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Figure 4-1. Boundaries for flowfield analysis.
The flow pattern is uniquely determined by giving either:
f on S+k{Dirichlet Problem: Design} (4-2)
or
Tf Ain on S+k {Neuman Problem: Analysis}. (4-3)
Potential flow theory states that you cannot specify both arbitrarily, but can have a mixed
boundary condition, af +bff Aln on S +k . The Neumann Problem isidentified as “analysis’
above because it naturally corresponds to the problem where the flow through the surface is
gpecified (usually zero). The Dirichlet Problem is identified as “design” because it tends to
correspond to the aerodynamic case where a surface pressure distribution is specified and the body
shape corresponding to the pressure distribution is sought. Because of the wide range of problem
formulations available in linear theory, some analysis procedures appear to be Dirichlet problems,
but Eq. (4-3) must still be used.

Some other key properties of potential flow theory:

o Ifetherf or f finiszero everywhereon S + sthenf =0 at dl interior points.

« f cannot have a maximum or minimum at any interior point. Its maximum value can
only occur on the surface boundary, and therefore the minimum pressure (and
maximum velocity) occurs on the surface.
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4.3 Derivation of the Integral Equation for the Potential

We need to obtain the equation for the potentia in a form suitable for use in panel method
calculations. This section follows the presentation given by Karamcheti” on pages 344-348 and
Katz and Plotkin® on pages 52-58. An equivalent analysisis given by Moran® in his Section 8.1.
The objective isto obtain an expression for the potential anywhere in the flowfield in terms of
values on the surface bounding the flowfield. Starting with the Gauss Divergence Theorem, which
relates avolumeintegral and a surface integral,

QuyivAdv =g xdS (4-4)
R S

we follow the classical derivation and consider the interior problem as shown in Fig. 4-2.

S

Figure 4-2. Nomenclature for integral equation derivation.
To start the derivation introduce the vector function of two scalars.
A =wgradc - cgradw . (4-5)

Substitute this function into the Gauss Divergence Theorem, Eq. (4-4), to obtain:

cyliv(wgrade - cgradw)dV = gfywgradc - cgradw)>n dS. (4-6)
R S

Now use the vector identity: Nxs F=s N+ FXN's to simplify the left hand side of Eq. (4-6).
Recalling that NxA = divA , write the integrand of the LHS of Eq. (4-6) as:

div(wgradc - cgradw)=NxwNc)- Nx(cNw)
=wN>XN ¢ + Nc xNw - cN>Nw- RNw xNc (4-7)
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Substituting the result of EQ. (4-7) for the integrand in the LHS of Eq. (4-6), we obtain:

(‘[‘ﬂw K% - CNZW)dV = @ wgradc - cgradw) > dS, (4-8)
S

or equivalently (recalling that gradc >xn =9c / n),

adlw N - cRAwav = g 1S . ¢ WO g (4-9)
R s n Tng

Either statement is known as Green’ s theorem of the second form.

Now, definew = 1/rand ¢ = f , where f isaharmonic function (afunction that satisfies
Laplace’ s equation). The 1L/r term is a source singularity in three dimensions. This makes our
analysis three-dimensional. In two dimensions the form of the source singularity isInr, and a two-
dimensional analysis starts by definingw = Inr. Now rewrite EQ. (4-8) using the definitions of w
and ¢ given at thefirst of this paragraph and switch sides,

- nge1 M dS= “‘elNZf BN gd (4-10)

R, isthe region enclosed by the surface S,. Recognize that on the right hand side the first term,
V&i , iIsequal to zero by definition so that Eq. (4-10) becomes

@féﬂw i fﬂglggmds: - G Nzg’j‘gdv. (4-11)
% r & R r o

If apoint P isexternal to S, then N2§%= 0 everywhere since Ur is a source, and thus satisfies

Laplace’ s Equation. This leavesthe RHS of Eq. (4-11) equal to zero, with the following result:

el“ -ngl X dS=0. (4-12)

However, we have included the origin in our region § as defined above. If P isinside S, then
N2§%® ¥ atr = 0. Therefore, we exclude this point by defining a new region which excludes

the origin by drawing a sphere of radius e around r = 0, and applying Eqg. (4-12) to the region
betweene and S;;:
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el Rif aIf
= fN? _ﬂ_ T—dS 0 (4-13)
arhitrary region sphere
or:
fo J ?
——+ ~dS= Nf - fNE 5 xndS. 4-14
é& qr TZQJ g%? ( )

Consider the first integral on the left hand side of EqQ. (4-14). Let e ® 0O, where (as e ® 0)
wetake f » constant (if A r = 0), assuming that f iswell-behaved and using the mean value

theorem. Then we need to evaluate
ds

W
e

over the surface of the sphere where e = r. Recall that for a sphere’ the elemental areaiis

ds = r?simg dydf (4-15)

where we define the angles in Fig. 4-3. Do not confuse the classical notation for the spherical
coordinate angles with the potential function. The spherical coordinate f will disappear as soon as
we evauate the integral.

I
N

Figure 4-3. Spherical coordinate system nomenclature.

Substituting for dSin the integral above, we get:

gy dd .
e

Integrating fromqg =0top, and f from Oto 2p, we get:

" See Hildebrand, F.B., Advanced Calculus for Applications, 2nd Ed., Prentice-Hall, Englewood Cliffs, 1976 for an
excellent review of spherical coordinates and vector analysis.
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(p:opqq Psing k= 4p. (4-16)

Thefinal result for thefirst integral in Eq. (4-14) is:

- — + -dS 4pf . 4-17
%r 'ﬂr ?z p (4-17)

Replacing thisintegral by its value from Eq. (4-17) in Eq. (4-14), we can write the expression
for the potential at any point P as (where the origin can be placed anywhere inside S)):

_1 él i ]
f(p)—%g%;er-nggﬂmdS (4-18)

and thevalue of f at any point P is now known as afunction of f and ff An on the boundary.

We used the interior region to allow the origin to be written at point P. This equation can be
extended to the solution for f for the region exterior to R,,. Apply the results to the region between
the surface S; of the body and an arbitrary surface S enclosing S, and then let S go to infinity. The
integralsover Sgoto f , as S goesto infinity. Thus potential flow theory is used to obtain the

important result that the potential at any point P’ in the flowfield outside the body can be expressed
as.

(pd) = f¥-—ﬁ%f|§rf-fN U ds. (4-19)

Here the unit normal n is now considered to be pointing outward and the area can include not only
solid surfaces but also wakes. Equation 4-19 can also be written using the dot product of the
normal and the gradient as:

F(p=fy - — Qe 111];1 L ﬂ dadS (4-20)

The 1/ in Eq. (4-19) can be interpreted as a source of strength f /qn, and the N (1/r) termin

Eq. (4-19) asadoublet of strength f . Both of these functions play the role of Green’s functionsin

the mathematical theory. Therefore, we can find the potential as a function of a distribution of

sources and doublets over the surface. The integral in Eq. (4-20) is normally broken up into

body and wake pieces. The wake is generally considered to be infinitely thin. Therefore, only
doublets are used to represent the wakes.
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Now consider the potential to be given by the superposition of two different known functions,
the first and second termsin the integral, Eq. (4-20). These can be taken to be the distribution of
the source and doublet strengths, s and m, respectively. Thus Eq (4-20) can be written in the form
usually seen in the literature,

1 .é1 OU

_e 1 &1 Tadou ]
f(p)=fy 4p;wr m% rdads. (4-21)

The problem is to find the values of the unknown source and doublet strengths s and mfor a
specific geometry and given freestream, f .

What just happened? We replaced the requirement to find the solution over the entire flowfield
(a 3D problem) with the problem of finding the solution for the singularity distribution over a
surface (a 2D problem). In addition, we now have an integral equation to solve for the unknown
surface singularity distributions instead of a partial differential equation. The problem is linear,
allowing us to use superposition to construct solutions. We also have the freedom to pick whether
to represent the solution as a distribution of sources or doublets distributed over the surface. In
practice it’s been found best to use a combination of sources and doublets. The theory can be
extended to include other singularities.

At one time the change from a 3D to a 2D problem was considered significant. However, the
total information content is the same computationally. This shows up as adense “2D” matrix vs. a
gparse “3D” matrix. As methods for sparse matrix solutions evolved, computationally the problems
became nearly equivalent. The advantage in using the panel methods arises because there is no
need to define a grid throughout the flowfield.

Thisisthe theory that justifies panel methods, i.e., that we can represent the surface by panels
with distributions of singularities placed on them. Specia precautions must be taken when
applying the theory described here. Care should be used to ensure that the region S, isin fact
completely closed. In addition, care must be taken to ensure that the outward normal is properly
defined.

Furthermore, in general, the interior problem cannot be ignored. Surface distributions of
sources and doublets affect the interior region as well as exterior. In some methods the interior
problem isimplicitly satisfied. In other methods the interior problem requires explicit attention. The
need to consider this subtlety arose when advanced panel methods were developed. The problemis
not well posed unless the interior problem is considered, and numerical solutions failed when this
aspect of the problem was not addressed. References 4 and 5 provide further discussion.
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When the exterior and interior problems are formulated properly the boundary value problem
is properly posed. Additional discussions are available in the books by Ashley and Landahl® and
Curle and Davis?

We implement the ideas give above by:

a) approximating the surface by a series of line segments (2D) or panels (3D)
b) placing distributions of sources and vortices or doublets on each panel.

There are many ways to tackle the problem (and many competing codes). Possible differences
in approaches to the implementation include the use of:
- various singularities
- various distributions of the singularity strength over each panel
- panel geometry (panels don’t have to be flat).

Recall that superposition allows us to construct the solution by adding separate contributions
[Watch out! Y ou haveto get all of them. Sometimes this can be a problem]. Thus we write the
potential as the sum of several contributions. Figure 4-4 provides an example of a panel
representation of an airplane. The wakes are not shown, and a more precise illustration of a panel
method representation is given in Section 4.8.

Figure 4-4. Panel model representation of an airplane.
(Joe Mazza, M.S. Thesis, Virginia Tech, 1993).

An example of the implementation of a panel method is carried out in Section 4.4 in two
dimensions. To do this, we write down the two-dimensional version of Eq. (4-21). In addition,
we use avortex singularity in place of the doublet singularity (Ref. 4 and 5 provide details on this
change). The resulting expression for the potential is:
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0e u
0é a
0é qs s U
f = fi +9 é as Inr - —92( )q (s (4-22)
uniform onset flow 0é —— b thisi %ﬁtp oularit a
=\, Xxcosa +\, vysina Q a Qisthe isisavortex singularityy;
e ey 0 &ourcestrength of strengthg (s) H
S

and g = tan*(y/x). Although the equation above shows contributions from various components of
the flowfield, therelation is still exact. No small disturbance assumption has been made.

4.4 The Classic Hess and Smith M ethod

A.M.O. Smith at Douglas Aircraft directed an incredibly productive aerodynamics devel opment
group in the late ' 50s through the early * 70s. In this section we describe the implementation of the
theory given above that originated in his group.” Our derivation follows Moran’s description® of
the Hess and Smith method quite closely. The approach isto i) break up the surface into straight
line segments, ii) assume the source strength is constant over each line segment (panel) but has a
different value for each panel, and iii) the vortex strength is constant and equal over each panel.

Roughly, think of the constant vortices as adding up to the circulation to satisfy the Kutta
condition. The sources are required to satisfy flow tangency on the surface (thickness).

Figure 4-5 illustrates the representation of a smooth surface by a series of line segments. The
numbering system starts at the lower surface trailing edge and proceeds forward, around the
leading edge and aft to the upper surface trailing edge. N+1 points define N panels.

node

panel
Figure 4-5. Representation of a smooth airfoil with straight line segments.

The potential relation given above in Eq. (4-22) can then be evaluated by breaking the integral
up into segments along each pand:

2

f =V (xcosa +ysina)+a @ gﬁlnr - iqus (4-23)
21 €2p 2p
J= 1panel

" Intherecent AIAA book, Applied Computational Aerodynamics, A.M.O. Smith contributed the first chapter, an
account of the initial development of panel methods.
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with q(s) taken to be constant on each panel, allowing usto writeq(s) =g, i = 1, ... N. Herewe
need to find N values of ¢, and one value of g.

i+1

a) basic nomenclature b) unit vector orientation
Figure 4-6. Nomenclature for local coordinate systems.

Use Figure 4-6 to define the nomenclature on each panel. Let the i™ panel be the one between

the i™ and i+1™ nodes, and let the i"™ panel’s inclination to the x axis be q. Under these
assumptions the sin and cos of g are given by:

sing; :M’ COSq; X1t Xi (4-24)
[ i
and the normal and tangential unit vectors are:
n; =- sing;l +cosq;j
[ di ChJ. ' (4-25)

tj = cosgii +sing;j

We will find the unknowns by satisfying the flow tangency condition on each panel at one
specific control point (also known as a collocation point) and requiring the solution to satisfy the

Kutta condition. The control point will be picked to be at the mid-point of each panel, as shown in
Fig. 4-7.

Av

\ smooth shape
\ control point

panel

X

Figure 4-7. Loca panel nomenclature.
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Thus the coordinates of the midpoint of the control point are given by:

X+ X% oV +
% =2 2)ﬁ iy Yi:yl 2yi+1 (4-26)

and the velocity components at the control point X;, ¥ are uj = u(X;, ¥;), vi =Vv(X;, ¥;)-

The flow tangency boundary condition isgiven by V »n = 0, and is written using the relations

given here as.
(ui +vj)x(- singi + cosqj j) =0
or
-ujsing; +vjcosq; =0, foreachi,i =1, .., N. (4-27)

The remaining relation is found from the Kutta condition. This condition states that the flow
must leave the trailing edge smoothly. Many different numerical approaches have been adopted to
satisfy this condition. In practice thisimpliesthat at the trailing edge the pressures on the upper and
lower surface are equal. Here we satisfy the Kutta condition approximately by equating velocity
components tangential to the panels adjacent to the trailing edge on the upper and lower surface.
Because of the importance of the Kutta condition in determining the flow, the solution is extremely
sensitive to the flow details at the trailing edge. When we make the assumption that the velocities
are equal on the top and bottom panels at the trailing edge we need to understand that we must
make sure that the last panels on the top and bottom are small and of equal length. Otherwise we
have an inconsistent approximation. Accuracy will deteriorate rapidly if the panels are not the same
length. We will develop the numerical formula using the nomenclature for the trailing edge shown
in Fig. 4-8.

N N
*
N+1

/ 1
n

t

1

J

Figure 4-8. Trailing edge panel nomenclature.

2

Equating the magnitude of the tangential velocities on the upper and lower surface:

Ut

L = Uy, - (4-28)

and taking the difference in direction of the tangentia unit vectorsinto account thisiswritten as
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Carrying out the operation we get the relation:
(uai +vij) { cosayi + singy ) = - (uni + vy j) {cosay i + sing j)
which is expanded to obtain the final relation:
Wy COSO; +V1SiNQq = - Uy €OSq \ + Vi SINg (4-30)

The expression for the potential in terms of the singularities on each panel and the boundary
conditions derived above for the flow tangency and Kutta condition are used to construct a system
of linear algebraic equations for the strengths of the sources and the vortex. The steps required are
summarized below. Then we will carry out the details of the algebrarequired in each step.

Steps to determine the solution:

1. Write down the velocities, u,, v,, in terms of contributions from all the singularities. This
includesq, g from each panel and the influence coefficients which are a function of the
geometry only.

2. Find the algebraic equations defining the “influence” coefficients.
To generate the system of algebraic equations:

3. Write down flow tangency conditions in terms of the velocities (N egn’s., N+1
unknowns).

4. Write down the Kutta condition equation to get the N+1 equation.
5. Solve the resulting linear algebraic system of equations for the g, g.

6. Given g, g, write down the equations for u,, the tangential velocity at each panel control
point.

7. Determine the pressure distribution from Bernoulli’s equation using the tangential
velocity on each panel.

We now carry out each step in detail. The algebra gets tedious, but there’s no problem in
carrying it out. As we carry out the analysis for two dimensions, consider the additional algebra
required for the general three dimensional case.
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Sep 1. Velocities

The velocity components at any point i are given by contributions from the velocities induced
by the source and vortex distributions over each panel. The mathematical statement is:

\ \
U =\ cosa + g QiUs; *aa Uy
= 1= 4-31
N N (4-31)
_ . o o
Vi _V¥ sina + a. quSij +ga. VV”
=1 =1
where g, and g are the singularity strengths, and the ug, vy, U, and v, are the influence

coefficients. As an example, the influence coefficient ug; is thex-component of velocity at x; due to
aunit source distribution over the ™ panel.

Sep 2. Influence coefficients

Tofindug, vy, Uy,

and v,; we need to work in alocal panel coordinate system x*, y* which
leads to a straightforward means of integrating source and vortex distributions along a straight line
segment. This system will be locally aligned with each panel j, and is connected to the global

coordinate system asillustrated in Fig. 4-9.

>

J X
Figure 4-9. Local pand coordinate system and nomenclature.

The influence coefficients determined in the local coordinate system aligned with a particular
panel are u* and v*, and are transformed back to the global coordinate system by:

u=u*cosq; - v*sinqj
: 4-32
V =u*singj +Vv* cosq; (4-32)
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We now need to find the velocities induced by the singularity distributions. We consider the source
distributions first. The velocity field induced by a source in its natural cylindrical coordinate system
is:
Q-
=—e 4-33
v (4-33)
Rewriting in Cartesian coordinates (and noting that the source described in Eqg. (4-33) is
located at the origin, r = 0) we have:

W)= T MW= (434

In generdl, if welocate the sources aong the x-axis at apoint x = t, and integrate over alength I,
the velocities induced by the source distributions are obtained from:

t=| -
- & gt) x 2t dt

=02p (x-t)“+y

_ =M y
S L0 2p (X' t)2+ y2

(4-35)

dt

To obtain the influence coefficients, write down this equation in the ( )* coordinate system,
with q(t) = 1 (unit source strength):

* Xi-t

s =14 —Zdt
J ey Q i - t) Y
. (4-36)
* 1 \Ij y
L= — —dt
Vs
X @ i - t)2+y|
Theseintegrals can be found (from tables) in closed form:
111
* 1 éf * 2 *2u2
Us; —-z—plné(xi -t) +Yi f]
t=0 . (4-37)

VS:
2 e>q-t0

To interpret these expressions examine Fig. 4-10. The notation adopted and illustrated in the
sketch makesiit easy to trandate the results back to global coordinates.
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A
y*
ki
- /
~
r. - /
IJ//\> /r..
- / ij+1
- b
N i
— /N
/// r]0 / |
./ -
j | j+1

Figure 4-10. Relations between the point x*, y* and a panel.

Note that the formulas for the integrals given in Eq. (4-37) can be interpreted as aradius and
an angle. Substituting the limits into the expressions and evaluating results in the final formulas for
the influence coefficients due to the sources:

> :-—1| a‘i'--'-l-o;.

Y T3 r
Pefie (4-38)
* - b
Ve, = M- No_ i
l 2p 2p
Herer; is the distance from the i™ node to the point i, which is taken to be the control point
location of thei™ panel. The angle b, is the angle subtended at the middle of the i*" panel by the j"

panel.

The case of determining the influence coefficient for a panel’ s influence on itself requires
some special consideration. Consider the influence of the panel source distribution on itself. The

source induces normal velocities, and no tangential velocities, Thus, u;i =0 and v;i depends on
the side from which you approach the panel control point. Approaching the panel control point
from the outside leads to b, = p, while approaching from inside leadsto b, = -p. Since we are

working on the exterior problem,
b =p, (4-39)

and to keep the correct signon b, j 1 i, usethe FORTRAN subroutine ATANZ2, which takes into

ij?
account the correct quadrant of the angle.”

" Review a FORTRAN manual to understand how ATAN2 is used.
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Now consider the influence coefficients due to vortices. There is a simple connection between
source and vortex flows that allows us to use the previous results obtained for the source
distribution directly in the vortex singularity distribution analysis.

The velocity dueto apoint vortex isusualy given as.

V=- S : (4-40)

2pr
Compared to the source flow, the u, v components simply trade places (with consideration of the
direction of the flow to define the proper signs). In Cartesian coordinates the velocity due to a point

vortex is:

u(x,y) = +%;2i/7 , v(X,y) =- 2—(;;# . (4-41)

where the origin (the location of the vortex) isx =y = 0.

Using the same analysis used for source singularities for vortex singularities the equivalent
vortex distribution results can be obtained. Summing over the panel with avortex strength of unity
we get the formulas for the influence coefficients due to the vortex distribution:

uVi' =+ic‘a]*+|*2.dt:l
(- 0)P +y 2p
) ) (4-42)
* 1 Ji X - t 1 a.i,j+:|.0
V\4j = 2_ q * 2 *x2 2 n\
P (xi - 1) +y; P eflj g

where the definitions and specia circumstances described for the source singularities are the same
in the current case of distributed vortices.” In this case the vortex distribution induces an axial
velocity on itself at the sheet, and no normal velocity.

Sep 3. Flow tangency conditions to get N equations.
Our goal isto obtain a system of equations of the form:
I\ .
a Ajgj *tAnag=h i=1.N (4-43)
j=1
which are solved for the unknown source and vortex strengths.

Recall the flow tangency condition was found to be:

-u;Sing; +vijcosg; =0, foreachi, i=1..N (4-44)

" Note that Moran’s Equation (4-88) has a sign error typo. The correct sign is used in Eq. (4-42) above.
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where the velocities are given by:

\ A
U =W cosa + g qjqu +9 u\,”.
j=l j=l
N N (4-45)
. (¢} o
Vi :V¥ sina + a quSij +ga VV”
=1 =1
Substituting into Eq. (4-45), the flow tangency equations, Eq. (4-44), above:
e A poooo= o N Noo
é' Vg cosa - a qjusj' -ga U\,ijignQi +§/¥ sna+a qjvsij tga VVij ZCOSQi =0
j=1 =1 o j=1 =1 o
(4-46)
which is rewritten into:
N N
. . . [¢} [o]
[- W sing; cosa + % cosg; sina |- sing; g Ojly; *+Coq; @ djVy;
j=l =1
N A
- gsngia Uy +gcostiq vy = 0
j=l =1
or
. . \ .
W (cosg sina - singj cosa ) + a (cosqi Vg, - Sing uﬁj)qj
-b J=1 A
]
+§cosqi a Wy - sing; A Uy g9=0
j=1 =1 @
Ai,N+1

Now get the formulas for A; and A, ., by replacing the formulas for ug;, vg;,U,;,v,; with the ()*
values, where:

u=u*cosqj- v*sing;
: 4-48
V =u*singj +Vv* cosg; (4-48)

and we substitute into Eq. (4-47) for thevaluesin A; and A, ., above.

Start with:
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Aj = cost Vs; - sinqqu
:cosqi(usj sing Vg, cosqj)- sinqi(uSj €osq;j - Vg; sinqj) (4-49)
= (cosqisinqj - sing; cosqj)u;j +(cosqicosqj - Singj Sing; )v;j

and we use trigonometric identities to combine terms into a more compact form. Operating on the
first term in parenthesis:

cosg; sing; =—185n(Qi +Qj)+ :‘ZLS"‘(' {qi ) qi})

2 (4-50)
= Zsinfa; +q;)- %Sin(CIi'Qj)
2
and
: . 1. 1.
sing; sing; ——an(qi+qj)+—zsm(qi-qj) (4-51)
resultsin:
(cosqisinqj - sinqicosqj): 0- sin(qi - 0 ) (4-52)
Moving to the second term in parentheses above:
— fai+ .)+} {a - ;)
COsg; cosqj = 2co di +4; 2co di - g w9

sing; sing; =—;COS(0Ii - Qj)' %cos(qi +qj)
and

COSQ;j CoSqj +Singj; Singj :%cos(qi +qj)+—;cos(qi - qj)+—;cos(qi - qj)- %cos(qi +qj)

= coslg; - q)

(4-54)
so that the expression for A, can be written as:
Ay = - sin(a; - qj)ug; + coda; - aj v, (4-55)
and using the definitions of
1 % +10 1
i =——sin(g; - q;)Ing——++—coqq; - q; )bj; . 4-56
Aj 20 @;-aj) gri,j o S(q| CIJ) ij (4-56)
Now look at the expression for b, identified in (4-47):
b = \&(cosqi sina - sing; cosa) (4-57)
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where in the same fashion used above:

. 1. 1.
cosg; sina =§sm(qi +a) - —an(qi -a)

1 1 (4-58)
sing; cosa :Esin(qi +a) +—25in(qi -a)
and
cosq; sina - sing; cosa = -sin(g; - a) (4-59)
so that we get:
b =\ sin(g; - a). (4-60)
Finaly, work with theA, ., term:
e N N O
Aﬁ,N+1 = éCOSq a V\/ij - Sinq a uvij :
j=1 i1 o
<|>\I o * . ON * *
= Ccoygi a (Wij SIing; +VVij COSZ]J')- sing; a (u\'ij cosqj - VVij SIHQj)
=1 =1
N (4-61)
=a (cosqisinqjq,ij +C0sq; COSqj Vy; - sing; €OSq Uy +sinqisinqjv\,ij
j=1
N u
=3 . cosq; +sinq-sinq-)v€ +(cosq-sinq- - sing cosq-)u* u
a g(cosch Cosq i i /W i j i i/%; g
1=1le 2 b a
and a and b can be smplified to:
a:cos(qi - qj)
_ : (4-62)
b=- sm(q - qj)
Substituting for a and b in the above equation:
A ; .
A s = & oo - aj); - sinfai - aj)ul ) (4-63)
=1
and using the definition of we arrive at the final result:
1 5 , ""&i,j+1(.j , H’l
A N+1 = o adlcos@i - qj)Ing——=- sin(g;j - qj)bj; V. (4-64)
| elijo
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To sum up (repeating the results found above), the equations for the A,
given by (4-56), (4-64), and (4-60):

ij? Ai,N+1’ and bi are

A-,-:—sn(q. qj)Ingd? +—cos(q. aj )by
efij o

jua? g
AN+1——aICOS(q. q,)lng—--sn(Q. a;j)bjy
2p . j=f eljo b

b =\ sin(g; - a)

Sep 4. Kutta Condition to get equation N+1
To complete the system of N+1 equations, we use the Kutta condition, which we previously
defined as:
Ly COSO +V1SiNgy = - Uy COSO - VN SING N (4-66)
and substitute into this expression the formulas for the velocities due to the freestream and
singularities given in equation (4-31). In this case they are written as:

N N
U =V cosa +§ QJUle oF: | Uy
=1 =1
N N
v =\ sina +g qjv, +@1avv1J
j=1
N N (4-67)
Uy =V COSa + @ Gjus, +9a Uy,
j=1 j=1
N N
N = \&Sma"'ansN gaVij
=1 =1

Substituting into the Kutta condition equation we obtain:
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& N N 0]
o o .
Vy cosa + g quslj tga Uy Tcosqy
j=1 =1 o
& N N 0
. o) o) .
+§\& sna +g quslj +g avvlj =Sinq
j=1 =1 @
) (4-68)
& N N 0
o [} -
+&W cosa + g Qjusy; 9@ Uy TCOSIN
j=1 =1 o
& N N o]
. o) o) o _
+§V¥ sina + _alqjva\” +ga1\4,Nj zsingy =0
1= 1= 1]

and our goa will be to manipulate this expression into the form:

N

[o]
A An+,jdj + AN+, N+19 =P (4-69)
=1

which istheN + 1% equation which completes the system for the N + 1 unknowns.

Start by regrouping terms in the above equation to write it in the form:

N

o . .
a (usﬂ.j €001 +V5£I.j sSngp +u3Nj Cosq N +V5Nj squ)qj
=1

AN+
) u
+%a (u\,1j COSQy + Wy sing + Uy COSAN + Vi sinqN)lé; : (4-70)

AN+, N+1
=- (W cosa cosqy + VW sina singy +Vy cosa cosqy +Vy sina singy )

bN+1
Obtain the final expression for by, first:
bn+1 =- W (cosa cosg +Sina sing + cosa cosq y +sina singy) (4-71)

coga - qy) cosfa - qy)

and using the trigonometric identities to obtain the expression for by, ,:

bn+1 = W cos(ql- a)- Vy cos(qN - a) 4-72)
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where we made use of cos(-A) = cos A.
Now work with A, ;:
AN+ = Ug; COSqy +Vg, singp + Usy; COSON *Vgy singy (4-73)
and replace the influence coefficients with their related ( )* values:
= Ug;; COSQj - Vg, sing;
uSl sing;j + v cosq i
(4-74)
uSN cosqj - smq i
VSNj = USNj Slan' +V3Nj COsqj
so that we can write:

AN+ j = (Usl coxq; - SlnqJ )cosq1

(usl sing; +v cosqj)smq1
(4-75)

¥ (Uij 0S4 - Vey; NG ,-)cosqN
+(uSNj sing * Vay COSQ])SinqN
or:
AN+1, (cosqJ cosqy + smql smql)uslj
+ (cosqj cosqy + sing; singy )U;Nj
. . \ (4-76)
+(cosqj singy - sing cosql)vSlJ
+(cosqj singy - sing COSQN)V;\“
Use the following trig relations to simplify the equation:
€osq j cosay +singjsingy :cos(qj - ql)
COsqj Cosq y +Sing; singyy =cos(qj i QN) o
cosqjsing - sing;j costy = - sin(qj ] ql)

cosgj singy - sing; cosdy = - sin(d - )
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and substitute into Eq. (4-76) to obtain:

AN+ = Cos(qj - Q1)“;11 +°°S(qi ; q'\')”;NJ

_ . _ . - (4-78)
- S'”(Qj - Q1)Vslj - S'”(Qj - QN)Vij
Use the definition of the influence coefficients:
usljz-zin 1r’+1+ uij:-Z—lln ’\r"+_1+
P enjg P elNj g (4-79)
* bl] * bN’j
R RS
to write the equation for A, :
_ codaj-ay) ;.0 codaj-an) By a0
AN+l = - 2 Ing I 2 Ing P
el @ e 'N,j ﬂ. (4-80)
Sin(qj 'CI1)b | Sin(qj 'QN)b _
2p 1] 2p N.j
Finaly, use symmetry and odd/even relations to write down the final form:
éin(dy - qj)byj +sin(@n - )b u
A = e ; (4-81)
N+1,j = 10U -
e & cosay - q,)lng——- cos(an - ;) Ing
1] 9 e N . 20
Now work with Ay, y.i:
\
AN+LN+1 = A (lej COSOy +Vyy; SINQy + Wy COSON +Vyyg SinCIN) (4-82)
j=1
where we substitute in for the ()* coordinate system, Eq. (4-32), and obtain:
N :(u\,1 cosqj - v\jlj sinqj)cosq1+(uf,1. sing; +v§l. cosqj)sinql o
AN+1, N+1— a | y(4'83)

(u\,NJ cosqj - vVstinqj)cosqN (uVN sing; +va Cos;qj)squIO

or:
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*

E (cosqj oSy +Sinq j sinql)q,lj +(cosqj singy - sing | cosql)v\,1j :J
A aN i cos(d; -dy) -sin(g; - gz) T
N+LN+1=a | y
j= 1| +(cosqJ cosqy +singj sing N)uVN (cosqJ singy - sing; COSCIN)VVN]'
|
T cos(dj -dn) - sin(g; -qp) b

(4-84)

whichis:

N oos(a - gy - sn; - gy
Ansinsi= A
j= lf"‘COS(QJ qN)WN - sin(@; - qN)VVij

=

and using odd/even trig relations we get the form given by Moran®:

N lsm(ch q])vvl +sin(qy - qJ)VVNJ |l:I
Ansin+1= A Y (89
= 1t+cos(q1 qJ)u\,1 + cos(q - QJ)U\/NJ b

We now substitute the formulas derived above for the influence coefficients given in Eq. (4-
42). Thefinal equationiis:

é &, ., 06U

N ési In—J— +gn Inel*l g
AN+1,N+1—2ié.§‘ (ql q) g fij o (qN qj) ng,J 0. (4-86)

=1e u

P 18 +cos(qy - d;j)by,j +cosdn - dj)bn i

After substituting in the values of the velocitiesin terms of the singularity strengths, and
performing some algebraic manipulation, aform of the coefficients suitable for computations is
obtained.

The final equations associated with the Kutta condition are:

€0y - gj)byj +siN@n - gj)P N, j u
1 e u
AN i +1 N 1° U (4-81)
75 S & cosar - q,)lngL;- cos(a - aj)Ing N’* ¢
1j j al
e a0 o, ., ,0U
N A LjA°" N,j+17-
1 & é&sin(g;-q;)ln ++sin{gy - 9 Ing—J—Tu
AN+]“N+1_2—pa§ ( J) g ri,j 2 ( J) rN,j ﬂl; (4-86)
j=1€ u
J1E +cos(qy - 0j)by,j +cosldn - d;j)b;,j 0
bn+1 =- W cos(gy - @) - Vi cos(gy - @ ). (4-72)
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Step 5. Solve the system for g, g.

The coefficients derived above provide the required coefficients to solve a system of linear
algebraic equations for the N+1 unknowns, ¢, i = 1,...,N and g given by (4-43) and (4-69):

N

a Ajdj + An+9=h i=1..N

%
\ : . (4-87)
A An+1,j0j + AnsaN+19 =bna

=1
Thisis easily done using any number of computer subroutines.

Step 6. Given @, and g, write down the equations for the tangential velocity at each
panel control point.

At each control point, (v, = 0), find u,, the tangential velocity starting with:
U = Cosgj +V sing

e c’>\| cl:’\l 0
:é\& cosa + qu qj tga uVij iCOSC]i . (4_88)
ji=1 =1 9
e N N 0
. o o ..
+ \/¥ sna + a qu qj +ga V\/”_Shq
i=1 =1 @

Using the ()* values of the influence coefficients,

e N N 0
= 2 * A * g . . 2 * . * 1 . F .
U = §¥ cosa + q (qu cosq; - Vg squ)qJ +ga (q,ij Cosqj - Vy; Sing; );cosq,

j=1 j=1 2}

& c’)\l * * c’)\l * * O
+CGW sina +q (usj sing; Vg, cosqj)qj +tga (uVij sing; +Vy; cosqj)jsinqi

j=1 j=1 2

(4-89)
or:
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U =V cosa cosgj + i sina sing;

N
[] * . * . i * i
+a {Us €OSq;j COSY; - Vg; SINQj COSYj +Ug;; SINQ;j SING +Vg;; COSY smqi}qj :
=1
5
+9 a{% cosqj cosgj - v\4 sing; cosq,+u\,i sing;sing; +Vs cosqjsmql}

j=1
(4-90)
Collecting terms:
Uy =(cosa cosg; +sina sing;)\

cos(a - )

U

i (cosqj cosg; +S|nqjsmq,)uq +(cosq sing; - smqjcosq,)vsuyqJ (4-91)
cos@j -a;) -sin(g; - ;) |o

+

i
I
[
j=1l
[

o QJOZ

(coszqJ cosg + sing;j sing; )uv +(cosqj sing; - sing; coszqi)vf,ij y
| cos(; - q;) -sin(q;j - g;) i)

which becomes:

Uy —COS(a q|)V¥ +a{COS(QJ Q|)Us1 - Sm(Q] Qi )Vg }

= (4-92)
N . *

+ga{005(qj - Gi)uy; - SIn@; - qi)vv”}
j=1

Using the definitions of the ( )* influence coefficients, and some trigonometric identities, we
obtain the final result:

e

U = cosfg - a)W +a L ésin; - )b - cos(g; - q])lng—J—l—u
j=12P & i,j
. (4-93)
+ 3 éN% n(g; - g; )|n<; o+cos(q- -q-)b--lljJ
Top B g T AT s T i P

J:
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Sep 7. Finally, the surface pressure coefficient can be found from:

.2
aay,; 0
Cp =1- (4-94)
V¥ Q
using u, from Eq. (4-93).

This completes our derivation of one panel method scheme in two dimensions. Imagine the
difficulty in performing the algebra required to extend this approach to three dimensions! That’s
why we' ve used a two-dimensional example.

4.5 Program PANEL

Program PANEL is an exact implementation of the analysis given in Section 4.4, and is
essentially the program given by Moran.® Other panel method programs are available in the
textbooks by Houghton and Carpenter,™ and Kuethe and Chow.™ Moran’s program includes a
subroutine to generate the ordinates for the NACA 4-digit and 5-digit airfoils (see Appendix A for a
description of these airfoil sections). The main drawback is the requirement for atrailing edge
thickness that’ s exactly zero. To accommodate this restriction, the ordinates generated internally
have been altered slightly from the official ordinates. The extension of the program to handle
arbitrary airfoilsis an exercise. The freestream velocity in PANEL is assumed to be unity, since
the inviscid solution in coefficient form isindependent of scale.

PANEL’s node points are distributed employing the widely used cosine spacing function.
The equation for this spacing is given by defining the points on the thickness distribution to be
placed at:

x 1€ i ( )pud .
d== c05| i=1,..N. 4-95
. 221 gu 1 (4-95)

These locations are then altered when camber is added (see Egns. (A-1) and (A-2) in App. A).
This approach is used to provide a smoothly varying distribution of panel node points which
concentrate points around the leading and trailing edges.

An example of the accuracy of program PANEL isgivenin Fig. 4-11, where the results
from PANEL for the NACA 4412 airfoil are compared with results obtained from an exact
conformal mapping of the airfoil (comments on the mapping methods are given in Chapter 9 on

Geometry and Grids. Conformal transformations can also be used to generate meshes of points for
usein field methods). The agreement is nearly perfect.

Numerical studies need to be conducted to determine how many panels are required to obtain
accurate results. Both forces and moments and pressure distributions should be examined.
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250 [ T T T T T T

X o PANEL
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-0.50 [

0.00 _

=
N

Figure 4-11. Comparison of results from program PANEL with an essentially exact
mapping solution for the NACA 4412 airfoil at 6° angle-of-attack.

Y ou can select the number of panels used to represent the surface. How many should you
use? Most computational programs provide the user with freedom to decide how detailed
(expensive - in dollars or time) the calculations should be. One of the first things the user should
do is evaluate how detailed the calculation should be to obtain the level of accuracy desired. In the
PANEL code your control isthrough the number of panels used.

We check the sensitivity of the solution to the number of panels by comparing force and
moment results and pressure distributions with increasing numbers of panels. Thisis done using
two different methods. Figures 4-12 and 4-13 present the change of drag and lift, respectively,
using the first method. For PANEL , which uses an inviscid incompressible flowfield model, the
drag should be exactly zero. The drag coefficient found by integrating the pressures over the airfaoil
is an indication of the error in the numerical scheme. The drag obtained using a surface (or
“nearfield”) pressure integration is a numerically sensitive calculation, and is a strict test of the
method. The figures show the drag going to zero, and the lift becoming constant as the number of
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panelsincrease. In this style of presentation it is hard to see exactly how quickly the solution is
converging to afixed value.

The results given in Figures 4-12 and 4-13 indicate that 60-80 panels (30 upper, 30 lower for
example) should be enough panels. Note that the lift is presented in an extremely expanded scale.
Drag also uses an expanded scale. Because drag is typicaly a small number, it is frequently
described in drag counts, where 1 drag count isa C, of 0.0001.

To estimate the limit for an infinitely large number of panels the results can be plotted as a
function of the reciprocal of the number of panels. Thus the limit result occurs as 1/n goes to zero.
Figures 4-14, 4-15, and 4-16 present the results in this manner for the case given above, and with
the pitching moment included for examination in the analysis.

0.012 @ . . .

- NACA 0012 Airfoil,a =8° 4

0.010 | \ ]

o 0008 - \ ]

° 0006 :

0.004 | \ ]

0.002 f ~ .
00005 20 40 60 80 100 120

No. of Panels

Figure 4-12. Change of drag with number of panels.

0.980 : : :
: NACA 0012 Airfail, a = 8°

0.975 L

0.970 F
0.965 |

0.960 | P~ S 2

0.955 F

0.950 0 20 40 60 80 100 120

No. of Panels
Figure 4-13. Change of lift with number of panels.
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Figure 4-14. Change of drag with the inverse of the number of panels.
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Figure 4-15. Change of lift with the inverse of the number of panels.
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Figure 4-16. Change of pitching moment with the inverse of the number of panels.
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The results given in Figures 4-14 through 4-16 show that the program PANEL produces
results that are relatively insensitive to the number of panels once fifty or sixty panels are used, and
by extrapolating to 1/n = 0 an estimate of the limiting value can be obtained.

In addition to forces and moments, the sensitivity of the pressure distributions to changesin
panel density should also be investigated. Pressure distributions are shown in Figures 4-17, 4-18,
and 4-19. The case for 20 panelsis given in Figure 4-17. Although the character of the pressure
distribution isemerging, it’s clear that more panels are required to define the details of the pressure
distribution. The stagnation pressure region on the lower surface of the leading edge is not yet
distinct. The expansion peak and trailing edge recovery pressure are also not resolved clearly.
Figure 4-18 contains a comparison between 20 and 60 panel cases. In this case it appears that the
pressure distribution is well defined with 60 panels. Thisis confirmed in Figure 4-19, which
demonstrates that it is almost impossible to identify the differences between the 60 and 100 panel
cases. Thistype of study should (and in fact must) be conducted when using computational

aerodynamics methods.

-4.00
—\ NACA 0012 airfoil, a = 8°

-3.00

-2.00
o | N

-1.00
v\

—o— 20 panels

Q\&

\G\
0.00 S 5 —o—%
10%.0 0.2 0.4 0.6 0.8 1.0
xl/c

Figure 4-17. Pressure distribution from progrm PANEL, 20 panels.
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Figure 4-18. Pressure distribution from progrm PANEL,
comparing results using 20 and 60 panels.
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Figure 4-19. Pressure distribution from progrm PANEL,
comparing results using 60 and 100 panels.
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Having examined the convergence of the mathematical solution, we investigate the agreement
with experimental data. Figure 4-20 compares the lift coefficients from the inviscid solutions
obtained from PANEL with experimental data from Abbott and von Doenhof.*> Agreement is
good at low angles of attack, where the flow is fully attached. The agreement deteriorates as the
angle of attack increases, and viscous effects start to show up as areduction in lift with increasing
angle of attack, until, finally, the airfoil stalls. Theinviscid solutions from PANEL cannot capture
this part of the physics. The difference in the airfoil behavior at stall between the cambered and
uncambered airfoil will be discussed further in Chapter 10. Essentially, the differences arise due to
different flow separation locations on the different airfoils. The cambered airfoil separates at the
trailing edge first. Stall occurs gradually as the separation point moves forward on the airfoil with
increasing incidence. The uncambered airfoil stalls due to a sudden separation at the leading edge.
An examination of the difference in pressure distributions to be discussed next can be studied to
see why this might be the case.

2.50 T T T IS T
200 -
150 | o .
C
L
100 | .
‘o
050 5 -
C_, NACA 0012 - PANEL
--8- C ,NACA 0012 - exp. data
000 & . C,,NACA 4412 - PANEL 7
_ .- C,_,NACA 4412 - exp. data
050 I I I I I
-5.0° 0.0° 5.0° 10.0° 150°  20.0° 25.0°

a
Figure 4-20. Comparison of PANEL lift predictions with experimental data, (Ref. 12).
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The pitching moment characteristics are also important. Figure 4-21 provides a comparison of
the PANEL pitching moment predictions (about the quarter chord point) with experimental data.
In this case the calculations indicate that the computed location of the aerodynamic center,
dC,,/dC_ =0, isnot exactly at the quarter chord, although the experimental datais very close to
this value. The uncambered NACA 0012 data shows nearly zero pitching moment until flow
separation starts to occur. The cambered airfoil shows a significant pitching moment, and atrend
due to viscous effects that is exactly opposite the computed prediction.

0.10
0.05
-0.00 e——_a—s —o0—o—0—
o
Gy, ™ 0 0|°”8

010 LQ..Q_O_ _O_ o0 © 9 D
-0.15 ]
-0.20 C,» NACA 0012 - PANEL

R I [ Cn NACA 4412 - PANEL
.0.95 o C,, NACA 0012 - exp. data

' o C,, NACA 4412 - exp. data
03055 0.0 5.0 10.0 15.0 20.0 25.0

a
Figure 4-21. Comparison of PANEL moment predictions with experimental data, (Ref. 12).

We do not compare the drag prediction from PANEL with experimentd data. In two-
dimensional incompressible inviscid flow the drag is zero. In the actual case, drag arises from skin
friction effects, further additional form drag due to the small change of pressure on the body due to
the boundary layer (which primarily prevents full pressure recovery at the trailing edge), and drag
due to increasing viscous effects with increasing angle of attack. A well designed airfoil will have a
drag value very nearly equal to the skin friction and nearly invariant with incidence until the
maximum lift coefficient is approached.

In addition to the force and moment comparisons, we need to compare the pressure
distributions predicted with PANEL to experimental data. Figure 4-22 provides one example. The
NACA 4412 experimental pressure distribution is compared with PANEL predictions. In general
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the agreement is very good. The primary area of disagreement is at the trailing edge. Here viscous

effects act to prevent the recovery of the experimental pressure to the levels predicted by the

inviscid solution. The disagreement on the lower surface is surprising, and suggests that the angle

of attack from the experiment is not precise.
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Figure 4-22. Comparison of pressure distribution from PANEL with data.

Panel methods often have trouble with accuracy at the trailing edge of airfoils with cusped
trailing edges, so that the included angle at the trailing edge is zero. Figure 4-23 shows the

predictions of program PANEL compared with an exact mapping solution (FLO36 run at low

Mach number, see Chap. 11) for two cases. Figure 4-23ais for a case with a small trailing edge
angle: the NACA 651-012, while Fig. 4-23b isfor the more standard 6A version of the airfoil. The
corresponding airfoil shapes are shown Fig. 4-24.
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Figure 23. PANEL Performance near the airfail trailing edge
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Figure 4-24. Comparison at the trailing edge of 6- and 6A-series airfoil geometries.

This case demonstrates a situation where this particular panel method is not accurate. Isthisa
practical consideration? Y es and no. The 6-series airfoils were theoretically derived by specifying a
pressure distribution and determining the required shape. The small trailing edge angles (Iess than
half those of the 4-digit series), cusped shape, and the unobtainable zero thickness specified at the
trailing edge resulted in objections from the aircraft industry. These airfoils were very difficult to
use on operational aircraft. Subsequently, the 6A-series airfoils were introduced to remedy the
problem. These airfoils had larger trailing edge angles (approximately the same as the 4-digit
series), and were made up of nearly straight (or flat) surfaces over the last 20% of the airfoil. Most
applications of 6-series airfoils today actually use the modified 6A-series thickness distribution.
Thisis an areawhere the user should check the performance of a particular panel method.
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4.6 Subsonic Airfoil Aerodynamics

Using PANEL we now have a means of easily examining the pressure distributions, and
forces and moments, for different airfoil shapes. In this section we present a discussion of airfoil
characteristics using an inviscid analysis. All the illustrative examples were computed using
program PANEL . Weillustrate key areas to examine when studying airfoil pressure distributions
using the NACA 0012 airfail at 4° angle of attack astypical in Fig. 4-25.

-2.00 T T T T T
Expansion/recovery around leading edge
(minimum pressure or max velocity,
-1.50 first appearance of sonic flow) -
Rapidly accelerating flow,
B favorable pressure gradient _
-1.00
C upper surface pressure recovery
PO 50 (L / (adverse pressure gradient)
0.00 e e
2 Trailing edge pressure recovery. Ty
0.50 | y L eading edge stagnation point -
¢ NACA 0012 airfoil, a =4°
| | | | |
1'OQO.l 0.1 0.3 0.5 0.7 0.9 1.1

x/c

Figure 4-25. Key areas of interest when examining airfoil pressure distributions.

Remember that we are making an incompressible, inviscid analysis when we are using
program PANEL . Thus, in this section we examine the basic characteristics of airfoils from that
point of view. We will examine viscous and compressibility effects in subsequent chapters, when
we have the tools to conduct numerical experiments. However, the best way to understand airfoil
characteristics from an engineering standpoint is to examine the inviscid properties, and then
consider changes in properties due to the effects of viscosity. Controlling the pressure distribution
through selection of the geometry, the aerodynamicist controls, or suppresses, adverse viscous
effects. The mental concept of the flow best starts as a flowfield driven by the pressure distribution
that would exist if there were no viscous effects. The airfoil characteristics then change by the
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“relieving” effects of viscosity, where flow separation or boundary layer thickening reduces the
degree of pressure recovery which would occur otherwise. For efficient airfoils the viscous effects
should be small at normal operating conditions.

4.6.1 Overview of Airfoil Characteristics: Good and Bad

In this section we illustrate the connection between the airfoil geometry and the airfoil pressure
distribution. We identify and discuss waysto control the inviscid pressure distribution by changing
the arfoil geometry. An aerodynamicist controls viscous effects by controlling the pressure
distribution. Further discussion and examples providing insight into aerodynamic design are
available in the excdlent recent book by Jones.”* A terific book that captures much of the
experience of the original designers of the NACA airfoils was written by aeronautical pioneer E.P.
Warner.

Drag: We discussed the requirement that drag should be zero for this two-dimensional
inviscid incompressible irrotational prediction method when we studied the accuracy of the method
in the previous section. At this point we infer possible drag and adverse viscous effects by
examining the effects of airfoil geometry and angle of attack on the pressure distribution.

Lift: Thin airfoil theory predictsthat the lift curve slope should be 2p, and thick airfoil theory
saysthat it should be dightly greater than 2p, with 2p being the limit for zero thickness. Y ou can
easily determine how close program PANEL comes to this value. These tests should give you
confidence that the code is operating correctly. The other key parameter is a,, , the angle at which
the airfoil produces zero lift (arelated valueis C , the value of C_ ata = 0).

Moment: Thin airfoil theory predicts that subsonic airfoils have their aerodynamic centers at
the quarter chord for attached flow. The value of C_, depends on the camber. We have seenin Fig.
4-21 that the computed aerodynamic center is not precisely located at the quarter chord. However,
the dlope of the moment curve in Fig. 4-21 corresponds to an aerodynamic center location of x/c =
0.2597, which is reasonably close to 0.2500.

Multi-element airfoils are also an important class of airfoils. However, their performanceis so
closely connect to the effects of viscosity that the discussion of those airfoilsis deferred until
Chapter 10, Viscous Flows in Aerodynamics.

" Three-dimensional panel methods can estimate the induced drag.
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Figure 4-26. Effect of angle of attack on the pressure distribution.

The starting place for understanding airfoil characteristics is an examination of the angle of
attack effects on an uncambered airfoil. Figure 4-26 presents this effect for the NACA 0012 airfoil.
Here we see the progression from the symmetric zero angle of attack result. The a = 0° case
produces a mild expansion around the leading edge followed by a monotonic recovery to the
trailing edge pressure. As the angle of attack increases the pressure begins to expand rapidly
around the leading edge, reaching a very low pressure, and resulting in an increasingly steep
pressure recovery at the leading edge.

The next effect of interest is thickness. Figure 4-27 presents airfoil shapesfor NACA 4 digit
sections of 6, 12, and 18 percent thick. The associated basic pressure distributions at zero angle of
attack are shown in Fig. 4-28. Clearly the thicker airfoil produces alarger disturbance, and hence a
lower minimum pressure. However, the 18 percent thick airfoil produces a milder expansion
around the leading edge and a recompression extending further upstream than the thinner airfoils,
especialy at thetrailing edge.
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Figure 4-27. Comparison of NACA 4-digit airfoils of 6, 12, and 18% thicknesses.
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Figure 4-28. Effect of airfoil thickness on the pressure distribution at zero lift.

2/24/98



4-42 Applied Computational Aerodynamics

The effect of thickness in softening the expansion and recompression around the leading edge
iseven more evident at an angle of attack. Figure 4-29 shows this effect at alift coefficient of .48.
The thinnest airfoil shows a dramatic expansion/recompression due to the location of the stagnation
point below the leading edge point, requiring a large expansion around the leading edge which has
avery small radius of curvature. The thicker airfoil results in a significantly milder expansion and
subsequent recompresion.
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Figure 4-29. Effect of airfoil thickness on the pressure distribution at C_= 0.48.

The next effect to examine is camber. Figure 4-30 compares the shapes of the NACA 0012
and 4412 airfoils. The pressure distributions on the cambered airfoil for two different angles of
attack are shown in Figure 4-31. Note the role of camber in obtaining lift without producing a
leading edge expansion followed by arapid recompression immediately behind the expansion. This
reduces the possibility of leading edge separation.
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Figure 4-30. Comparison of uncambered and cambered NACA 4-digit airfoils.
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Figure 4-31. Effect of angle of attack on cambered airfoil pressure distributions at low lift.
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A comparison of the NACA 0012 and NACA 4412 airfoil pressure distributions at the same
lift coefficient is presented for several values of lift in Figures 4-32, 4-33 and 4-34. Asthellift
increases, the camber effects start to be dominated by the angle of attack effects, and the dramatic
effects of camber are diminished until at alift coefficient of 1.43 the pressure distributions start to
look similar.
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Figure 4-32. Camber effects on airfoil pressure distributionsat C = 0.48.
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Figure 4-33. Camber effects airfoil pressure distributionsat C,_ = 0.96.
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Figure 4-34. Camber effectsairfoil pressure distributionsat C = 1.43.
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Finally, we examine the effect of extreme aft camber, which was part of the design strategy of
Whitcomb when the so-called NASA supercritical airfoils were developed. This effect can be
smulated using the NACA 6712 airfoil, as shown in Figure 4-35. The resulting pressure
distribution is given in Figure 4-36. Note that the aft camber “ opens up” the pressure distribution
near the trailing edge. Two adverse properties of thistype of pressure distribution are the large zero
lift pitching moment and the delayed and then rapid pressure recovery on the upper surface. This
type of pressure recovery is avery poor way to try to achieve a significant pressure recovery
because the boundary layer will separate early. Whitcomb’s design work primarily improved the
pressure recovery curve.

0.15 | | | | |
ylc 0.05 -
-0.05 | | | | |
-0.1 0.1 0.3 0.5 0.7 0.9 1.
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Figure 4-35. Highly aft cambered NACA airfoil, an NACA 6712.
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Figure 4-36. Example of the use of aft camber to "open up"
the pressure distribution near the trailing edge.
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The airfoils used to demonstrate geometry effects on pressure distributions above use
parametric geometry definition formulas developed in the 1930s. More modern airfoils are
available to the aerodynamicist. Unfortunately, to obtain improved performance, the designs were
developed without the use of simple geometric definitions, and are available only as tables of
coordinates. One modern airfoil that extends some of the previous shapes to obtain a high
performance airfoil isthe GA(W)-1 airfoil.*® This 17% thick airfoil designed by NASA’s Richard
Whitcomb provides better maximum lift and stall characteristics. Figure 4-37 shows the airfoil
shape, and Fig. 4-38 shows the pressure distribution.
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Figure 4-37. GA(W)-1 airfoil, also known as NASA LS(1)-0417.
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Figure 4-38. Pressure distribution at zero angle of attack of the GA(W)-1.
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Notice that in this case the upper surface pressure distribution reaches a constant pressure
plateau, and then has a moderate pressure recovery. Aft camber is used to obtain lift on the lower
surface and “open up” the airfoil pressure distribution near the trailing edge in a manner suggested
previoudly in Fig. 4-36. The area of aft camber on the lower surface is know as the “cove’ region.
If the camber istoo extreme here the adverse pressure gradient will be too steep, and the flow will
separate on the lower surface before it separates on the upper surface. Also, this type of pressure
distribution has a significantly higher C_, than conventional airfoil sections,

4.6.2 Geometry and Design

Effects of Shape Changes on Pressure Distributions: So far the examples have
demonstrated global effects of camber and thickness. To develop an understanding of the typical
effects of adding local modifications to the airfoil surface, Exercise 5 provides aframework for the
reader to carry out an investigation analogous to the one for which results were presented in
Section 4.6.1. It is also worthwhile to investigate the very powerful effects that small deflections
of the trailing edge can produce. This reveals the power of the Kutta condition, and alerts the
aerodynamicist to the basis for the importance of viscous effects at the trailing edge.

This approach is extremely educationa when implemented in an interactive computer
program, where the aerodynamicist can make shape changes with amouse and see the effect on the
pressure distribution immediately. An outstanding code that does this has been created by Ilan
Kroo.” Itiscaled PANDA, originaly was for the Macintosh, but now is available for a PC.

Shape for a specified pressure distribution: There is another way that aerodynamicists view
the design problem. The local modification approach described above is useful to make minor
changes in airfoil pressure distributions. Often the aerodynamic designer wants to find the
geometric shape corresponding to a prescribed pressure distribution from scratch. This problem is
known as the inverse problem. This problem is more difficult than the analysis problem. It is
possible to prescribe a pressure distribution for which no geometry exists. Even if the geometry
exists, it may not be acceptable from a structural standpoint. For two-dimensional incompressible
flow it is possible to obtain conditions on the surface velocity distribution that ensure that a closed
airfoil shape exists. Excellent discussions of this problem have been given by Volpe" and Sloof.*®
A two-dimensional panel method has been developed by Bristow.® Numerical optimization can
also be used to find the shape corresponding to a prescribed pressure distribution.
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4.7 Issuesin the Problem formulation for 3D flow over aircr aft

The extension of panel methods to three dimensions leads to fundamental questions regarding
the proper specification of the potential flow problem for flow over an aircraft. Examplesinclude
the proper treatment of wing tips and the treatment of the wake and fuselage aft of the wing. Hess™
provides an excellent discussion of the problems. In particular, the Kutta condition has to be
reconsidered in three-dimensional flow. There are several aspects to consider. When solving the
flow over a complete aircraft the aerodynamicist has to decide how to model the flow streaming off
the fuselage or tip tank. The Kutta condition appliesto distinct edges, and the inviscid model is not
as precise. Many different approaches have been followed. Carmichagl and Erickson? also provide
good insight into the requirements for a proper panel method formulation. Similarly, references 4
and 5 provide good overviews.

Aerodynamics panel methods generally use quadrilateral panels to define the surface. Since
three points determine a plane, the quadrilateral may not necessarily define a consistent flat surface.
In practice, the methods actually divide panelsinto triangular elements to determine an estimate of
the outward normal. It isimportant that edges fit so that there is no leakage in the panel model
representation of the surface.

Other practical considerations also require fastidious attention to detail. These include making
sure that the outward surface normal is oriented in the proper direction, that all surfaces are
properly enclosed, and that wakes are properly specified. In some methods wakes are handled
automatically. In other methods the wakes must be precisely specified by the user. This provides
complete control over the simulation, but means that the user must understand precisely what the
problem statement should be. Figure 4-39 shows an example of a panel model including the details
of the wakes. For high lift cases and wakes from one surface streaming near another, wake
deflection must be computed as part of the solution. Figure 4-39 comes from a one week “short”
course that was given to prospective users of an advanced panel method known as PAN AIR.%?
Clearly, to ensure that the problem is properly specified, and to examine the entire flowfield in
detail, a complete graphics capability is required.

There is one other significant difference. Induced drag occurs even in inviscid, irrotational
incompressible flow. However, its calculation by integration of pressures over the surface requires
extreme accuracy, as we saw above for the two-dimension examples. The use of a farfield
momentum approach is much more accurate, and is described in Chap. 5, Drag, An Introduction.
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Impermeable Surface

Wakes

a) wing-body-tail configuration panel scheme with wakes

.ﬂ'-"_.l".r'.r.l' .I'rl
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Body Wake

Tail-Body
- Carry-Over
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& : Tail Wake

Wing-Body
Carry-Over
Wake

b) details of the wake model required

Figure 4-39. Example of a panel model containing wake model details.
(from aviewgraph presented at a PAN AIR user’ s short course, Ref. 23)
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4.8 Example applications of panel methods

Many examples of panel methods have been presented. Figure 4-40 shows an example of the
use of a panel model to evaluate the effect of the space shuttle on the Boeing 747. Thisisaclassic
example. Other uses include the ssimulation of wind tunnel walls, support interference, and ground
effects. Panel methods are also used in ocean engineering. Recent America’ s Cup designs have
been dependent on panel methods for hull and keel design. The effects of the free surface can be
treated using panel methods.

Figure 4-40. The space shuttle mounted on a Boeing 747.

One example has been selected to present in some detail. It is an excellent illustration of how a
panel method isused in design, and provides arealistic example of the typical agreement that can
be expected between a panel method and experimental data in a demanding real application. The
work was done by Ed Tinoco and co-workers at Boeing.?* Figure 4-41 shows the modifications
required to modify a Boeing 737-200 to the 737-300 configuration.The panel method was used to
investigate the design of a new high lift system. They used PAN AIR, which is a Boeing
developed advanced panel method.*25 Figure 4-42 shows the panel method representation of the
airplane.
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Figure 4-41. The Boeing 737-300 relative to the model 737-200 (Ref.24).

Figure 4-42. The pand representation of the 737-300 with 15° flap deflection (Ref. 4).
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An understanding of the wing flowfield for two different takeoff flap settings was desired.
The cases are “flaps 15", the normal takeoff setting, and “flaps 17, the high altitude, hot day
setting. The work was conducted in concert with the flight test program to provide insight into the
flight test results by providing complete flowfield details not available from the flight test. The
computational models used 1750 panels for flaps 1 and 2900 panels for flaps 15. The modeling
used to simulate this flowfield illustrates typical idedlizations employed when applying panels
methods to actua aircraft. Although typical, it is one of the most geometricaly complicated
examples ever published.

Figure 4-43 shows the wing leading edge and nacelle. The inboard Krueger flap was actually
modeled as a doublet of zero thickness. The position was adjusted slightly to allow the doubl et
sheet to provide a simple matching of the trailing edge of the Krueger and the leading edge of the
wing. These types of slight adjustments to keep panel schemes relatively simple are commonly
used. The outboard leading and trailing edge flap geometries were also modified for use in this
inviscid simulation. Figure 4-44 a) shows the actual and computational flaps 1 geometry. In this
case the airfoil was modeled as a single element airfoil. The flaps 15 trailing edge comparison
between the actual and computational geometry is shown in Fig. 4-44 b). The triple slotted flap
was modeled as a single element flap. At this setting the gap between the forward vane and main
flap is closed, and the gap between the main and aft flap is very small.

Figure 4-43. Inboard wing leading edge and nacelle details (Ref. 24).
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a) Comparison of actual and computational wing geometry for the flaps 1 case (Ref. 24).

Actual Geometry

?

Computational Geometry

b) Actual and computational trailing edge geometry for the flaps 15 case (Ref. 4).
Figure 4-44. Examples of computational modeling for areal application.

Severa three-dimensional modeling considerations also required attention. In the flaps 1 case
shown in Fig. 4-45, spanwise discontinuities included the end of the outboard leading edge slat
and trailing edge discontinuities at the back of the nacelle installation (called the thrust gate)
between the inboard and outboard flaps. At the outboard |eading edge the edges of the slat and
wing were paneled to prevent leakage. A 0.1 inch gap was left between these surfaces. At the
trailing edge discontinuity awake was included to model a continuous trailing edge from which a
trailing vortex sheet could be shed.
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Figure 4-45. Spanwise discontinuity details requiring modeling for flaps 1 case (Ref. 24).

Similar considerations are required for the flaps 15. Here, special care was taken to make sure
that the configuration was closed, and contained no holes in the surface at the ends of the flap

segments.

Another consideration is the nacelle model. This requires the specification of the inlet flow at
the engine face, amodel of the strut wake, and both the outer bypass air plume and the primary
wake from the inner hot gas jet. Figure 4-46 provides the details.

Figure 4-46 Nacelle model (Ref. 24).
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Complete details of the model are contained in Ref. 24. With the model complete, the solution
was obtained. The spanwise distribution of airfoil section lift coefficientsis presented in Figure 4-
47. Thefirst part of the figure shows the results for the flaps 1 case, and the second part of the
figure presents the flaps 15 case. In both cases the jig shape and flight shape including aeroelastic
deformation are included. This is another consideration in making a proper aerodynamic
simulation. In both cases the shape including the deformation under load shows much better
agreement with flight and wind tunnel data. Notice the loss of lift on the wing at the nacelle station,
and the decrease in lift outboard of the trailing edge flap location.

a) flaps 1 case

b) flaps 15 case
Figure 4-47. Spanwise distribution of lift coefficient on the Boeing 737-300 (Ref.24).
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Figure 4-48 presents the change in section lift coefficient with angle of attack at several span
stations. The agreement between PAN AIR and flight test is better for the flaps 1 case. Viscous
effects are becoming important for the flaps 15 case.

a) flaps 1 case

b) flaps 15 case

Figure 4-48. Comparison of section lift coefficient change with angle of attack(Ref.24)
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Figure 4-49 compl etes this example by presenting the comparison of pressure distributions for
the two cases at four spanwise stations. The flaps 1 case agreement is generally good. Calculations
are presented for both the actual angle of attack, and the angle of attack which matches the lift
coefficient. Matching lift coefficient instead of angle of attack is a common practice in
computational aerodynamics. Considering the smplifications made to the geometry and the
absence of the ssimulation of viscous effects the agreement is very good. The flaps 15 case starts to
show the problems that arise from these simplifications. Thisis a good example of the use of a
panel method. It illustrates almost al of the considerations that must be addressed in actua
applications.

a) flaps 1 case b) flaps 15 case

Figure 4-49. Comparison of pressure distributions between flight and computations for the 737-
300, solid lineis PAN AIR at flight lift, dashed lineis PAN AIR at flight angle of attack (Ref. 24).
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4.9 Using Panel Methods
4.9.1 Common sense rules for panels

» Vary the size of panels smoothy
» Concentrate panels where the flowfield and/or geometry is changing rapidly
» Don’'t spend more money and time (i.e., numbers of panels) than required

Panel placement and variation of panel size affect the quality of the solution. However,
extreme sensitivity of the solution to the panel layout is an indication of an improperly posed
problem. If this happens, the user should investigate the problem thoroughly.

Panel methods are an aid to the aerodynamicist. Y ou must use the results as aguide to help
you develop your own judgement. (An issue: lawyers often get involved because you frequently
sign an agreement that the code developer is not liable for problems that stem from the use of the
code; the same disclaimer you see with every PC programs).

Remember that the panel method solution is an approximation of the real life problem; an
idealized representation of the flowfield. An understanding of aerodynamics that provides an
intuitive expectation of the types of results that may be obtained, and an appreciation of how to
relate your idealization to the real flow isrequired to get the most from the methods. Thisinsight
requires experience and study.

4.9.2 \What a Panel Method Can't Do

1. Panel methods are inviscid solutions. Y ou will not capture viscous effects except via
user “modeling” by changing the geometry.

2. Solutionsareinvalid as soon as the flow devel ops local supersonic zones
[i.e., G, < Gyl - For two-dimensional isentropic flow, the exact value of C, for critical

flowis:
e 1 9
é 1. .9- 2 Ug-1(
Cpoit =~ 7 d- [—2y (4-96)
gMy g i §_T IIO g
A | g ,
g i

4.10 Advanced panel methods: What isa “Higher Order” Panel Method?

So-called “higher-order” panel methods use singularity distributions that are not constant on
the panel, and may also use panels which are non-planar. Higher order methods were found to be
crucial in obtaining accurate solutions for the Prandtl-Glauert Equation at supersonic speeds. At
supersonic speeds, the Prandtl-Glauert equation is actually a wave equation (hyperbolic), and
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requires much more accurate numerica solution than the subsonic case in order to avoid
pronounced errors in the solution (Magnus and Epton®). However, subsonic higher order panel
methods, although not as important as the supersonic flow case, have been studied in some detail.
In theory, good results can be obtained using far fewer panels with higher order methods. In
practice the need to resolve geometric details often leads to the need to use small panels anyway,
and all the advantages of higher order panelling are not necessarily obtained. Nevertheless, sincea
higher order panel method may also be a new program taking advantage of many years of
experience, the higher order code may still be agood candidate for use.

4.11 Today’s standard programs:. a brief survey

Panel methods are widely used in the arcraft industry, and have been for a long time.
Comparisons between codes have been made, the most recent comparison being by Margason, et
al.”® In general, al the new professionally-developed codes work well. The selection of a specific
code will likely be based on non-technical considerations. In recent times, several codes have
emerged as the primary ones. The newest is known as PMARC,” for Panel Method Ames
Research Center. These codes have received the most development effort. We provide a brief
description of the codes a new aerodynamicist will most likely encounter. Specific references are
provided in Tables 4-1 through 4-3.

PAN AIR - Boeing-developed code, funded by avariety of government agencies, and available
through COSMIC (alease arrangement, about $7000 last time | looked, and export controlled).

This code provides tota flexibility, i.e., it's really an integra eguation solver and not an
aerodynamicist’ stool per se. It uses higher order panels, and is both subsonic and supersonic. It's
relatively expensive and difficult to run (a PAN AIR user would take months to train, and it would
probably become his primary job).

To effectively use the code good pre- and post- processing systems must be available. Although
Boeing has these systems in place, they were internally developed and are not available outside the
company.

VSAERO - AMI developed (Analytical Mechanics Inc., Frank Dvorak and Brian Maskew). It uses
low order panels and is subsonic only. It aso handles general geometries, and includes options to
treat viscous effects and vortex flows. The original NASA version is available through COSMIC.
However, the code has been much further developed by AMI and isfor sale by this company. The
price for the current code is about $100K, and they also have a plotting package (OMNIPLOT,
about $20K) available for purchase. This code also requires considerable user training. Support
from AMI is about $10-$15K per year, and site licensing is not available (as of 1990). You pay a
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large fee for each machine on which you install VSAERO. The business of licensing codes from
developersisan important consideration in computational aerodynamicsin the’90s.

The public domain version of this code was obtained by several groups that worked on the design
of the America’ s Cup Y acht competitors in the mid-eighties. The code was used for hull and keel
design. One of the modifications that was made was the addition of the free surface representing
the air-water interface (recall that the free surface problem means that the surface displacement is
unknown, and the boundary condition isthat a constant pressure exists at the interface).

QUADPAN - Lockheed-developed, and possibly developed at some government labs. Not widely
used by industry outside of Lockheed. Thisis probably because of availability.

Versions of the “ Hess Code” - further developments of the team at Douglas now led by Hess.
Naturally, Douglas uses this code exclusively. Douglas developed numerous versions under
various government contracts, and it seemsto be available mainly at Navy facilities.

Woodward: An old panel method that is sometimes encountered is the code known as the
“Woodward” or “Woodward-Carmichagl” code. Woodward was a pioneer panel method
developer, and the most likely Woodward code a new aerodynamicist might encounter is aversion
of USSAERO, which was developed under NASA contract. Woodward's first methods were
devel oped while he was at Boeing, and were supported by NASA Ames, primarily for the US SST
program (which was an important national effort in the sixties). Subsequently, Woodward went
into business and continued to develop codes. USSAERO treats both supersonic and subsonic
flow, and aversion which incorporates design options “Woodward 1-2” isavailable at VPI.

PMARC -Thisisthe newest panel method code, and was developed at NASA Amesto provide an
extremely flexible method to simulate a wide range of very general geometries. An exampleisthe
simulation of high lift systems and jet exhausts for VSTOL aircraft. The code is alower order
panel method, and can simulate steady as well as unsteady flow. The wake position can be
obtained as part of the solution. It is being used for underwater applications as well as for aircraft.
Thiscodeisalso available at VPI.

The history of panel methodsisillustrated in the tables. Table 4-1 summarizes some of the
key early methods that were developed. W12SC3 is included because it was a vauable
combination of two early codes, providing significant design capability, particularly at supersonic
speeds. Table 4-2 reviews the extremely active era of the development of advanced methods.
Finally, Table 4-3 provides details on the current production codes likely to be used on current
aerodynamic design and analysis projects.
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Table4-1
Comparison of Some Major Panel Method Programs: Early Codes
Originator and Panel Source Doublet Boundary
Method Name | Year | Geometry Type Type Conditions | Restrictions | Comments
1 specification | non-lifting
Hess and Smith 1962 flat constant none of normal wings and
(Douglas) .
flow bodies only
2 .
Rubbert. 1964 flat none constant | normal flow planar wings
(vortex lattice) only
mainly
. supersonic,
Woodward 1967 flat constant linear normal flow | "W"9S must includes
(Woodward ) be planar :
design &
optimization
Rubbert and nearly
Saaris? 1968 flat constant constant | normal flow constant
(Boeing A-230) panel density
Hess | 1972 flat constant linear normal flow | ' ngs and
bodies only
USSAERO 6 subsonic and
1973 flat supersonic,
(Woodward I1) ;
analysisonly
mixed design combines
wi12sc3’ 9 Woodward
1983 flat and
(Grumman) . 1&2
analysis features

1 Hess, JL., and Smith, A.M.O., "Caculation of Nonlifting Potential Flow About Arbitrary
Three-Dimensional Bodies," Douglas Report ES40622, Douglas Aircraft Company, 1962.

2 Rubbert, P.E., "Theoretical Characteristics of Arbitrary Wings by a Nonplanar Vortex Lattice Method,"
Boeing Report D6-9244, The Boeing Company, 1964.

3 Woodward, F.A., Tinoco, E.N., and Larsen, JW., "Analysis and Design of Supersonic Wing-Body
Combinations, Including Flow Propertiesin the Near Field,” Part | - Theory and Application, NASA
CR-73106, 1967.

4 Rubbert, P.E., and Saaris, G.R., "A General Three-Dimensional Potential Flow Method Applied to
V/STOL Aerodynamics,” SAE Paper No. 680304, 1968.

5 Hess, JL., "Calculation of Potential Flow About Arbitrary 3-D Lifting Bodies," Douglas Report
MDC-J5679-01, October 1972.

6 Woodward, F.A., "An Improved Method for the Aerodynamic Analysis of Wing-Body-Tail Configurations
in Subsonic and Supersonic Flow," NASA CR-2228, Parts| and 11, 1973.

7 Mason, W.H., and Rosen, B.S., "The COREL and W12SC3 Computer Programs for Supersonic Wing
Design and Analysis,” NASA CR 3676, 1983 (contributions by A. Cenko and J. Malone acknowledged).

from Magnus and Epton, NASA CR 3251, April 1980 (with extensions)
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Table4-2

Comparison of Some Major Panel Method Programs: Advanced M ethods

Originator and Panel Source Doublet Boundary
Method Name | Year [ Geometry Type Type Conditions | Restrictions | Comments
numerical
Roberts and . . . integration,
Rundlet 1973| paraboloidal| quadratic | quadratic | normal flow very
expensive
subsonic/
supersonic,
smooth, normal flow .
Mercer, Webezr 1973 flat none cubic/ in least planar wings CUb'.C
and Lesford uadratic uares sense Spanwise,
q = quadratic
chordwise
Morino and Kuo3 continuous, no thin
1974| hyperbo- constant constant potential configura- unsteady
(SOUSSA) 3 .
loidal tions
Johnson and . . .
Rubbert 4 1975| paraboloidal linear quadratic [ normal flow
Ehlers ang planar
Rubbert . continuous wings, supersonic
(Mach line 1976 flat linear quadratic normal flow special flow
paneling) paneling
Ehlersetal.® continuous continuous hit i subsonic and
(PANAIR | 1977| piecewise | linear Ladratic a f' r?\:ry n oo
"pilot code”) flat q ’ b

1 Roberts, A., and Rundle, K., "Computation of First Order Compressible Flow About Wing-Body
Configurations,"” AERO MA No. 20, British Aircraft Corporation, February, 1973.

2 Mercer, J.E., Weber, JA., and Lesford, E.P., "Aerodynamic Influence Coefficient Method Using
Singularity Splines," NASA CR-2423, May 1974.

3 Morino, L., and Kuo, C-C, "Subsonic Potential Aerodynamics for Complex Configurations: A General
Theory," AIAA Journal, Vol. 12, No. 2, pp 191-197, February, 1974.

4 Johnson, F.T., and Rubbert, P.E., "Advanced Panel-Type Influence Coefficient Methods Applied to
Subsonic Flow," AIAA Paper No. 75-50, January 1975.

5 Ehlers, F.E., and Rubbert, P.E., "A Mach Line Panel Method for Computing the Linearized Supersonic
Flow," NASA CR-152126, 1979.

6 Ehlers, F.E., Epton, M.A., Johnson, F.T., Magnus, A.E., and Rubbert, P.E., "A Higher Order Panel
Method for Linearized Flow," NASA CR-3062, 1979.

from Magnus and Epton, NASA CR 3251, April 1980 (with extensions)
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Table4-3

Comparison of Some Major Panel Method Programs:. Production Codes

Originator and Panel Source | Doublet | Boundary o
Method Name | Year [ Geometry Type Type Conditions | Restrictions| Comments
MCAIR 1 . design
(McDonndll) 1980 flat constant quadratic option
PAN AIR 2 cqntl UOUS 1 continuous | continuous arbitrary in subsonic and
. 1980| piecewise . . - )
(Boeing) flat linear quadratic f, Nf supersonic
Hessl 3 : . .
1981| parabolic linear quadratic [ normal flow
(Douglas)
2 exterior and
VSAERO 1981 flat constant constant interior subsonic
(AMI)
normal flow
5
QUADPAN
(Lockheed) 1981 flat constant constant
6
PMARC unsteady,
(NASA Ames) 1988 flat constant constant wake rollup

1980.

1 Bristow, D.R., "Development of Panel Methods for Subsonic Analysis and Design,” NASA CR 3234,

2 Magnus, A.E., and Epton, M.A., "PAN AIR - A Computer Program for Predicting Subsonic or
Supersonic Linear Potential Flows About Arbitrary Configurations Using a Higher Order Panel Method,"
Volume | - Theory Document (Version 1.0), NASA CR 3251, 1980.

3 Hess, J.L., and Friedman, D.M., "An Improved Higher Order Panel Method for Three Dimensional
Lifting Flow," Douglas Aircraft Co. Report No. NADC-79277-60, 1981.

4 Maskew, B., "Prediction of Subsonic Aerodynamic Characteristics: A Case for Lower Order Panel
Methods," AIAA Paper No. 81-0252, 1981.

5 Coopersmith, R.M., Youngren, H.H., and Bouchard, E.E., "Quadrilateral Element Panel Method
(QUADPAN)," Lockheed-CaliforniaLR 29671, 1981.

6 Ashby, D.L., Dudley, M.R., and Iguchi, SK., "Development and Validation of an Advanced L ow-Order
Panel Method," NASA TM 101024, 1988 (also TM 102851, 1990).

from Magnus and Epton, NASA CR 3251, April 1980 (with extensions)
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4.12 Exercises

1. Program PANEL.

a) Obtain acopy of program PANEL and the sample case.
b) Convert PANEL to run on your PC.
¢) Run the sample case: NACA 4412, 20 pts. upper, 20 pts. lower, a = 4° , and verify

against sample case.

d) Document

i) compiletime required on your PC
(cite computer and compiler used)

ii) the execution time for the sample case

iil) the accuracy relative to the sample case.

iv) the exact modifications required to make the code
work on your computer

2. Start work on program PANEL

2/24/98

a) Save areference copy of the working code!

b)

c)

d)

€)

Check convergence with panels (NLOWER+NUPPER must be less than 100
currently). How many panels do you need to get results independent of the number of
panels? What happens to the computer time as the number of panelsincreases?

Check the coordinates generated by the airfoil routine vs. exact (consider using the
NACA 0012, see App. A for geometry definition), including examination of the
coordinates at the trailing edge. This is best done by making a table of exact and
computed values at selected values of x/c. What did you find out?

L ocate the source strengths, and sum the source strengths x panel lengths to get the
total source strength. Does it sum to zero? Should it?

Where is the moment reference center in this code?

Submit an assessment of your findings.
3. Modify program PANEL:

You need a version of PANEL that will allow you to compute the pressure
distribution on arbitrary airfoils. This exercise will give you this capability. Modify
the code to interpolate input airfoil points to the program defined surface points, x/c.
The resulting code should:

a) accept arbitrary airfoil input data
b) echo al the input data on the output
C) generate an output file for post processing
(both for plotting and as the input to a boundary layer code)
d) output Cmabout the airfoil quarter chord point.

Hint: Don’t alter the panel distribution. The paneling scheme should be independent
of the input distribution of airfoil coordinates. This produces a much more general
and accurate program. This problem is usually solved by finding both the x/c and y/c
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values as functions of the airfoil arc length, starting at the lower surface trailing edge.
A splinefit isusually used to interpolate the values aong the arc length.

Check your modified code. Run the airfoil you ran previously with interna
coordinate generation. This time use an input file with the same coordinates as
external inputs. Submit a description of your work, and assess your results.

4. Assess the accuracy of incompressible potential flow theory. Run your modified PANEL code

using the airfoil you selected in the exercise in Chap. 1. (What happens if your airfoil has a
trailing edge with finite thickness? What do you do now?)

- compare the computed pressure distribution with the experimental data
- compare the computed force and moment results with the data
(over arange of angles of attack

Turn in a CONCISE report describing the results of your work. Include a plot showing the

pressure distribution comparison, and a plot(s) showing comparison with forces and
moments. What do you conclude about the accuracy of this method?

5. Airfoil design using program PANEL
Takeyour reference arfoil:

a) add thickness on the bottom (mid chord)- what happens?
b) shave some thickness off the bottom (mid chord) - ?
c) add thickness on the top (mid chord)- what happens?
d) deflect the trailing edge down a couple of degrees
(how sengitiveisthe airfoil to changes at the TE?)

Hint: use smooth d's to the reference foil employing analytic formulas.

Turn in a CONCI SE report comparing the effects on the pressure distribution due to the above
modifications.

6. How good isthin airfoil theory? Compare the thin airfoil DCp for aflat plate with program
PANEL.

Recall thin airfoil theory for an uncambered flat plate:

(1- x/c)

DC,, = 4a .
x/c

a) pick an NACA 0012 airfoil at a = 2° and 12° and run PANEL .
b) plot DCp/a as afunction of x/c.

¢) how many panels do you need to get a converged solution from PANEL ?
d) what conclusions do you reach?

2/24/98
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PRESENTS An Introduction

by R. Hendrickson, Grumman, with Dino Roman and
Dario Rajkovic, the Dragbusters

5.1 The Importance of Drag

The subject of drag didn’t arise in our use of panel methods to examine the inviscid flowfield
around airfoils in the last chapter: the theoretical drag was aways zero! Before proceeding fur-
ther in any study of computational aerodynamics the issue of drag must be addressed. There are
many sources of drag. In three-dimensional flow, and in two dimensions when compressibility
becomes important, drag occurs even when the flow is assumed inviscid. Before discussing the
aerodynamics of lifting systems, the fundamental aspects of aerodynamic drag will be examined.

Drag is at the heart of aerodynamic design. The subject is fascinatingly complex. All aerody-
namicists secretly hope for negative drag. The subject is tricky and continues to be controversial.
It's also terribly important. Even seemingly minor changes in drag can be critical. On the Con-
corde, a one count drag increase (AC = .0001) requires two passengers, out of the 90 11100 pas-
senger capacity, be taken off the North Atlantic run.* In design studies a drag decrease is equated
to the decrease in aircraft weight required to carry a specified payload the required distance. One
advanced fighter study? found the drag sensitivity in supersonic cruise was 90 Ib/ct and 48 Ib/ct
for subsonic/transonic cruise. At the transonic maneuver design point the sensitivity was 16 Ib/ct
(drag is very high here). In comparison, the growth factor was 4.1 |b of takeoff gross weight for
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every 1 Ib of fixed weight added. For one executive business jet the range sensitivity is 17
miles/drag count. Advanced supersonic transports now being studied have range sensitivities of
about 100 miles/drag count. When new aircraft are sold, the sales contract stipulates numerous
performance guarantees. One of the most important is range. The aircraft company guarantees a
specified range before the aircraft is built and tested. The penalty for failure to meet the range
guarantee is severe. Conservative drag projections aren’t allowed—the competition is so intense
that in the design stage the aerodynamicist will be pressured to make optimistic estimates. In one
briefing in the early '80s, an aerodynamicist for a major airframer said that his company was
willing to invest $750,000 for each count of drag reduction. Under these conditions the impor-
tance of designing for low drag, and the ability to estimate drag, can hardly be overstated.

The economic viability and future survival of an aircraft manufacturer depends on minimiz-
ing aerodynamic drag (together with the other design key technologies of structures, propulsion,
and control) while maintaining good handling qualities to ensure flight safety and ride comfort.
New designs that employ advanced computational aerodynamics methods are needed to achieve
vehicles with less drag than current aircraft. The most recent generation of designs (Boeing 767,
777, Airbus A340, etc.) already take advantage of computational aerodynamics, advanced exper-
imental methods, and years of experience. Future advances in aerodynamic performance present
tough challenges requiring both innovative concepts and the very best methodol ogy possible.

Initial drag estimates can dictate the selection of a specific configuration concept in compari-
son with other concepts early in the design phase. The drag projections have a huge effect on the
projected configuration size and cost, and thus on the decision to proceed with the design.

There are two other key considerations in discussing drag. First, drag cannot yet be predicted
accurately with high confidence levels® (especially for unusual configuration concepts) without
extensive testing, and secondly, no one is exactly sure what the ultimate possible drag level real-
ly isthat can be achieved for a practical configuration. To this extent, aerodynamic designers are
the dreamers of the engineering profession.

Because of its importance, AGARD has held numerous conferences devoted to drag and its
reduction. In addition to the study of computational capability cited above, AGARD publications
include CP-124,* CP-264,° R-723° and R-786". These reports provide awealth of information.

An AIAA Progress Series book has aso been devoted primarily to drag.® Chapters discuss
the history of drag prediction, typical methods currently used to predict drag, and the intricacies
of drag prediction for complete configurations. The most complete compilation of drag informa-
tion available is due to Hoerner.® In this chapter we introduce the key concepts required to use
computational aerodynamics to evaluate drag. Additional discussion is included in the chapters
on viscous effects, transonic, and supersonic aerodynamics.
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5.2 Some Different Waysto View Drag - Nomenclature and Concepts

In discussing drag, the numerous viewpoints that people use to think about drag can create
confusion. Here we illustrate the problem by defining drag from several viewpoints. This pro-
vides an opportunity to discuss various basic drag concepts.

1. Smple Integration: Consider the distribution of forces over the surface. This includes a
pressure force and a shear stress force due to the presence of viscosity. This approach is known
as a nearfield drag calculation. An accurate integration will result in an accurate estimate of the
drag. However, two problems exist:

i) Thisintegration requires extreme precision (remember that program PANEL did
not predict exactly zero drag).

i) Theresults are difficult to interpret for aerodynamic analysis. Exactly whereisthe
drag coming from? Why does it exist, and how do you reduce it?

Thus in most cases a simple integration over the surface is not satisfactory for use in aerody-
namic design. Codes have only recently begun to be fairly reliable for nearfield drag estimation,
and then only for certain specific types of problems. The best success has been achieved for air-
foils, and even there the situation still isn’t perfect (see Chapters 10 and 11).

2. Fluid Mechanics This viewpoint emphasizes the drag resulting from various fluid me-
chanics phenomena. This approach is important in conceiving a means to reduce drag. It aso
provides a means of computing drag contributions in a systematic manner. Thinking in terms of
components from different physical effects, atypical drag breakdown would be:

« friction drag
» form drag
* induced drag
» wave drag.

Each of these terms will be defined below. Figure 5-1 illustrates possible ways to find the total
drag. It is based on afigure in Torenbeek’ s book.'° He also has a good discussion of drag and its
estimation. Clearly, the subject can be confusing.

3. Aerodynamics: This approach combines the fluid mechanics viewpoint with more practical
considerations. From the aerodynamic design aspect it proves useful to think in terms of contri-
butions from avariety of aircraft features. This includes effects due to the requirement to trim the
aircraft, and interactions between the aerodynamics of the vehicle and both propulsion induced
flow effects and structural deformation effects. Within this context, several other considerations
are identified. The basic contributions from each component must be included. This leads to a
drag analysis based on typical configuration features, as shown below:
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* individual component contributionsto drag
* base drag

* inlet drag with spillage

* boattail drag

 camber drag

e trimdrag

* thrust-drag bookkeeping

* aeroelastic effects on drag

Total Drag
| Pressure Drag | | Friction Drag |
I
| ]
surface wetted
Th.e loading volume, area
Vehicle shape
\
. | Profile
shed vortices Form Dra | -
due to lift | I g | Drag
waves due I
to lift waves due |
| to volume boundary layer,
flow separation
/N
> WwaveDrag | |

—  Induced Drag | Wake Drag |

i i

Total Drag

Fig. 5-1. Drag breakdown possibilities (internal flow neglected).

4. Performance: To calculate the performance of an airplane it is natural to define drag as the
sum of the drag at zero lift and the drag due to lift. Thisis the approach that leads to the typical
drag polar equation:

(5-1)

Here each term is a function of Mach number, Reynolds number (in practice thisis given to the
performance group in terms of Mach number and altitude), and the particular geometric configu-

Wednesday, January 22, 1997



report typos and errorsto W.H. Mason Drag: An Introduction 5-5

ration (flap deflection, wing sweep, etc.). The drag is not precisely a quadratic function of the
lift, and the value of the Oswald efficiency factor, E, in EQ.(5-1) is defined as a function of the
lift coefficient and Mach number: E = E(C, ,M). The drag also depends on the throttle setting, but
that effect is usually included in the thrust table, as discussed below. There is another drag polar
approximation that is seen often. This approximation is more commonly used by aerodynamic
designers trying to understand wing performance. It is used to take into account the effect of
wing camber and twist, which causes the drag polar to be displaced “upward”, becoming asym-
metrical about the C, =0 axis. Itisgiven as.

2
Cp =Cp, +ACp, +K(CL -Cy, | (5-2)

In taking into account the effect of camber and twist on shifting the polar, the ACp_ term repre-
sents a penalty associated with using twist and camber to achieve good performance at the design
lift coefficient. This equation is for afixed geometry. Figure 5-2 shows how this looks (ACp_ is
exaggerated for emphasis). The value of K defines the shape of the polar. Cp, represents the
minimum drag of the configuration without camber and twist. The valuesof ACp and C, are
functions of the design lift coefficient. Sometimes novice aerodynamicists fail to include ACp
properly and obtain incorrect values of E when evaluating published drag polars. This type of
polar shape will be discussed in more detail later in this chapter. Advanced design concepts such
as the X-29 minimize this penalty by defining a device schedul e to maximize performance across
abroad range of lift coefficients.

1.00

I | | |

Ideal polar shape (E=const) with same E at 4 PR

i design lift coefficient. TN .- - ]
0.75 /

- CDO ACDm P _z
g0 o P c. _ DesignLift

' LD Coefficient

CL [ /
0.25 | ‘H c
I / m Actual polar including camber
; J // and twist effects
0.00 |

0 e
0.0 0.010 0.020 0.030 0.040 0.050 0.060

Co

Figure 5-2. Drag polar
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As mentioned above, basic drag nomenclature is frequently more confused than it needs to be,
and sometimes the nomenclature gets in the way of technical discussions. The chart in Fig. 5-3
provides a basic classification of drag for overview purposes. The aerodynamic configuration-
specific approach to drag is not covered in fluid mechanics oriented aerodynamics texts, but is
described in aircraft design books. Two other good references are the recent books by Whitford*t
and Huenecke.®? An approach to the evaluation of drag performance, including the efficiency
achieved on actual aircraft, was presented by Haines.3

We need to define several of these concepts in more detail. The most important overview of
aerodynamic drag for design has been given by Kiichemann,'* and should be studied for a com-
plete understanding of drag concepts.

A fluid mechanics refinement: transonic wave drag.

The broadbrush picture of drag presented in Fig. 5.3 suggests that wave drag appears sudden-
ly at supersonic speeds. A more refined examination shows that wave drag arises at subsonic
speeds when the flow accelerates locally to supersonic speeds, and then returns to subsonic speed
through a shock wave. This leads to the presence of wave drag at subsonic (actually, by defini-
tion, transonic) freestream speeds. Thisinitial drag increase, known asdrag rise, isfollowed by a
rapid increase in drag, and is an important consideration in the design of wings and airfoils. The
Mach number at which the rapid drag increase occurs is known as the drag divergence Mach
number, M. The increase in drag occurs directly because of the wave drag associated with the
presence of shock waves. However, the drag also increases because the boundary layer thickness
increases due to the sudden pressure rise on the surface due to the shock wave, which leadsto in-
creased profile drag. Lynch®® has estimated that at drag divergence the additional transonic drag
is approximately evenly divided between the explicit shock drag and the shock induced addition-
al profile drag. Several definitions of the drag rise Mach number are commonly used. The specif-
ic definition is usually not important because at drag divergence the drag rises very rapidly and
the definitions all result in similar values of M.

One standard definition of MDD isthe Mach number where

dCp

=0.1. (5-3)
dM C =const.

Another definition of drag rise is the Mach number at which

ACp =.0020 from the subsonic value. (5-4)
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'

zero lift drag

associated |
N with airfoils J |—> Supersonic
Y I
Drag = Profile Drag + Induced Drag! + Wave Drag
AN A I A
r sometimes Y ( M h
dueto viscous ) pressure drag| called form drag, duetolift | drag dueto generatior
induced change associated with generated | of shock waves
of pressure + formfactors vorticity shed
distribution, in _ intowake |\ J\
2D d'Alembert's  skin friction | laminar or turb, | Y Y —
paradox says drag a big difference | wavedrag wave drag
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Y add'Y' | I lift volume
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Note: A straight surface pressure integration makes it very difficult to separate
contributors to the total drag - and thisisimportant in aerodynamic design.

Figure 5-3. A Broadbrush categorization of drag.

Commercial transports fly at or close to M5, and the drag divergence Mach number is a key
part of the performance guarantee. Figure 5.4 (data from Shevell*) illustrates this refinement to
Fig. 5-3, together with the definitions associated with the drag rise. The figure also illustrates a
common characteristic, “drag creep,” which occurs with many transonic designs.

An aerodynamics/flight mechanics refinement: trim drag.

A drag not directly related directly to pure fluid mechanics arises from the need to trim the ve-
hicle (Cm = 0 about the center of gravity) for steady flight. This requirement can lead to control
surface deflections that increase (or decrease) the drag. It can be especially important for super-
sonic aircraft because of the shift in the aerodynamic center location with Mach number. Other
cases with significant trim drag may include configurations with variable wing sweep and the
use of airfoils with large values of the zero lift pitching moment about their aerodynamic center.
Trim drag details are presented in Section 5.10.
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00060 L e e e e e e e
[ DC-9-30 Flight Test Data (Ref. 16) ]
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Figure 5.4 Details of wave drag increases at transonic speeds.

A practical aspect of aero-propulsion integration: thrust-drag bookkeeping

To determine aircraft performance, the key value is actually not drag, but the balance between
thrust and drag. The drag of the airframe is affected by the operation of the propulsion system,
and care must be taken to understand and define these interactions. The amount of air used by the
engine defines the size of the streamtube entering the inlet. If all the air in front of the inlet does
not enter the inlet, a spillage drag will result. Similarly, the boattail drag over the external por-
tion of the nozzle will depend on the nozzle setting in the case of engines with afterburners, and
the pressure of the nozzle flow. The definition of a system to properly account for aero-propul-
sion interactions on the specification of thrust minus drag values is known as thrust-drag book-
keeping. Since thrust is usually provided by the propulsion group, and drag is provided by the
aerodynamics group, significant errors in the estimation of aircraft performance have occurred
when the necessary coordination and adjustments were not made. The details of this procedure
are described in the article by Rooney.’

Generally, the aerodynamics group provides the performance group with a reference drag
polar, and all thrust dependent corrections to the drag polar are accounted for by making adjust-
ments to the thrust values. This is done because it is natural to establish a performance calcula-
tion procedure using this approach. The precise details are not important as long as everyone in-
volved in the performance prediction agrees to a specific approach. Usually this requires a spe-
cific document defining thrust-drag bookkeeping for each aircraft project.
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Aerodynamic-structural interaction: aeroelastic effectson drag

This issue is not strictly a drag consideration, but can make a contribution to the drag if it is
not addressed. Aircraft structures deform due to air loads. If the design is centered around a sin-
gle design point, the aerodynamic shape at the design point can be defined, and the structural an-
alysts will adjust for structural deformation, specifying a “jig shape” that will produce the de-
sired aerodynamic shape at the design point. This is harder to do if there are multiple design
points. Deformation of wind tunnel models should also be considered when estimating drag.

5.3 Farfield Drag Analysis

We can estimate the drag on a body most accurately when our predictions methods are not
exact by considering the overall momentum balance on a control volume surface well away from
the body—a farfield calculation. This is much less sensitive to the detailed calculations of sur-
face pressure and integration of the pressures over the surface to obtain the drag.

The farfield analysis makes use of the momentum theorem. References containing good deri-
vations are by Ashley and Landahl,*® sections 1.6, 6.6, 7.3 and 9.2, and Heaslet and Lomax,*®
pages 221-229.

For asurface S, which encloses the volume containing an aerodynamic body, the force can be
determined by balancing the momentum across S

F =~¢f(p- p)dS-§f pol(V, +0) (@S] (55)

where q is the disturbance velocity vector,

V=V, +q, (5-6)

Define a control volume for use in Eq.(5-5) as shown in Fig. 5-5.

Consider flows far enough away from the body such that linearized flow relations are valid;
and use the small disturbance relations:

—r1r

O u

P me%‘ MwU_w (5-7)
and

(p—pm)m—[umu+%(u2+V2+\AF)]+%pr°2;u2. (5-8)
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aircraft at origin

Figure 5-5. Control volume for farfield drag evaluation.

Now, consider the drag component of Eq. (5-5), making use of Eq. (5-7) and Eq. (5-8):

=ip M2 u +v? +w?|dydz - p,, [[uv,rdedx 5.9
o M o o

and v, istheradia component, er: v2 +w?, where 1% = x2 + y2.

Considering the control volume shown in Fig. 5-5, place | and |l far upstream and down-
stream and make r large. Then, the integral over | is zero as x — —. The integral over |l as
X — oo, corresponds to the so-called Trefftz Plane. The integral over |11 is the wave drag inte-
gral, which is zero for subsonic flow, and when any embedded shock waves do not reach 111.

Consider theintegral over 111

Thisisthefarfield wave drag integral. Thisintegral corresponds to the last term on the right
hand side of Eq. (5-9), and can be written as:

[ 21 4w L
Dy, = limE-p.s [d6 [uv dxe (5-10)
r-e<g 0 Zo0 [_

If u,vy - Oasr - o thenD,, =0. Thus, when the flow is subsonic there is no wave drag, as
we aready know. However, if the flow is supersonic, and shock waves are generated, the inte-
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gral isnot zero. Thisintegral can be calculated for any numerical solution. In this analysis we as-
sume that the flow is governed by the Prandtl-Glauert equation:

(1-m2 )(pXX @yt 9 =0 (5-11)

which implies small disturbance flow. This is valid if the vehicle is highly streamlined, as any
supersonic vehicle must be. However, since far from the disturbance this equation will model

flows from any vehicle, thisis not a significant restriction.

To obtain an expression for ¢ that can be used to calculate the farfield integral, assume that
the body can be represented by a distribution of sources on the x-axis (the aircraft looks very
“dender” from far away). To illustrate the analysis, assume that the body is axisymmetric. Recall
that there are different forms for the subsonic and supersonic source:

1 1 1 1
e —— (p =
A5 0% VFAS TR
subsonic source supersonic source
! !
@ -0asr- o« @ —0asr - o except
X (5-12)

This means that the integral will have a contribution along the Mach wave independent of
how far away the outer control volume is taken. Figure 5-6 illustrates this effect. The resulting
force is exactly what is expected—the shock wave contribution to drag: the wave drag.

control volume

singularity produces a
contribution to the wave
drag integral

M, Mach angle
>

X

Figure 5-6. Behavior of disturbances aong Mach linesin the farfield.
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The farfield behavior of the source singularity given in Eq.(5-12) can be used to obtain an ex-
pression for the farfield integral in terms of geometric properties of the aircraft. A complete anal-
ysisis given in Ashley and Landahl,'® and Liepman and Roshko.?° The key connection is the as-
sumption relating the supersonic source strength and aircraft geometry. The approximate bound-
ary conditions on the surface equate the change of cross-sectional area to the supersonic source
strength: o (X) = S(X). One required assumption is that the cross-sectional area distribution, x),
satisfies S(0) = S(I) = 0. After some algebrathe desired relation is obtained:

pOOUO% r 1
IIS (xl)S (X2)|I1X1 - X2|dX1dX2 . (5-13)
00

41

I:_)(e)w -~

Thisisthe wave drag integral. The standard method for evaluation of thisintegral is available
in a program known as the “Harris Wave Drag” program.?! That program determines the cross-
sectional area distribution of the aircraft and then evaluates the integral numerically. Note that as
given above, the Mach number doesn't appear explicitly. A refined analysis'® for bodies that
aren’t extremely slender extends this approach by taking slices, or Mach cuts, of the area through
the body at the Mach angle. Thisis how the Mach number dependence enters the analysis. Final-
ly, for non-axisymmetric bodies the area associated with the Mach cuts changes for each angle
around the circumferential integral for the cylindrical integration over Region 111 in Fig. 5-5.
Thus the area distribution must be computed for each angle. The total wave drag is then found

from
211

— 1 InY
Dy = g Di(6) 8 (5-14)

Examples of the results obtained using this computational method are given in Section 5.7, adis-
cussion of the arearule.

Consider theintegral over 11
Thisisthefirst integral in Eq. (5-9), the induced drag integral:
D =3po I I[(Mo% —1)u2 +V2+V\12] dydz,
—00 —00 (5-15)

Note that many supersonic aerodynamicists call this the vortex drag, D, , since it is associated

with the trailing vortex system. However, it is in fact the induced drag. The term vortex drag is
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confusing in view of the current use of the term “vortex” to denote effects associated with other
vortex flow effects (described in Chapter 6). Far downstream, u — 0, and we are left with the v
and w components of velocity induced by the trailing vortex system. The trailing vortex sheet

can be thought of as legs of a horseshoe vortex. Thus the integral becomes:
D :-% Poo I I(v2+wz) dydz,
—00 —00 (5-16)
which relates the drag to the kinetic energy of the trailing vortex system.

Now, the flow is governed downstream by the Prandtl-Glauert equation (even if the flow at

the vehicle has large disturbances, the perturbations decay downstream):
(1—Mo%)(p)o(+%+<pzz:o (5-11)

andasx — o, u=0, andu, =@ =0. Asaresult, the governing equation for the disturbance ve-

locitiesis Laplace’ s Equation for the crossflow velocity:

Gy + 0z = 0. (5-17)

An interesting result arises here. The induced drag is explicitly independent of Mach number
effects. The analysis is valid for subsonic, transonic and supersonic flows. The Mach number
only enters the problem in an indirect manner through the boundary conditions, as we will see.

We now use Green's Theorem, as discussed previously, to convert the area integral, Eq. (5-
16), to a contour integral. Applying the theorem to the drag integral we obtain:

%]% (v2 + vvz)dS: —F[](pg—(r?dc_ (5-18)

Thisis agenera relation which converts the integral over the entire cross plane into an inte-
gral over the contour. It applies to multiple lifting surfaces. To illustrate the application of the in-
tegral to the determination of the induced drag, we consider the special case of a planar lifting
surface. Here the contour integral is taken over the surface shown in Fig. 5-7, where the trace of
the trailing vortices shed from the wing are contained in the dlit from -b/2 to b/2.
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projection of trailing vortex
system in y-z plane

Figure 5-7. Contour integral path for induced drag analysisin the Trefftz plane.

In this Trefftz plane, the integral vanishes around the outside contour as R — « and the inte-
grals aong AB and CD cancel. Thus, the only contribution comes from the dlit containing the
trace of vorticity shed from the wing. The value of @is equal and opposite above and below the
vortex sheet, and on the sheet d@/0 n = w, the downwash velocity.

Thusthe integral for asingleflat lifting surface can be rewritten as:

;bR
D ==5Pw [(80),-,Wizely (5-19)
-b/2
and w is the velocity induced by the trailing vortex system. The jump in the potential on the dlit
at infinity can be related to the jump in potential at the trailing edge. To see this, first consider
the jump in the potential at the trailing edge. Recall that the circulation is given by the contour
integral:

r=§V . (5-20)

For an airfoil we illustrate the concept by considering a small disturbance based argument.
However, the results hold regardless of the small disturbance based illustration. Consider the air-
foil givenin Fig. 5-8.
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Figure 5-8. Integration path around an airfoil .

The dominant velocity is in the x-direction, u=¢@, and the integral, Eq. (5-20), around the

airfoil can be seen to be essentially:

LE TEupper
r= J’(pxdx+ J'(pxdx
TEower LE

—‘E TEupper
UrEioue * ALE
=OLE ~ OrE | gper T PrEUpper ~PLE
= PrEupper ~PTE guyer
= A(pTE . (5-21)

The value of the potential jump at infinity can be found by realizing that the circulation is creat-
ed by the wing, and any increase in the contour of integration will produce the same resuilt.
Therefore,

Aq&(:oo = A(p'I'E = r(y) (5-22)

Next, the induced velocity is found from the distribution of vorticity in the trailing vortex
sheet. Considering the dlit to be a sheet of vorticity, we can find the velocity induced by a distri-
bution of vorticity from the following integral, which is a specialized case of the relation given in
Chap.4, Eq.(4-42):

b/2

BRI

Wy=o\Y)=
=) 2T YN

(5-23)
To complete the derivation we have to connect the distribution of vorticity in the trailing vor-

tex sheet to the circulation on the wing. To do this consider the sketch of the circulation distribu-
tion givenin Fig. 5-9.
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Figure 5-9. Relation between circulation change on the wing and vorticity in the wake.

As the circulation on the wing, I', changes across the span, circulation is conserved by
shedding an amount equal to the local change into the wake. Thus the trailing vorticity strength
isrelated to the change in circulation on the wing by

y(n) =-dr/dy. (5-24)

Substituting thisinto Eq. (5-23), we obtain:

Wy =—— [ —Xdn _ (5-25)

Substituting Eqg. (5-22) and (5-25) into EQ.(5-19) and integrating by parts using the condi-
tionsthat I (-b/2) = I'(b/2) = 0 (which simply states that the load distribution drops to zero at the
tip), we get:

P2 P12 Gr(y) dr ()

Di :—& dy

Inlyy — Yo|dyydys | (5-26)
M g W

Note that this is the same form as the wave drag integral, where the area distribution is the
key contributor to the wave drag, but here the spanload distribution is responsible for the induced
drag. Because of the double integral we can get the total drag, but we have lost the ability to get
detailed distributions of the induced drag on the body (or in the case of wave drag, its distribu-
tion on the surface). Thisisthe price we pay to use the farfield analysis.

Finally, this result shows that the induced drag is a function of the I" distribution (spanload)
alone. Mach number effects enter only in so far as they affect the circulation distribution on the
wing.
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5.4 Induced Drag

Although the inviscid flow over a two-dimensional airfoil produces no drag, as we've just
seen in Chapter 4, this is not true in three dimensions. The three-dimensional flowfield over a
lifting surface (for which a horseshoe vortex system is avery good conceptual model) does result
in adrag force, even if the flow isinviscid. Thisis due to the effective change in the angle of at-
tack along the wing induced by the trailing vortex system. This induced change of angle results
in alocal inclination of the force vector relative to the freestream, and produces an induced drag.
It isone part of the total drag due to lift, and is typically written as:

_ ¢
D mARe

(5-27)

The small “€’ in this equation is known as the span e. As we will show below, the induced
drag is only afunction of the spanload. Additional losses due to the fuselage and viscous effects
are included when a capital E, known as Oswald’s E, is used in this expression. Note that al-
though this notation is the most prevalent in use in the US aircraft industry, other notations are
frequently employed, and care must be taken when reading the literature to make sure that you
understand the notation used.

When designing and evaluating wings, the question becomes: what is“e”, and how large can
we make it? The “ conventional wisdom” isthat for a planar surface, Cmax = 1, and for anon-pla-
nar surface or a combination of lifting surfaces, Cmax > 1, where the aspect ratio, AR, is based
on the projected span of the wing with the largest span.” However, studies searching for higher
€ s abound. The quest of the aerodynamicist isto find afundamental way to increase aerodynam-
ic efficiency. In the’ 70s, increased aerodynamic efficiency, e, was sought by exploiting non-pla-
nar surface concepts such as winglets and canard configurations. Indeed, these concepts are now
commonly employed on new configurations. In the' 80s, a great deal of attention was devoted to
the use of advanced wing tip shapes on nominally planar configurations. It is not clear however
that the advanced wingtips result in theoretical € s above unity. However, in practice these im-
proved tip shapes help clean up the flowfield at the wing tip, reducing viscous effects and result-
ing in areduction in drag.

To establish a technical basis for understanding the drag due to lift of wings, singly and in
combination, three concepts must be discussed: farfield drag (the Trefftz plane), Munk’s Stagger
Theorem for design of multiple lifting surfaces, and, to understand additional drag above the in-
duced drag due to “e,” it is appropriate in introduce the concept of leading edge suction. Here we
will discuss the induced drag. Subsequent sections address Munk’s Stagger Theorem (Section
5.6) and leading edge suction (Section 5.9)

* However, eisnot too much bigger than unity for practical configurations.
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In the last section we derived the expression for the drag due to the trailing vortex system.
The far downstream location of this face of the control volume is known as the Trefftz plane.
Here we explain the physical basis of the idea of the Trefftz plane following Ashley and Lan-
dahl® amost verbatim. An alternate and valuable procedure has been described by Sears.??

The Trefftz Plane
Theidea

1. Far downstream the motion produced by the trailing vortices becomes 2D in the
y-z plane (no induced velocity in the x-direction).

2. For awing moving at aspeed U __ through the fluid at rest, the amount of mechan-
ical work D;U__ is done on the fluid per unit time. Since the fluid is nondissipa-
tive (potential flow), it can store energy in kinetic form only. Therefore, the work
DiUoo must show up as the value of kinetic energy contained in alength U __ of
the distant wake.

and:
3. Thevorticesin thetrailing vortex system far downstream can be used to find the
induced drag.
The Trefftz Plane is ay-z plane far downstream, so that all motion isin the crossflow plane (y-

2), and no velocity is induced in the x-direction, u = U_. For a single planar lifting surface, the
expression for drag was found to be:

Do b/2 b2 dr () dr (42)

am -b/2 -b/2 dy dy

Dy =- —==1n|y, — yo|dy,cy2 (5-26)

The usual means of evaluating the induced drag integral isto represent I as a Fourier Series,

F=Ugp) Aysinnd, (5-28)
n=1
The unknown values of the A, sare found from a Fourier series analysis, where I'(y) is known
from an analysis of the configuration. Panel or vortex lattice methods can be used to find I (y).
Vortex lattice methods are described next in Chapter 6. Integration of the drag integral with this
formof I resultsin:

2 2 o
rpoo 2b
D = ZnA” (5-29)
and
Tt
L=7 PeU2h%A (5-30)
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which are the classical results frequently derived using lifting line theory. Note that the lift
depends on the first term of the series, whereas all of the components contribute to the drag. Put-

ting the expressions for lift and drag into coefficient form, and then replacing the A1 term in the

drag integral by its definition in terms of the lift coefficient leads to the classical result:

ct

D — (5'31)
' TARe
where:
o= 1

0 0 Dz C
1+ y nHﬁnH C (5-32)

E n=2 Al E
These expressions show that e . = 1 for a planar lifting surface. However, if the dlit repre-

senting the trailing vortex system is not asimple flat surface, and C |s based on the projected
span, a nonplanar or multiple lifting surface system can result in val u&s of e> 1. In particular,
biplane theory addresses the multiple lifting surface case, see Thwaites?® for a detailed discus-
sion. If the wing is twisted, and the shape of the spanload changes as the lift changes, then eis
not a constant, independent of the lift coefficient.

It isimportant to understand that the induced drag contribution to the drag due to lift assumes
that the airfoil sections in the wing are operating perfectly, as if in a two-dimensional potential
flow that has been reoriented relative to the freestream velocity at the angle associated with the
effects of the trailing vortex system. Wings can be designed to operate very close to these condi-
tions.

We conclude from this discussion:

1. Regardless of the wing planform(s), induced drag is a function of circulation distribu-
tion alone, independent of Mach number except in the manner which Mach number
influences the circulation distribution (a minor effect in subsonic/transonic flow).

2. GivenT, “€ can be determined by finding the A's of the Fourier seriesfor the simple
planar wing case. Other methods are required for nonplanar systems.

3. Extradrag dueto the airfoil’ sinability to create lift ideally must be added over and
abovethe induced drag (our analysis here assumes that the airfoils operate perfectly in
atwo-dimensional sense; thereis no drag dueto lift in two-dimensional flow).
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5.5 Program LIDRAG

For single planar surfaces, a smple Fourier analysis of the spanload to determine the “e”
using a Fast Fourier Transform is available from the code LIDRAG. The user’s manual is given
in Appendix D.3. Numerous other methods could be used. For reference, note that the “€” for an
eliptic spanload is 1.0, and the “€” for atriangular spanload is 0.728. LIDRAG was written by
Dave lves, and is employed in numerous aerodynamics codes.?*

5.6 Multiple Lifting Surfaces and Munk's Stagger Theorem

An important result in the consideration of multiple lifting surfaces is Munk’s Stagger Theo-
rem.? It states that the total induced drag of a multi-surface system does not change when the el-
ements of the system are trandated paralel to the direction of the flow, as illustrated in the
sketch shown in Fig. 5-10, provided that the circulation distributions on the elements are left un-
changed. This theorem is proven in the text by Milne-Thompson.? Thus the drag depends only
on the projection of the system in the cross-plane. This means that given the circulation distribu-
tions, the Trefftz plane analysis can be used to find the induced drag. Thisis consistent with the
analysis given for the Trefftz plane above, and reinforces the concept of using the farfield analy-
sis to determine the induced drag. Naturally, to maintain the circulation distribution of the ele-
ments when they are repositioned their geometric incidence and twist have to be changed.

Trefftz
Plane

Fig. 5-10. Example of Munk’s Stagger Theorem, where the fore and aft positions of multiple
lifting surfaces do not affect drag as long as the circulation distribution remains fixed.
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When the lifting system is not limited to a single lifting component, LIDRAG cannot be used
to find the span e. However, two limiting cases can be considered. If the lifting elements are in
the same plane, then the sum of the spanloads should be eliptic for minimum drag. It the ele-
ments are vertically separated by a large distance, then each component individually should have
an elliptic spanload to obtain minimum induced drag.

When the system is composed of two lifting surfaces, or alifting surface with dihedral breaks,
including winglets, then a code by John Lamar? is available to analyze the induced drag. As
originally developed, this code finds the minimum induced drag and the required spanloads for a
prescribed lift and pitching moment constraint. It is known as LAMDES, and the user’s manual
is given in Appendix D.4. This program is much more elaborate than LIDRAG. For subsonic
flow the program will aso estimate the camber and twist of the lifting surfaces required to
achieve the minimum drag spanload. | extended this code to incorporate, approximately, the ef-
fects of viscosity and find the system efor a user supplied spanload distribution.?”

5.7 Zero Lift Drag Friction and Form Drag Estimation

Although not formally part of computational aerodynamics, estimates of skin friction based on
classical flat plate skin friction formulas can be used to provide initial estimates of the friction
and form drag portion of the zero lift drag. These are required for aerodynamic design studies
using the rest of the methods described here. These ssimple formulas are used in conceptual de-
sign in place of detailed boundary layer calculations, and provide good initial estimates until
more detailed calculations using the boundary layer methods described in Chapter 10 are made.
They are included here because they appear to have been omitted from current basic aerodynam-
icstext books.” An excellent examination of the methods and accuracy of the approach described
here was given by Paterson, MacWilkinson and Blackerby of Lockheed.?

For a highly streamlined, aerodynamically clean shape the zero lift drag (friction and form
drag at subsonic speeds where there are no shock waves) should be mostly due to these contribu-
tions, and can be estimated using skin friction formulas. However, Table 5-1, for a typical mili-
tary attack airplane, shows that on this airplane only about two-thirds of the zero lift drag is asso-
ciated with skin friction and form drag. This illustrates the serious performance penalties associ-
ated with seemingly small details. R.T. Jones® has presented a striking figure, included here as
Fig. 5-11, comparing the drag on a modern airfoil to that of a single wire. It's hard to believe,
and demonstrates the importance of streamlining. An accurate drag estimate requires that these
details be included in the estimates.

* Expanded details including compressibility effects and mixed laminar-turbulent skin friction estimates are given
in App. D.5, FRICTION.
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Fig. 5-11. A wire and airfoil with the same drag!?°

Until recently, aerodynamicists assumed the flow was completely turbulent. However, as are-
sult of work at NASA over the last decade and a half, some configurations can now take advan-
tage of at least some laminar flow, with its significant reduction in friction drag. Advanced air-
foils can have as much as 30 to 40% laminar flow.

As an example of this approach, consider a typical turbulent flow skin friction formula (for
one side of a“flat plate” surface only):

1.455

c = fiogre P (5-33)

where “log” means log to the base 10. Note also that the capital C- denotes an integrated value.
Formulas for the local skin friction coefficient customarily use a small f subscript.

Numerous form factors are available to help account for effects due to thickness and addition-
al trailing edge pressure drag. Hoerner® and Covert® provide summaries. For planar surfaces, one

FF :1+18§:—:%+ 50%@4 (5-34)

wheret/c is the maximum thickness to chord ratio. For bodies, the form factor would be:

FF =1+15§€§'5+ 7@?@ (5-35)

form factor is,
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where d/l isthe diameter to length ratio. The skin friction coefficient estimate is then converted
to aircraft coefficient form through:
Cop ICE 22 FF (5-36)
Set |
Here S, is the total area scrubbed by the flow, and S« is the reference area used in the defini-
tion of the force coefficients. For athin wing the reference area is usually the planform area and

the wetted area is approximately twice the planform area (including the upper and lower surface
of the wing).

Program FRICTION automates this procedure using slightly improved formulas for the skin
friction that include compressibility effects. The program computes the skin friction and form
drag over each component, including laminar and turbulent flow. The user can input either the
Mach and Reynolds numbers or the Mach number and altitude. The use of this program is de-
scribed in Appendix D.5. This analysis assumes that the aircraft is highly streamlined. For many
aircraft this is not the case. As discussed above, Table 5-1 provides an example of the signifi-
cantly increased drag that results when developing an aircraft for operational use.

Comment: On atour of the final assembly lines of the Boeing 747 and 777 on
February 29, 1996, | observed that the 777 was much, much smoother aerody-
namically than the 747. Clearly, alot of the advanced performance of the 777
Is due to old-fashioned attention to detail. The aerodynamicists have apparently
finally convinced the manufacturing engineers of the importance of aerody-
namic cleanliness. Think about this the next time you compare a Cessna 182 to
the modern homebuilts, as exemplified by the Lancairs and Glassairs.

More details are presented in Chapter 10, Viscous Flows in Aerodynamics. Viscous effects due
to lift and shock-wave boundary layer interaction are also discussed in Chapter 11, Transonic

Aerodynamics.
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Table5-1

Example of zero lift drag buildup on a “dirty” military airplane.

Low Speed Minimum Parasite Drag Breakdown
M<.65 C =00

Component et S,
1 Wing
a) not affected by dlats 262.
b) not affected by dlats 150.
2. Horizontal Tall 84.4
3. Vertica Tall 117.
4. Fuselage (includinginlets) 434.
5. Enclosure 2.3
6. Appendages

a) Upper avionics bay

b) Drag-chutefairing

c) Landing gear fairings

d) Aero 7A Rack-Pylon @ CL
€) Arresting hook

f) Inflight-Fueling Probe

g) Wing-Vortex Generators
h) Boundary Layer Diverter

i) Boundary-Layer Splitter Plate
j) Inlet Vortex Fences

k) Landing Spoilers

) ECM Antennaand Chaff Dispensers
m) Pitot tube

n) Angle-of-Attack Indicator
0) Rudder Damper

p) Aileron Damper

g) Barrier Detents

r) Anti-Collision Lights

s) Radar altimeter

t) Fuel Dump and Vent

u) Airblast Rain Removal

v) Catapult Holdback

7. Inlets and Exits
a) Powerplant (vents, etc.)
b) Air Conditioning

8. Miscellaneous

CDf

.00308
.00280

.0033
.00385
.00306

Total Zero lift drag coefficient (based on S = 260 ft2)

Note: based on atotal wetted area of 1119 ft2, CD =.00495
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C

Dmt

122

AC,

.00308
.00162

.00108
.00173
.00512
.00108

.00069
.00012
.00042
.00058
.00058
.00092
.00115
.00042
.00004
.00023
.00012
.00038
.00004
.00004
.00023
.00023
.00008
.00008
.00015
.00023
.00008
.00027

.00027

.00008

.00020
.0213

% Totd
22.1%

5.1%
8.1%
24.0%
5.1%

33.1%

1.6%

.9%
100.%
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5.8 Supersonic Wave Drag: The Farfield Wave Drag Integral and the Area Rule

The farfield analysis also showed us that for supersonic flight there is a wave drag. Not sur-
prisingly, the supersonic wave drag has played a key role in the aerodynamic design of superson-
ic aircraft. The equations are repeated here as:

2 11
[_)W(G) = - po:]-goo IIS'(Xl)S'(Xz) Idxl - X2|dX1dX2 (5'12)

and 00
17 (5-13)

Du =55 [ Dw(0)

where the §x) values represent the area from an oblique (Mach angle) cut to find the cross sec-
tion area of the aircraft at a specific theta.

The importance of the distribution of the cross-sectional areais clear in the integral. To mini-
mize the integral the area change should be very smooth. Thus, the shaping of the design geome-
try plays amajor role in the value of the integral. In any case, low drag is achieved by minimiz-
ing the maximum cross-sectional area of the design. The key parameter is the fineness ratio,
which is the length divided by the maximum diameter. Increasing the fineness ratio decreases the
wave drag. A number of minimum drag bodies of revolution have been derived using Eq. (5-12).
The geometric details of these shapes are given in Appendix A.

The principle that aerodynamicists use to achieve low values of wave drag is known as the
area rule. Proposed by Richard Whitcomb™ at the NACA’s Langley Field, the area rule states
that the air displaced by the body should develop in a smooth fashion as it moves around and
along the body, with no sudden discontinuities. Thus the total aircraft area distribution should
form a smooth progression. In particular, when the wing becomes part of the cross-sectional
area, the adjacent fuselage area should be reduced to make the total area distribution smooth.
Thisresultsin the distinctive arearuled, or “coke bottle,” fuselage shape.

Whitcomb’s evidence for the validity of this rule was obtained experimentally (the computer
had not yet become practical design tool). Figure 5-12 shows the key result obtained by Whit-
comb.® The increase in drag with increasing transonic Mach number is aimost identical for a
wing-body combination and a body of revolution with the same cross sectional area distribution.
The wing-body combination has significantly higher subsonic drag because of the increased sur-
face area compared to the body alone case. All the cases Whitcomb presented weren't as dramat-
ic, but similar trends were found for a number of shapes. Whitcomb’s original idea addressed

* Hewon the Collier trophy for this work.

Thursday, January 23, 1997



5 - 26 Applied Computational Aerodynamics

transonic speeds, and the normal area distribution (the area in the plane perpendicular to the
flow) was made smooth to obtain low drag. At supersonic speeds the problem is more complicat-
ed. Instead of using the normal area distribution, the supersonic arearule requires that the area on
the so-called Mach cuts that correspond to the area distribution along the Mach angle for each
theta angle (Eg. 5-13) be smooth.

Figure 5-12. Whitcomb's proof of the arearule.*

The most famous application of the area rule occurred on the F-102 aircraft program.” This
airplane was supposed to be supersonic in level flight. When it first flew, the prototype Y F-102
was unable to break the sound barrier and fly supersonically. The nose was lengthened approxi-
mately five feet and area was added (with the plane already completed it was impossible to re-
move area) to the fuselage viafaired bulges—or “bustles’—at the wing trailing edge-fuselage in-
tersection. The bulges were faired beyond the engine exhaust nozzle to improve the fineness
ratio and area distribution. After these modifications, the prototype Y F-102 was capable of pene-
trating deeper into the transonic region. However, it was still not capable of exceeding Mach 1.0
in level flight. A complete redesign was necessary. It had to be done to continue the contract.

* Portions of this section were contributed by Nathan Kirschaum.
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One hundred and seventeen working days later(!), a new, completely redesigned F-102 was
ready to fly. The fuselage fineness ratio and area distribution had been increased and refined.
The fuselage mid-section cross-sectional area had been reduced (cinched-up, wasp waisted, or
coke-bottled) as much as structure and component integration would permit. It was lengthened
11 feet 3 inches, with most of the increased length added ahead of the wing. The cockpit canopy
was reduced in cross-section with a near triangular cross-section and headed by aflat plate, high-
ly swept “V” windshield. The cockpit and the side-mounted engine inlets were moved forward to
reduce their sudden area build-up, or impact on the fuselage area. The aft fuselage bustles were
retained to avoid the rapid collapse of the cross-sectional area at the delta wing trailing edge. So
reconfigured, the airplane was able to fly at low supersonic speeds (M = 1.2). Figure 5-13 shows
the original prototype and the reconfigured F-102A as produced for service use.®! The resulting
change in drag from the YF-102 to the F-102A was about twenty-five counts, and is shown in
Fig. 5-14 (from the original Convair plot). Although the change might not appear dramatic, the
reduction in wave drag was sufficient to allow the plane to fly faster then the speed of sound.
Notice also that the use of conical camber (discussed later), introduced to improve the lift and
drag due to lift characteristics of the delta wing, added a significant penalty (camber drag) to the
minimum drag.

Subsequently, the configuration was completely redesigned incorporating a more refined, in-
tegrated area rule. Further simmed down by a reduced weapon bay capacity and shortened and
repositioned engine air intake ducts, and powered by afifty percent more powerful engine, it was
capable of routine Mach 2+ speeds. The designation was then changed to F-106A. Thisdesignis
also shown in Fig. 5-13. The volume of the increased area of the vertical tail on the F-106A, re-
quired to counteract the loss of tail surface effectiveness at the increased operational Mach num-
ber, replaced the aft side “bustles’ on the F-102.

As an historical note, the Grumman F-11F (F-11) was the first aircraft designed “from
scratch” using the area rule. The result is clearly evident as shown in Fig. 5-15a.%2 Another de-
sign employing the area rule in an effective manner was the Northrop F-5A/B (and the T-38 de-
rivative), as shown in Fig. 5-15b.%2 This design had essentially unswept wings. Even the wing tip
fuel tanks were area ruled, although the inboard localized area reduction could be arguably as-
signed to K tichemann interface contour theorems.*

When considering the area rule, remember that thisis only one part of successful airplane de-
sign.®® Moreover, extreme area ruling for a specific Mach number may significantly degrade the
performance of the design at other Mach numbers.
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Figure 5-13 Convair YF-102, F-102A, F-106A configuration evolution.3!
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Figure 5-14. Zero lift drag for the YF-102 and F-102A airplanes.

To estimate the wave drag, atheoretical analysis of the integral is available.” Note that the in-
tegrand is proportional to the second derivative of the area distribution, so that even without an
analysisit is clear that the lowest drag occurs when the distribution is made as smooth as possi-
ble. Eminton3* devised the standard method for the numerical evauation of the integral in Eqgn.
5-12. The difficulty in evaluating the integral is that the result depends on the second derivative
of the area distribution. This distribution is made up of contributions from numerous compo-
nents, and it is not known with great precision. Polynomials or other interpolation schemes used
to perform the quadrature may amplify any imprecision in the data, and produce unreasonably
high drag predictions. Ms. Eminton used a Fourier series for the distribution of the gradient of
the area. The coefficients are then found by solving an optimization problem that determines the
coefficients that will produce the curve passing through the known values of the area having the
least drag. In this sense the method is also a design method. By specifying a small number of
control stations (say, from a designer’s configuration layout) with a specified area distribution,
the method will provide the complete distribution of area required for minimum drag and satisfy-
ing the imposed control station constraints.

* Note: advanced CFD calculation methods don’t require the aerodynamicist to look at the problem using the area
rule diagram. Those approaches don’t provide the insight for design available through the area rule diagram.
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a) Grumman F-11F

b) Northrop F-5A/B

Figure 15. Other aircraft designs with evident area ruling.
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The practical implementation of this scheme is available in the so-caled Harris wave drag
program.?! Figure 5-16 illustrates the procedure. At each “roll angle” 6 a number of x-cuts are
made to use in evaluating the integral. Typically, 50 to 100 x-cuts are made for each of from 24
to 36 6 values. Note that in making these calculations the inlet capture area is removed from the
areadistribution.

As discussed above, area ruling plays an important role in supersonic cruise vehicle design.
Figure 5-17 presents the results of an analysis of a current high speed civil transport (HSCT)
concept.® Figure 5-17a shows the highly blended configuration. Figure 5-17b shows the
variation in drag as the integral is computed for various “theta cuts.” This curve also contains the
results of a combined structural-aerodynamic study to improve this design using systematic ad-
vanced design methodology.® Note that the drag is presented in terms of D/q. Thisis atradition-
a approach, and eliminates any false impressions produced when configurations with differing
reference areas are compared. Figure 5-17c shows the normal area distribution. Here the nacelles
are seen to make alarge impact on the area distribution.However, the area distribution of interest
isfor M = 3.0. Figures 5-17d and e present the area distributions for the theta 0° and 90° cases.
Here the area distribution is seen to be much smoother. This is especidly true for the theta 0°
case. The theta 90° case still shows the problem of integrating the propulsion system into the
configuration to obtain a smooth area distribution. Comparing the area distributions presented in
Figures 5-17d and 17e with the change in drag at these two different roll angles provides some
insight into the importance of shaping to produce a smooth area distribution.

Figure 5-16 Evaluation of the wave drag integral .%
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b) distribution of the drag for each circumferentia cut.

Figure 5-17 The AST3lI,% an advanced concept for aMach 3 High Speed Civil Transport.
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Figure 5-17 The AST3I,* an advanced Mach 3 High Speed Civil Transport (cont’ d).
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Figure 5-17 The AST3I,*® an advanced Mach 3 High Speed Civil Transport (concluded).

Area diagrams for typical current fighters are not nearly so streamlined. Figure 5-18 shows
the area distribution for the F-16.3” The original area distribution is seen in Fig. 5-18a, and the re-
sult of refinements in Fig 5-18b. The F-16 was not designed primarily for supersonic flight, and
it has alow fineness ratio and consequently a relatively high wave drag. Small aircraft are much
more difficult to lay out to ensure a smooth distribution of area. Note in Fig. 5-18 that the canopy
is placed to help “fill in” the area diagram. Figure 5-18b shows the revisions made to improve
the contour forward and aft of the maximum cross-sectional areato fill in the shape and also add
fuel volume. Note that this curve has no scale. Manufacturers are sensitive about this informa-
tion.

Thereis also awave drag dueto lift (see Ashley and Landahl'®). However, amost all area
ruling at supersonic speeds primarily emphasizes the volumetric wave drag.
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a) Original cross-sectional area

b) Refined area distribution

Figure 5-18 The YF-16 arearule diagram.3’
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5.9 The Leading Edge Suction Concept

Aerodynamicists often evaluate the performance of configurations in term of so-called lead-
ing edge suction. The concept can be explained by considering the inviscid flow over the prover-

bial zero thickness flat plate at angle of attack in an incompressible inviscid flow, as shown in
Fig. 5-19.

a Drag = F sind
>

\Y
(0]
Figure 5-19 Basic relations between forces for an infinitely thin plate.

What is the drag? According to theory, it must be zero. In the sketch we see that the force
acts in a direction perpendicular to the plate, and this clearly leads to a force component in the
drag direction. What' s the explanation of the paradox? Consider the following sketch of the front
portion of an airfoil sectionin Fig. 5-20.

Fs

Figure 5-20. Details of the flow near the leading edge of athin plate.

There is alow pressure over the front edge face due to the expansion of the flow around the
leading edge. The expansion becomes stronger as the thickness decreases, so that the force on the
front face of the plate due to the product of the pressure and plate thicknessis:

Ry = gi%(a Cp s) = finite (5.37)
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and the value of the limit is just such that the drag is zero. Thus the correct model of the flow
over the flat plate is actually modified from the sketch given above to include an edge force, as
shown in Fig. 5-21.

Figure 5-21. Corrected flow model to satisfy inviscid flow theory.

Of course, a very thin flat plate will realize almost none of the suction force, and hence will
have a drag component. However, an airfoil section (even afairly thin one) with a smooth round
nose may in fact achieve nearly all of the suction force, at least at small angles of attack. If the
airfoil section in the wing does not achieve the full suction performance, the resulting drag must
be added to the induced drag.

The drag due to lift is thus broken up into induced drag and additional profile drag. As de-
scribed previoudly, the induced drag is a function of the wing spanload only, and is independent
of the details of the particular airfoil used in the wing. The additional profile drag is associated
with the airfoil used in the wing. At low lift coefficients this drag should be small, only
becoming important as flow separation starts to develop on the airfoil section. The additional
profile drag becomes large as wing stall is approached.

Wing performance is evaluated based on the ability to obtain a high value of the lift to drag
ratio, (L/D), relative to the maximum possible for that planform, and the ability to achieve a high
maximum lift coefficient. Essentially, the wing is designed to allow the airfoil to achieve its full
performance. Recalling that a two-dimensional airfoil under the assumption of inviscid subsonic
flow has no drag dueto lift, the maximum performance should occur by adding the induced drag,
assuming an elliptic spanload, to the zero lift drag. This is known as the 100% suction polar,
since the airfoil section has no additional profile drag due to lift, and is thus achieving 100% of
the leading edge suction required to eliminate the drag force in a two-dimensional flow. This lift
is

- 2 -
Cby,qy, = CLIAR. (5-38)
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At the other extreme, the worst case occurs when the airfoil fails to produce any efficient lift,
such that the only force is normal to the surface and there is no edge or suction” force (0% lead-
ing edge suction). In this case the entire lifting force on the wing is the normal force, and the
polar can be determined by resolving that force into lift and drag components. The equation for
the 0% suction drag can be expressed in avariety of forms, starting with

C = CL tan(a—a O)} (5-39)

DLoos

whereajisthe zero lift angle of attack. We also use the linear aerodynamic relation:

CL=C, (a-ap) (5-40)

which can be solved for the angle of attack:

C
(@ -0p) = == (5-41)
Cla .
Finally, substitute Egn. (5-41) into Eqgn. (5-39) for the angle of attack as follows:
CDLO% = CL tan(O( - Go) 0 CL(G —Go)
OC. &
Cla
or
ct
DLy, 1 CL (5-42)

This equation for the 0% suction polar shows why this polar is often referred to as the

“ JJC,_G " polar by aerodynamicists. Using this approach, effective wing performance is quoted in
terms of the fraction of suction achieved, based on the difference between the actual drag and the
100% and 0% suction values as shown in Figure 5-22. Thisfigure illustrates how wings typically
perform. The wing will approach the 100% level at low lift coefficients, and then as flow separa-
tion starts to develop, the performance deteriorates. Eventually, the wing may have a drag sub-
stantially higher than the 0% suction value that was said above to be the worst case.

* On aswept wing the suction force is normal to the leading edge. The component of the leading edge suction
force in the streamwise direction is called the leading edge thrust.
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Figure 5-22 Definition of percent |eading edge suction performance.

The value of E for thislevel of performance can be found by equating Eq.(5-42) to the stan-
dard form:

Gt (543
Cp, = -
DL ™ naRe
which leads to:
CL
B0 = TR, (&4

Typically, the value of E varies with the lift coefficient. By plotting experimental data, typical
variations can be obtained for various classes of wings. Figure 5-23 shows the typical variation.
This relation was shown in general by McKinney and Dollyhigh.®®

Alternately, in supersonic flow, the drag due to lift relation is frequently written as

Cp, = KCf (5-45)

for uncambered airfoils. For cambered and twisted wings the polar is shifted, and the minimum
drag occurs at a C; other than zero, as shown previously in Fig. 5-2, and described by Eq. (5-2).
In practice we expect the wing to achieve a performance level between the Ky, and K, lim-
its. This approach is described in detail by Raymer.*
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Figure 5-23. Typical variation of E with lift coefficient.

In considering the shift of the polar, afew comments are required. First, the wing performance
cannot excede the optimum value, which for subsonic flow over a single planar lifting surface is
E = 1. Especially for wings in supersonic flow it is hard to get 100% of the leading edge suction.
In that case the approach is to camber the wing to make the drag performance of awing with less
than 100% suction attain the 100% suction level at a specified value of lift, C_ 5. Using the polar
definition

2 -
CD = ACDm + KXX%(CL - CLm) (5 46)

where the value of K corresponds to the performance of the wing in terms of leading edge suc-
tion (LES), we find the values of ACp_ and C__ in terms of the design lift, C_y. To do this
eguate the polar to the 100% suction value at the design lift. This polar must also be tangent to
the 100% polar at this point so that the polar will not predict better performance than the optimi-
mum at other values of the lift. Using as an example a 0% leading edge suction wing:

Cp(100%LES) = Cp (0%|.ES)|CL —cL, (5-47)
dCp (100%LES) _ dCp (0%LES)| (5.48)
dc, L g =c,,
and the unknown valuesof ACp_ and C _ are:
U KyanonD
C, =01~ M[CLd
O Koo O (5-49)
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and
> 2
ACDm = KlOO%CLd - KO%(CLd - CLm) . (5-50)

In any experimental evaluation of wing performance both the 100% and 0% polars should be
constructed, and used to establish bounds on the experimental polar. Thus a typical drag polar
would include the 100% and 0% suction polars as well as the predicted or measured performance
to establish a basis for evaluating a wing's efficiency. Figure 5-24 presents the actual perfor-
mance of an unswept rectangular wing at subsonic speed. Here the performance is very close to
the lower drag limit until the wing stalls.

1.50 —
[ Theoretica 100%
i Suction Polar, e = .98
1.20f B el P A
. E /‘/O - .
0.90 S~ Wind tunnel test data
0.60
™ Theoretical 0% Suction Polar
0.30[
0.00f — _
[ NACA Data, Clark Y airfoail, rectangular wing, AR = 5.6, Re = 1x106
[ Note: Theoretical polars shifted to match experimental zero lift drag
osob—m— e
0.00 0.04 0.08 0.12 0.16 0.20

Cp
Figure 5-24 Drag performance of simple unswept wing with aClark-Y airfoil.

It isdifficult to identify the initial flow breakdown using the drag polar. Often you can identi-
fy flow breakdown more clearly by plotting the axial force as a function of normal force. In this
plot the axial force should initially decrease, as described above. When the airfoil section starts
to loose leading edge suction the data displays a sharp “break.” Figure 5-25 illustrates this ap-
proach to the examination of wing efficiency.

For configurations with very poor aerodynamic efficiency, the 0% suction force provides a
good estimate of the vehicle drag. However, 0% suction levels are so inefficient that for most de-
signs this level of performance would be unacceptable and not competitive.
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To make estimates of the performance of real configurations, which operate between the two
limits, Harry Carlson®®4! at NASA Langley established the notion of “attainable” leading edge
suction. Based on an extensive analysis of 2D airfoil data, Carlson established an empirical cor-
relation which is used to estimate the fraction of the full suction that should be attained for the
specified airfoil, planform and flight condition. Carlson’s concepts are based on linear theory.

Nonlinear effects can be important, and can be exploited. Although the linear theory based
concepts described here provide a valuable way of looking at wing designs, nonlinear effects can
provide a means of improving performance. Considering nonlinear effects, interactions between
thickness and lifting effects can be exploited.*

0011 | | |
X Departure of datafrom
0.010 T—a.q parabolic curve indicates
&\B\Q\BEJW breakdown on wing
0.009 — .8
%'.g- .--B"“'
0.008
Ca wind tunnel data \
run 34 \
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0.006 ‘ . \
Recce-Strike Fighter N
0005 [ Mg A\
: - NASA TM 78792, Jan. 1979 N
-0.20 -0.10 0.00 0.10 0.20 0.30 0.40
Cn

Figure 5-25. Axial force analysis of wing performance.
5.10 Trim Drag

For equilibrium flight the airplane must be trimmed. The forces must be such that the mo-
ments about the center of gravity in all axes are zero. To achieve this condition the controls are
usually deflected to generate the required trimming moments. Figure 5-26 shows a schematic of
the requirement. Two typical situations are shown in Fig. 5-26a. In one case the center of gravity
is ahead of the wing center of pressure, the aircraft is stable, and a download on the tail is re-
quired to balance the lift of the wing. In the other case the center of gravity is behind the wing
center of pressure, the airplane is unstable, and an upload on the tail is required to balance the lift
of the wing. Other situations are possible, but these two illustrate the key idea.
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Figure 5-26. Examination of the configuration setup required for trim.

Part b of Fig. 5-26 illustrates the difference between stable and unstable configurations. For a
stable airplane the basic Cpy, is typically positive, while for an unstable aircraft the basic Cry, is
negative. In each case, a control has to be deflected over arange of settings to maintain trim over
a range of lift coeficients (unless the configuration is neutrally stable). On modern aircraft the
control could be the deflection of the thrust by thrust vectoring.

Control surface deflections change the drag from the reference undeflected value. This differ-
ence in drag could be termed a“trim drag.” There are many definitions of trim drag. Definitions
differ because it is difficult to be precise in defining trim drag. Some definitions contain only the
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drag due to the lift of the trimming surface. Some analyses allow for a negative trim drag. How-
ever, for a given flight condition the total lift must be fixed, and any change in lift on the trim-
ming surface requires a change in lift, and hence drag, on the primary surface. On a well de-
signed aircraft the trim drag should be small. Canard concepts are often considered advantageous
because both the canard and wing supply positive lift to trim, whereas for traditional aft-tail con-
figurations the tail load is negative and the wing must operate at a higher lift to compensate.
However, for modern aft-tail designsthetail load is near zero, resulting in little trim drag.

Trim drag has always been an important consideration in airplane design. However, trim drag
became especially important with the development of stability and control augmentation systems
that allowed the designer much greater freedom in the choice of a center of gravity location. Na-
tural static stability was no longer required. The static stability condition had frequently made it
difficult to obtain minimum trim drag. This meant that trim drag could become a key criteria for
the placement of the center of gravity in a configuration (this is part of the motivation for so-
called control configured vehicle, CCV, concepts).

Trim drag is especially important for several specific classes of aircraft. Supersonic aircraft
demand special consideration because of the aerodynamic center shift from subsonic to super-
sonic flight. To control trim drag as well as stability, fuel istransferred fore and aft between sub-
sonic and supersonic flight to achieve proper balance on supersonic cruise aircraft. Variable
sweep wing aircraft also have aerodynamic center locations that vary with wing sweep, potential-
ly leading to high values of trim drag. Finally, maneuvering aircraft can suffer high trim drag at
high lift coefficients, severely limiting sustained turn performance. This was especially true of
the first generation of supersonic capable fighters. Examples of the contribution of trim drag to
the total drag are shown in Figure 5-27, taken from Nicolai.*

A more useful approach to the trim drag analysis is to consider the value of “trimmed drag”.
In this approach it is difficult to define a specific trim drag value. The best way to assess the trim
penalty is to define the difference between the minimum drag attainable for the system and the
minimum trimmed drag for a specified center of gravity position. This provides the designer with
ameasure of the drag penalty being paid for a particular center of gravity location. This approach
also demonstrates directly the connection between static margin and minimum trimmed drag.
Different configuration concepts lead to different values of static margin to obtain minimum
trimmed lift. In general, for aft swept wings aft tail configurations, the minimum trimmed drag
occurs at a dightly unstable center of gravity (5-10%7), canard configurations have minimum
trim drag at slightly more unstable conditions (15%7), and forward swept wing canard configura-
tions must be even more unstable to achieve minimum trimmed drag (the X-29 is about 30-35%
unstable). Many studies of these fundamental properties of various configuration concepts have
been made. See the study by Landfield and Rajkovic* and the references contained therein for
more information.
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a) C-141aM =0.75 b) F-111A
Figure 5-27. Contributions to drag for two configurations.*®

Several key papers examining trim drag from a nearfield point of view have been written.
They are by McKinney and Dollyhigh,%® Lutze,* and Sachs.?® In the nearfield, extreme care
must be taken to include the downwash incidences and induced angles of attack correctly. Alter-
nately, an analysis can be made in the Trefftz plane. Lamar?® developed a code for finding the
minimum trimmed induced drag for two surfaces, and this was extended to include (approxi-
mately) the effects of profile drag by Mason.?” Note that a farfield analysis which combines the
minimization of induced drag and wave drag due to lift has been presented by Tulinius and Mar-
gason.*” A more general approach to treat multiple surfaces was given by Kuhlman.*® More re-
cently, three surface configuration have been introduced, and the three surface minimum trim
drag problem has been solved by Goodrich, Sliwa, and Lallman® using a nearfield approach.

An example of the possible dramatic effects of cg location on trimmed drag is presented in
Figure 5-28.27 All the results contained in the figure are for the minimum trimmed drag at differ-
ent values of a specified cg location. These results were obtained during early forward-swept
wing configuration studies, and illustrate why an aft cg position and resulting highly unstable
configuration are required to obtain the full benefits of a forward swept wing configuration simi-
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lar to the X-29." The very high drag values reflect a transonic maneuver condition. Trim drag
should be much smaller for the cruise condition (certainly less than 2-4%). As shown here, mod-
ern technology should allow the aircraft to fly with no trim drag. The difference between the
minimum trimmed drag at Axcg = -40 and any other cg could be considered the trim drag. The
figure contains both induced and profile drag contributions to the total trimmed drag. As the cg
moves forward (x positive in this nomenclature, x = 0 corresponds to neutral stability), the addi-
tional load on the canard leads to a rapidly increasing value of the minimum trimmed drag. Be-
cause of the increasing load on the canard, the canard airfoil section becomes important. Near the
cg for minimum drag the canard airfoil is not important because the canard is lightly loaded. This
figure shows why canard configurations are most efficient when used with unstable configura-
tion concepts. Stable canard configurations are not necessarily the most efficient aerodynamical-
ly. Because of the high loads on a stable canard configuration, the canard airfoil section is very
carefully selected. Specifically, it is usually highly cambered to achieve the high lift coefficients,
and has a small leading edge radius so that the it will stall before the main wing.

Figure5-28  Minimum trimmed drag throughout arange of balance locations,
including the effect of canard airfoil section.?’

* Note that the hydraulic power used to activate the canard to achieve apparent stability is obtained from the en-
gine, reducinges thrust and resulting in increased fuel flow. Thus, in essence, some trim drag benefits are gained
at the expense of increased fuel usage to control the unstable vehicle.
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5.11 Current Issuesfor Drag Calculation Using Computational Aerodynamics

Because of the quest for reduced drag, and the difficulty in computing and measuring small
changes in drag, numerous disputes have arisen in aerodynamics. Confusion introduced by non-
standard drag nomenclature also contributes to these spirited debates. One recent issue was the
so-called sheared wing-tip drag reduction controversy. Here it was speculated that wing tip shap-
ing could lead to span €'s greater than one for planar planforms.* This conclusion arose based
on both computations and wind tunnel tests. Refined computational investigations, illustrating
the need to study computational solution convergence carefully as shown elsewhere in this text,
resulted in the conclusion that € s greater than one were not actually computed. However, it is
clear that wing tip planform shaping can lead to improved aerodynamic efficiency.

Another area currently attracting attention is the search for more fundamental understanding
of drag. These theories differ significantly from the accepted approach to drag. One key example
isdueto Y ates.>?

In addition to the efforts to reduce drag due to lift by tip shaping, use of winglets, tip sails,
and canard configurations among others, significant efforts are being made to reduce skin fric-
tion drag. They include efforts to obtain laminar flow through passive means (NLF), suction, or a
combination known as hybrid natural laminar flow control. Turbulent friction reduction tech-
niques are also being developed. Riblets are perhaps the most well known means. A recent
AIAA book reviews this area.>

5.12 Exercises
1. Derive equations 5-7 and 5-8.
2. Derive equations 5-31 and 5-32.

3. Get acopy of LIDRAG and check it against the the known values of the span efor an eliptic
and atriangular load distribution. How do your results compare?

4. Use experimental results and show quantitatively that Fig. 5-11 is correct.

5. Get acopy of FRICTION. Repeat the check case in the user’ s manual. Then examine the skin
friction valuesin Table 5-1. Are they reasonable?

6. Find the shape of the Karman ogive, the body with minimum wave drag for a given length
and base area.
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6. Aerodynamics of 3D Lifting Surfaces
through Vortex L attice Methods

6.1 An Introduction

Thereisamethod that is similar to panel methods but very easy to use and capable of providing
remarkable insight into wing aerodynamics and component interaction. It is the vortex lattice
method (vim), and was among the earliest methods utilizing computers to actually assist
aerodynamicists in estimating aircraft aerodynamics. Vortex lattice methods are based on
solutions to Laplace’s Equation, and are subject to the same basic theoretical restrictions that
apply to panel methods.

As acomparison, vortex lattice methods are:

Smilar to Panel methods:

* singularities are placed on a surface

* the non-penetration condition is satisfied at a number of control points

» asystem of linear algebraic equationsis solved to determine singularity strengths
Different from Panel methods:

* Oriented toward lifting effects, and classical formulations ignore thickness

» Boundary conditions (BCs) are applied on a mean surface, not the actual surface
(not an exact solution of Laplace’ s equation over a body, but embodies some
additional approximations, i.e., together with the first item, we find II:p,

not Cpypper @d Cpiower)

» Singularities are not distributed over the entire surface

* Oriented toward combinations of thin lifting surfaces
(recall Panel methods had no limitations on thickness).

Vortex lattice methods were first formulated in the late * 30s, and the method was first called
“Vortex Lattice” in 1943 by Faulkner. The concept is extremely simple, but because of its purely
numerical approach (i.e., no answers are available at all without finding the numerical solution of
a matrix too large for routine hand calculation) practical applications awaited sufficient
development of computers—the early ' 60s saw widespread adoption of the method. A workshop
was devoted to these methods at NASA in the mid *70s.* A nearly universal standard for vortex
lattice predictions was established by a code developed at NASA Langley (the various versions
were available prior to the report dates):

Margason & Lamar? 1st Langley report NASA TN D-6142 1971
Lamar & Gloss® 2nd " " NASA TN D-7921 1975
Lamar & Herbert* 3rd " " NASA TM 83303 1982
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Each new version had considerably more capability than the previous version. The “fina”
development in this series is designated VLM4.997. The original codes could handle two lifting
surfaces, while VLM4.997 could handle four. Many, many other people have written vortex
lattice method codes, some possibly even better than the code described in the NASA reports.
But the NASA code's general availability, versatility, and reliability resulted in its becoming a
de-facto standard.

Some of the most noteworthy variations on the basic method have been developed by Lan®
(Quasi-Vortex Lattice Method), Hough’, Delarnette® and Frink’. Mook and co-workers at
Virginia Tech have developed vortex lattice class methods that treat flowfields that contain
leading edge vortex type separation (see Section 6.12) and also handle general unsteady motions.
The recent book by Katz and Plotkin™ contains another variation. At Virginia Tech, Jacob Kay
wrote a code using the method of Katz and Plotkin to estimate stability derivatives, which is
available from the department web page.*

To understand the method, a number of basic concepts must be reviewed. Then we describe
one implementation of the vim method, and use it to obtain insights into wing and wing-canard
aerodynamics. Naturally, the method is based on the idea of a vortex singularity as the solution
of Laplace's equation. A good description of the basic theory for vortices in inviscid flow and
thin wing analysis is contained in Karamcheti," pp. 494-496, 499-500, and 518-534. A good
description of the vortex lattice method is given by Bertin and Smith.* After the discussion of
wing and wing-canard aerodynamics, an example of a vortex lattice method used in a design
mode is presented, where the camber line required to produce a specified loading is found. The
chapter concludes with a few examples of the extension of vortex lattice methods to treat
situations with more complicated flowfields than the method was originally intended to treat.

6.2 Boundary conditions on the mean surface and the pressurerelation

An important difference between vortex lattice methods and panel methods is the method in
which the boundary conditions are handled. Typically, the vortex lattice method uses an
approximate boundary condition treatment. This boundary condition can aso be used in other
circumstances to good advantage. This is a good “trick” applied aerodynamicists should know
and understand. In general, this approach results in the so-called “thin airfoil boundary
condition,” and arises by linearizing and transferring the boundary condition from the actual
surface to a flat mean “reference” surface, which is typically a constant coordinate surface.
Consistent with the boundary condition simplification, a simplified relation between the pressure
and velocity is aso possible. The simplification in the boundary condition and pressure-velocity
relation provides a basis for treating the problem as a superposition of the lift and thickness
contributions to the aerodynamic results. Karamcheti*® provides an excellent discussion of this
approach.
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To understand the thin airfoil theory boundary condition treatment, we provide an examplein
two dimensions. Recall (from Egn. 2-54) that the exact surface boundary condition for steady

inviscid flow is;
V=0 (6-1)

on F(x,y)=0=y- f(x). The unit norma vector is n=NF(x,y) /|NF(x,y)| and the velocity
field is defined using the notation defined in Fig. 6-1.

A
y

vl \»
x

% '
a sina
. V¥

i cosa
Figure 6-1. Basic coordinate system for boundary condition analysis.

Define the velocity components of V as.

_ 6-2
V=W + o g(xy) (6-2)
adisturbance velocity

where q is a disturbance velocity with components u and v. If we assume irrotational flow, then
these components are described in terms of a scalar potential function, u= Nf y and v = Nf V- The
total velocity V then becomes in terms of velocity components:

Uror = W cosa +u(X,y) (6-3)
vror = W sina + v(x,Y)

and we can write out the boundary condition as:

_ _ | e (6-4)
Von =(urori +VT0TJ)>%TTXI Jf—wl-ﬂ 0
or
TF . =
V. +u(x, y)| = +[V +\Ux,y)|— =0 (6-5)
[Vy cosa +u(x,y)] o [Vy sina +v(x,y)] o

on F(x,y) = 0, and recalling the relationship between F and f given below Egn. (6-1):
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F_1 __ dfi(x)
ey fop=- =2
1111; 1‘1”x dx | (6-7)
—=—ly- f(X)t=1
iy ‘ﬂy{y 9}
Substituting for F in Eq.(6-5) we have:
(W cosa +u)E :—;‘; +(Vy sina +v)=0 (6-8)
which, solving for v, is:
v =(W cosa +u)%(- W sina (6-9)

on y = f(x). Note that v is defined in terms of the unknown u. Thus Eqg. (6-9) is a nonlinear
boundary condition and further analysis is needed to obtain a useful relation.”

6.2.1 Linearized form of the boundary condition

The relation given above by Eq.(6-9) is exact. It has been derived as the starting point for
the derivation of useful relations when the body (which is assumed to be a thin surface at a small
angle of attack) induces disturbances to the freestream velocity that are small in comparison to
the freestream velocity. Thus we assume: u << Vi, v << Vi, and TF/fx < TF/Mly. Note that this
introduces a bias in the coordinate system to simplify the analysis, a typical consequence of
introducing simplifying assumptions. Consistent with this assumption, the components of the
freestream velocity are:

Vy cosa » Wy (6-10)
VW sina »Wa
and the expression for vin EQ.(6-9) becomes:
v=(V +u)‘;|'_fX “Wa (6-11)
Dividing by Vy,
v _& uodf (6-12)

Vg 81 Ve gdx
the linearized boundary condition is obtained by neglecting u/My compared with unity

(consistent with the previous approximations). With this assumption, the linearized boundary
condition becomes:

\&l:%-a ony = f(x)- (6-13)

" Observe that even when the flowfield model is defined by a linear partial differential equation, an
assumption which we have not yet made, the boundary condition can make the problem nonlinear.
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This form of the boundary condition is not valid if the flow disturbance is large compared to
the freestream velocity {for aerodynamically streamlined shapes thisis usually valid everywhere
except at the leading edge of the airfoil, where a stagnation point exists (u = -Vy ) and the slope

is infinite (dffdx = ¥ )}. In practice, a local violation of this assumption leads to a local error.
Thus, if the details of the flow at the leading edge are not important to the analysis, which
surprisingly is often the case, the linearized boundary condition can be used.

6.2.2 Transfer of the boundary condition

Although Egn. (6-13) is linear, it's hard to apply because it is not applied on a coordinate
line."” We now use a further approximation of this relation to get the useful form of the linearized
boundary condition. Using a Taylor series expansion of the v.component of velocity about the
coordinate axis we obtain the v velocity on the surface:

v{x,y= f(x)}:v(x,0)+f(x)ﬂ—;1 +.... (6-14)
My=o

For the thin surfaces under consideration, f(x) is small, and because the disturbances are assumed
small, v/fly isaso small. For example, assume that vand fv/qy are the same size, equal to 0.1,
and df/dy is also about 0.1. The relation between v on the airfoil surface and the axisis:

vix,y= f()} = () +(1)(D=.1+ 01 . (6-15)

neglect
Neglecting the second term, we assume:

Vi, f(X)} » v(x, 0). (6-16)

We now apply both the upper and lower surface boundary conditions on the axisy = 0, and
distinguish between the upper and lower surface shapes by using:

f =f, ontheupper surface

_ (6-17)
f =f onthelower surface
Using Eq. (6-17), we write the upper and lower surface boundary conditions as:
0" 0
V(X_) TR V(x_) _ah (6-18)
Vy dx v dx
up low

" The simplification introduced by applying boundary conditions on constant coordinate surfaces justifies
the use of rather elaborate tranformations, which will be dicussed in more detail in Chap. 9, Geometry and
Aerodynamics.
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These are the linearized and transferred boundary conditions. Frequently, these boundary
conditions result in a surprisingly good approximation to the flowfield, even in transonic and
supersonic flow.

6.2.3 Decomposition of boundary conditions to camber/thi ckness/al pha

Further simplification and insight can be gained by considering the airfoils in terms of the
combination of thickness and camber, a natural point of view. We thus write the upper and lower
f

surface shapes in terms of camber, f, and thickness, f,, as:

fu=feth (6-19)
fi="fe- t
and the general problem is then divided into the sum of three parts as shown in Fig. 6-2.
C N
/ /
General Thickness Camber Flat plate
arfoil aa=0° aa=0° aa

aa
Figure 6-2. Decomposition of a general shape at incidence.

The decomposition of the problem is somewhat arbitrary. Camber could also be considered
to include angle of attack effects using the boundary condition relations given above, the sign is
the same for both the upper and lower surface. The aerodynamicist must keep track of details for
a particular problem. To proceed further, we make use of the basic vortex lattice method
assumption: the flowfield is governed by a linear partial differential equation (Laplace's
equation). Superposition alows us to solve the problem in pieces and add up the contributions
from the various parts of the problem. This results in the final form of the thin airfoil theory
boundary conditions:

<o) e, o

V¥ dx & "a
up ) (6-20)
Vo) e o
\%% dx dx
low

The problem can be solved for the various contributions and the contributions are added together
to obtain the complete solution. If thickness is neglected the boundary conditions are the same
for the upper and lower surface.

3/11/98



Aerodynamics of 3D Lifting Surfaces6 - 7

6.2.4 Thin airfoil theory pressure relation

Consistent with the linearization of the boundary conditions, a useful relation between the
pressure and velocity can also be obtained. For incompressible flows, the exact relation between
pressure and velocity is:

.2
ey 0
Cp=l- o= (6-21)
V¥ 4]
and we expand the velocity considering disturbances to the freestream velocity using the

approximations discussed above:

V2 = (W \cosa +u)? +(Wsina +v)?
Vy Vy a
Expanding:
V2 =\Z + 2Vu + 12 +(Wea)? + 2av+v2 (6-22)
and dividing by V¥2 we get:
2 2 2
u 2 \) \
=1+2—+—=+a“+2a — +—. (6-23)
W W W Ve W

Substituting into the Cp relation, Egn. (6-21), we get:

e 2 20
Cp=1- Ql+21+u7 +a2+2a—~ +LZ+
e W W W Wo (6-24)
2 2
—1-1- 29 . u_2_ a?- ga_v_v_z
W W W W

andif a, u/My and vy are << 1, then the last four terms can be neglected in comparison with
the third term. The final result is:

Cp =- Zél (6-25)

This is the linearized or “thin airfoil theory pressure formula’. From experience gained
comparing various computational results, I’ve found that this formula is a dightly more severe
restriction on the accuracy of the solution than the linearized boundary condition. Equation (6-
25) shows that under the small disturbance approximation, the pressure is a linear function of u,

and we can add the Cp contribution from thickness, camber, and angle of attack by

superposition. A similar derivation can be used to show that Eq. (6-25) is aso valid for
compressible flow up to moderate supersonic speeds.
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6.2.5 Delta Cp due to camber/al pha (thickness cancels)

Next, we make use of the result in Eg. (6-25) to obtain aformulafor the load distribution on
the wing:

S (6-26)

DCp =C PUPPER °

PLOWER ~

Using superposition, the pressures can be obtained as the contributions from wing thickness,
camber, and angle of attack effects:

CpLOWER :CpTHICKNESS +CpCAMBER + CpANGLE OF ATTACK (6-27)
CpUPPER :CpTHICKNESS ) CpCAMBER ) CpANGLEOFATTACK
S0 that:
DCIO = (CDTHICKNESS +CDCAMBER +CPANGLE OFATTACK)
- . - 6-28
(CPTHICKNESS CPCAMBER CPANGLE OFATTACK)' ( )
= Z(CpCAMBER +CpANGLE OFATTACK)

Equation (6-28) demonstrates that for cases where the linearized pressure coefficient relation is

valid, thickness does not contribute to lift to 1St order in the velocity disturbance!

The importance of this analysisis that we have shown:
1. how the lifting effects can be obtained without considering thickness, and

2. that the cambered surface boundary conditions can be applied on a flat coordinate
surface, resulting in an easy to apply boundary condition.

The principles demonstrated here for transfer and linearization of boundary conditions can be
applied in a variety of situations other than the application in vortex lattice methods. Often this
idea can be used to handle complicated geometries that can’t easily be treated exactly.

The analysis here produced an entirely consistent problem formulation. This includes the
linearization of the boundary condition, the transfer of the boundary condition, and the
approximation between velocity and pressure. All approximations are consistent with each other.
Improving one of these approximations without improving them all in a consistent manner may
actually lead to worse results. Sometimes you can make agreement with data better, sometimes it
may get worse. Y ou have to be careful when trying to improve theory on an ad hoc basis.
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6.3 Vortex Theorems

In using vortex singularities to model lifting surfaces, we need to review some properties of
vortices. The key properties are defined by the so-called vortex theorems. These theorems are
associated with the names of Kelvin and Helmholtz, and are proven in Karamcheti.*® Three
important results are:

1. Along avortex line (tube) the circulation, G, is constant.

2. A vortex filament (or line) cannot begin or end abruptly in afluid. The vortex line
must i) be closed, ii) extend to infinity, or iii) end at a solid boundary.
Furthermore, the circulation, G, about any section is the vortex strength.

3. Aninitialy irrotational, inviscid flow will remain irrotational.
Related to these theorems we state an important result:
» A sheet of vortices can support ajump in tangential velocity [i.e. aforce],

while the normal velocity is continuous. This means you can use avortex sheet
to represent alifting surface.

6.4 Biot-Savart Law

We know that a two-dimensional vortex singularity satisfies Laplace’s equation (i.e. a point
vortex):

-G 6-29
Vv 2preq (6-29)

where \% istheirrotational vortex flow illustrated in Fig. 6-3.

Vq
A
Ur
V /
* g
Vortex normal >
to page r
a) streamlines b) velocity distribution

Figure 6-3. The point vortex.

What is the extension of the point vortex idea to the case of a general three-dimensional
vortex filament? Consider the flowfield induced by the vortex filament shown in Fig. 6-4, which
defines the nomenclature.
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vortex di
filament q I’pq

Figure 6-4. General three-dimensional vortex filament.

The mathematical description of the flow induced by this filament is given by the Biot-
Savart law (see Karamcheti,™® pages 518-534). It states that the increment in velocity dV at a
point p due to a segment of avortex filament dl a qis:

d’r
AV = —2 B4 (6-30)
ap |rp<1|

To obtain the velocity induced by the entire length of the filament, integrate over the length
of the vortex filament (or line) recalling that Gis constant. We obtain:

é ==
v =859 o (6-31)

S i

To illustrate the evaluation of this integral we give the details for several important
examples. The vector cross product definition is reviewed in the sidebar below. Reviewing the
cross product properties we see that the velocity direction de induced by the segment of the
vortex filament dl is perpendicular to the plane defined by dl and Mooy and its magnitude is
computed from Eq. (6-31).

Case #1: theinfinitely long straight vortex.
In the first illustration of the computation of the induced velocity using the Biot-Savart Law, we
consider the case of an infinitely long straight vortex filament. The notation is given in Fig. 6-5.
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A review: the meaning of the cross product. What does a x b mean? Consider the following
sketch:

A

c

a

Here, the vectors a and b form a plane, and the result of the cross product operation is a vector c,
where cis perpendicular to the plane defined by a and b. The valueis given by:

c=a’ b=ldlblsinge
and eis perpendicular to the plane of a and b. One consequence of thisisthat if aand b are

parallel, thenax b =0.

Also: la” b|= areaof the parallelogram
and
ik
a’'b=Ac Ay A= (Asz' Asz)i - (Asz - Asz)j + (A(By' AyBx)k
B, B B

-¥

Figure 6-5. Theinfinitely long straight vortex.
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Now consider the numerator in EQ. (6-30) given above using the definition of the cross
product:

, _ .V ~
d’ rpg —|d||rpq|squ (6-32)

so that the entire expression becomes

_G |d|||rpq|sinq¥

p~ 3
P Jrpl 'Vl_ (6-33)

Next, simplify the above expressions so they can be readily evaluated. Use the nomenclature
shown in Fig. 6-6.

Figure 6-6. Relations for the solution of the Biot-Savart Law.

Using the notation in Fig. 6-6 to find the relations for I'pg and dl. First we see that:

h=rpqsing (6-34)
h
o . (6-35)
pq ) sing
and l, - | =—— =hcotq. (6-36)
tanq

Next look at changes with g. Start by taking the differential of Eq. (6-36):

d(ly - 1) :d%hq%: d(hcotq)

whichis -dl =hd(cot q) (6-37)
d d
- — =h—(cotq) = - hcosec
3 ~Ngg 10 T
and we can now write dl in terms of dq :

dl = hcosec’q dq (6-38)
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so that the Biot-Savart Law gives:

V- = G V sinqgd
p=——
4p V| rpzq
_ G V sing heosect dy (6-39)
4p V| ? h o
smqg
Af; S'Eq dqg (direction understood)
Thus we integrate:
a=p
= G an dq _£ @nq dq (6‘40)

»" O h Y 5n
where here the limits of integration would change if you were to consi der afinite straight length.
Carrying out the integration:

Vp:4£[ cosq]q_0
=m[- -D- (-1)

-
ph
which agrees with the two dimensional result.
Although a vortex cannot end in a fluid, we can construct expressions for infinitely long
vortex lines made up of a series of connected straight line segments by combining expressions
developed using the method illustrated here. To do this we simply change the limits of
integration. Two cases are extremely useful for construction of vortex systems, and the formulas
are given here without derivation.

and:
(6-41)

Case #2: the semi-infinite vortex.

This expression is useful for modeling the vortex extending from the wing to downstream
infinity.

G
V, =——(1+cosqq e (6-42)
p 4ph( SCIO)

Figure 6-7. The semi-infinite vortex.
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Case #3: thefinite vortex.

This expression can be used to model the vortex on a wing, and can be joined with two
semi-infinite vortices to form avortex of infinite length, satisfying the vortex theorems.

G
V,, = ——(cosq - cosgp e (6-43)
o 4loh( g1~ COSQy)

Figure 6-8. Thefinite vortex.

Systems of vortices can be built up using Egns. (6-42) and (6-43) and the vortex theorems.
The algebra can become tedious, but there are no conceptual difficulties.

6.5 The Horseshoe Vortex

There is a specific form of vortex used in the traditional vortex lattice method. We now use
the expressions developed from the Biot-Savart Law to create a “horseshoe vortex”, which
extends from downstream infinity to a point in the field “A’, then from point “A” to point “B,”
and another vortex from point “B” downstream to infinity. The velocity induced by this vortex is
the sum of the three parts. The basic formulas were presented in the previous section. Here we
extend the analysis of the previous section, following the derivation and notation of Bertin and
Smith.** In particular, the directions of the induced flow are made more precise. Our goal is to
obtain the expression for the velocity field at a general point in space (X,y,2) due to the specified
horseshoe vortex.

To create a horseshoe vortex we will use three straight line vortices: one finite length vortex
and two semi-infinite vortices. Thisisillustrated in Fig. 6-9. To start our analysis, we rewrite the
Biot-Savart Law in the Bertin and Smith notation,* which is given in Fig. 6-10.
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B
G G
A
¥
G
¥
Figure 6-9. The horseshoe vortex.
ro = AB
r= AC
r, = BC

Figure 6-10. Nomenclature for induced velocity calculation.

The next step isto relate the angles to the vector definitions. The definition of the dot product
IS used:

A B = |A|B| cosq (6-44)
30 that:
_loX1
cosqy =
|r0|r]J (6-45)
rgXy’
T T

Next, we put these relations into the formula for the finite length vortex segment formula for the
induced velocity field given above in Eq. (6-43).

Vp = (cosqy - cosgy)e (6-46)
4l

so that, substituting using the definition in Eg. (6-44), we get

v. =S Irol aEr'0"“1 o971, 1)
P ap 0 rd&rolrl” Tl Aol 2l

(6-47)
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Bertin and Smith* use the relation:

= |f1 r2|| |_|r1 I
T

and we need to demonstrate that thisis true. Consider the parallelogram ABCD shown in the

sketch:

by definition: |ry * rp| = Ay, isthe area of the parallelogram.
Similarly, the area of ABC is:
1
Apgc =—=bh
ABC =

=Sl

Thetotal area of the parallelogram can be found from both formulas, and by equating these two
areas we obtain the expression we are trying to get:

2Apsc =Ap

|ro||rp| =|ry” 1o

which can be rewritten to obtain the expression given by Bertin and Smith:**

| pl |r1 r2|

Collecting terms and making use of the vector identity provided in the sidebar, we obtain the
Bertin and Smith statement of the Biot-Savart Law for afinite length vortex segment:

G rl r> é 39r1 I'2 60 ~
Vp=———5& (6-48)
P 4p " rd & Xgﬂ |f2|zu

For a single infinite length horseshoe vortex we will use three segments, each using the
formula given above. The nomenclature is given in the sketch below. The primary points are the
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connecting points A and B. Between Aand B we use a finite length vortex which is considered a
“bound” vortex, and from A to infinity and B to infinity we define “trailing” vortices that are
parallel to the x-axis.

The general expression for the velocity at a point x, y, z due to a horseshoe vortex at (X1,
Y1 Z1n)» (X2n.Y2n, Zon) With trailing vortices parallel to the x-axis is (from Bertin and Smith™):

V= VAB +VA¥ +VB¥ (6_49)

where the total velocity is the sum of the contributions from the three separate straight line
vortex segments making up the horseshoe vortex, as shown in Fig. 6-11.

A

z

X

Figure 6-11. Definitions for notation used in induced vel ocity expressions.

The corner points of the vortex, A and B, are arbitrary, and are given by:

A= A(x.l.n!yln’zln) (6-50)
B = B(X2n, Y2n,Z2n)

We now write the expression for the velocity field at a general point in space (x,y,z) due to
the horseshoe vortex system. At C(x,y,2) find the induced velocity due to each vortex segment.
Start with AB, and use Fig. 6-12.

Now we define the vectors as:
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o :(X2n - Xln)i +(Y2n - Y1n)j +(22n - Z1n)k
r1=(X- % )i+(y- ¥in)i + (z- zn)k
ro =(X- Xon)i +(Y- Yon)i +(z- zp)k

~
A N \ r
N \ 2
\\ \
r \\ \
1 ~
~ \
\\\\

C(xy.2)

Figure 6-12. Velocity induced at Point C due to the vortex between A and B.

and we simply substitute into:
G rr, & n r, 0
ey Ll L
4p "1 e r1| r2|ra
%/_J
Y W
Considering the bound vortex on AB first we obtain,

\% =;§V\}2Y
AB 4p O

(6-51)

(6-52)

(6-53)

where Y and Ware lengthy expressions. By following the vector definitions, Egn. (6-53) can be

written in Cartesian coordinates. The vector Y is:
Yy = r{" ro
I rl
'[(y Yin)(Z- 2n)- (Y- ¥on)(z - 21n ]'
|[(x xin)(Z- Zon)- (X- Xon)(z- zln]

f
y
_ f+[(x- Xan (¥ - Y2n) - (X - Xan)(y - yln)] b

- )z 20)- (v von)(2- zln)]z
.I:,.+[(X' ¥in)(Z- Zon)- (X~ on)(z- i) y

¥+[(x - Xqn)(¥ - Yzn) - (X- Xen)(y - yl”)] b
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The scalar portion of the expression, W, is:

W= grg xlL - 1o w22
r1| |r2|fa

_ [(in' Xin X X- Xan)* (¥an - Yan Y- Yin) * (Zn - 2n)(z- Zln)] . (6-55)
JO a2+ (v yin)® +(z- 2n)°
i [(XZn - X.Ln)(x' X2n)"'(Y2n - Y1n)(y' YZn)"'(ZZn - Zln)(z - ZZn)]

2 2 2
\/(X' %on)” +(Y- Yon )" *+(z- 2n)
We find the contributions of the trailing vortex legs using the same formula, but redefining

the points 1 and 2. Then, keeping the 1 and 2 notation, define a downstream point, “3” and let x3

go to infinity. Thusthe trailing vortex legs are given by:

. é u
v _Gh' ( “zn)i+(%n- YK Lo o, X~ Xin 0 (6-56)
A¥ = 2+ NG Y Valv. v V(s o U
fl(z- zn)” +(ym - ¥) e \/(X Xin)” +(y- ¥in)” +(z- zn)" g
and
U
Vey = Cn' (z- Zzn)J+(yzn y)k' X- %on G (6-57)

4pf I Z- Z2n y2n Ibe \/ X X2n y y2n) (Z' ZZn) Q
Note that G, is contained linearly in each expression, so that the expression given above can
be arranged much more compactly by using (6-49) with (6-52), (6-56), and (6-57) as:
m= Cm&h (6-58)

and Cyy isan influence coefficient for the nth horseshoe vortex effect at the location m,

including all three segments.

Now that we can compute the induced velocity field of a horseshoe vortex, we need to
decide where to place the horseshoe vortices to represent alifting surface.

6.6 Selection of Control Point/Vortex L ocation

Since we are interested in using the horseshoe vortex defined above to represent a lifting
surface, we need to examine exactly how this might be done. In particular: where do you locate
the vortex, and where do you locate a control point to satisfy the surface boundary condition?
Tradition has been to determine their locations by comparison with known results. In particular,
we use two dimensional test cases, and then apply them directly to the three dimensiona case.
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An alternate distribution based on numerical properties of quadrature formulas has been derived
by Lan. Section 6.11 will demonstrate the use of his vortex/control point locations in the inverse
case, where the pressure is given, and the shape of the surface is sought.

a) Smplest Approach: A Flat Plate

Consider representing the flow over aflat plate airfoil by a single vortex and control point.
Comparing with the known result from thin airfoil theory we determine the spacing between the
vortex and control point which produces alift identical with the thin airfoil theory value.

Consider the flat plate as sketched in Fig. 6-13.

/ control point

o

Figure 6-13. The notation for control point and vortex location analysis.

The velocity at the control point, cp, due to the point vortex is:

_ G

V .
cp 2pr

The flow tangency condition was given above as.

and ignoring camber:

or:

Now, we equate vgc and Vep:

resulting in the expression for a:

3/11/98
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V¥ dx
Vec _
Vy
VBC:-aV¥
_E:_av¥
2pr

(6-59)

(6-60)

(6-61)

(6-62)

(6-63)
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-_© : (6-64)
20rVy
To make use of thisrelation, recall the Kutta-Joukowsky Theorem:
L=rWG (6-65)
and the result from thin airfoil theory:
L=3rw c 2pa. (6-66)
g xef CL

Equate the expressions for lift, Egns. (6-65) and (6-66) and substitute for a using the
expression in Eqn. (6-64) given above:

r\ G=3 rvgc2pa
= Jrvéc2p G (6-67)
2pr\i
1: 1(_:
2r
and finally:
c
_c (6-68)
2

This defines the relation between the vortex placement and the control point in order for the
single vortex model to reproduce the theoretical lift of an airfoil predicted by thin airfoil theory.
Since the flat plate has constant (zero) camber everywhere, this case doesn’t pin down placement
(distance of the vortex from the leading edge) completely. Intuitively, the vortex should be
located at the quarter-chord point since that is the location of the aerodynamic center of a thin
flat plate airfoil. The next example is used to determine the placement of the vortex.

b) Determine placement of the vortex using parabolic camber model.

Rewrite the velocity at the control point due to the point vortex in a little more detail, where
a denotes the location of the vortex, and b the location of the control point:

G
Vep = - ——— 6-69
> a-0) e
and the boundary condition remains the same:
f 0
VBC :V¥ d_)(C - ag. (6—70)
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Equating the above expressions (and dividing by Vy :):

G gife 0o
— 2. 6-71
2p(a- b)V ‘ax %o ©71)

For parabolic camber,

£(%) =4d§—2%(c- X) (672)
we have the slope,
dfC(X) —4d@1 2?‘ (6-73)
so that:
L ;1 0“ (6-74)
2p(a- b)Wy

Now use the result from thin airfoil theory:
L=3rWc2p(a +2d)

and substitute for the lift from the Kutta-Joukowsky theorem. We thus obtain an expression for
the circulation of the vortex in terms of the angle of attack and camber:

G=pWc(a + 2d). (6-75)

Substitute for Gfrom (6-75) into (6-74), and satisfy the boundary condition at x = b:

-p\&ca+2d d@l ng

2p(b- a)w
or:
lecd - a8 g@@l (6-76)
2§b_ ~Jfa +2d) = adg- 285 a.
To betruefor arbitrary a, d, the coefficients must be equal:
Jlec 0;: i
2¢b-a (6-77)
b- a%_ 42[ 2
and we solve for a and b. Thefirst relation can be solved for (b-a):
(b-a)=< (6-78)

2
and we obtain the same results obtained above, validating our previous analysis (r = ¢/2).
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Now, rewrite the 2nd equation:

e ou
- :4,\ - 2?—)7' -
C CzB(b a)

or:

é ouc
-C =43l- 2?—)*'—
cH2

and solve for b/c:

(S ouU
-1:2A-2§3?'
c
_E:]__ 2?_)9
2 co
C 2 2
b_13_3
c 22 4.
and use this to solve for a/c starting with Egn. (6-78) :
C
b-a)=-=
(b-a)==
or:
b a_l
c c 2
and:
a_b 131
c ¢ 2 4 2
Finally:
a_l
c 4

(6-79)

(6-80)

(6-81)

(6-82)

Thus the vortex is located at the 1/4 chord point, and the control point is located at the 3/4
chord point. Naturally, thisis known as the “1/4 - 3/4 rule.” It's not a theoretical law, simply a
placement that works well and has become arule of thumb. It was discovered by Italian Pistolesi.
Mathematical derivations of more precise vortex/control point locations are available (see Lan®),

but the 1/4 - 3/4 rule iswidely used, and has proven to be sufficiently accurate in practice.
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To examine the use of these ideas we present a two-dimensional example. The airfoil is
divided into a number of equal size panels. Each panel has a vortex at the quarter chord point and
the non-penetration condition is satisfied at the three-quarter chord point. We use the example to
illustrate the accuracy of the classical thin airfoil theory formulation. In Fig. 6-14, we compare
the results obtained for a 5% circular arc camber.” Three solutions are presented. The linear
theory curve uses classical thin airfoil theory with results obtained satisfying the boundary
condition on the mean surface. This is compared with numerical results for the case where the
boundary condition is applied exactly on the camber line, and the result obtained applying the
boundary condition using the approximate method described above. The difference between
placing the vortex on the actual camber surface and satisfying the boundary condition on the
actual surface, and the more approximate traditional approach of locating the vortex and control
point on the mean surface is extremely small.

o  DCp bc's on camberline
s DCpbc's onaxis
DCp linear theory

0.90

o c'o J S Y 7YY P an
0.70
0.60
0.50

0.40

5% Circular arc camber line
a=0°
40 panels

0.30

0.20

0.10

Figure 6-14. Comparison in 2D of the 1/4-3/4 rule for vortex-control point locations with
linear theory, and including a comparison between placing the vortex and
control point on the camber line or on the axis.

" A relatively large camber for apractical airfoil, the NACA 4412 example we used in Chapter 4 was an extreme
case, and it has 4% camber.
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6.7 TheClassical Vortex Lattice M ethod

There are many different vortex lattice schemes. In this section we describe the “classical”
implementation. Knowing that vortices can represent lift from our airfoil analysis, and that one
approach is to place the vortex and then satisfy the boundary condition using the “1/4 - 3/4 rule,”
we proceed as follows:

1.

2.

Divide the planform up into alattice of quadrilateral panels, and put a horseshoe
vortex on each panel.

Place the bound vortex of the horseshoe vortex on the 1/4 chord element line of
each panel.

Place the control point on the 3/4 chord point of each panel at the midpoint in the
spanwise direction (sometimes the lateral panel centroid location is used) .

Assume aflat wake in the usual classical method.

Determine the strengths of each G, required to satisfy the boundary conditions by

solving a system of linear equations. The implementation is shown schematically
in Fig. 6-15.

/ bound vortices
% control points
s X \

>

<

- x
a :

Trailing vortices extend to infinity

Figure 6-15. The horseshoe vortex layout for the classical vortex lattice method.

Note that the lift is on the bound vortices. To understand why, consider the vector statement

of the Kutta-Joukowski Theorem, F =rV ~ G. Assuming the freestream velocity is the primary

contributor to the velocity, the trailing vortices are parallel to the velocity vector and hence the
force on the trailing vortices are zero. More accurate methods find the wake deformation
required to eliminate the force in the presence of the complete induced flowfield.
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Next, we derive the mathematical statement of the classical vortex lattice method described
above. Firgt, recall that the velocity induced by a single horseshoe vortex is

Vi = CrnGn- (6-60)

This is the velocity induced at the point m due to the nth horseshoe vortex, where Cmnisa
vector, and the components are given by Equations 6-54, 6-58 and 6-59.
The total induced velocity at m due to the 2N vortices (N on each side of the planform) is:

2N

Vining = Uning! * Viming + WinypgK = alcm,nc;h. (6-83)
n=

The solution requires the satisfaction of the boundary conditions for the total velocity, which
is the sum of the induced and freestream velocity. The freestream velocity is (introducing the
possibility of considering vehicles at combined angle of attack and sideslip):

Vy = W cosa coshi - W sinbj +\ sina cosb k (6-84)
so that the total velocity at point mis:
= (W cosa cosb +“mind)i+('v¥ sinb +Vmind)j + (Vg sina cosb +wy, )k - (6-85)

The values of the unknown circulations, G,, are found by satisfying the non-penetration

boundary condition at all the control points simultaneously. For steady flow thisis

V=0 (6-1)
where the surface is described by
F(x,y,2) = 0. (6-86)
Equation (6-1) can then be written:
V x— N =V NF=0. (6-87)
INF|

This equation provides freedom to express the surface in a number of forms. The most general
form is obtained by substituting Egn. (6-85) into Egn. (6-87) using Egn. (6-83). This can be
written as:

(Vy cosa cosb + umind)i +(— % sinb +V"]nd)j + (W sina cosb +w, o

F  IF TF u_ &%)

@ﬁ(l +— +— H_

or:
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é 2N ® o 2N u
§ W cosacosb + g Crn, @) +g— Vy sinb + a Gnn Gh—J +(W sina cosh + § CmnkGh)kux
e n=1 n=1 2 n=1 B
s [ +Ej +E q=0
ex Ty 19z
(6-89)
Carrying out the dot product operation and collecting terms:
2N qF & 2N 0
—(V¥ cosa cosb + § G, G)+ _§v¥ snb+Q Cyp Giz+
T n=1 Ty n=1 ' g
2N
(V¥ sina cosb + a CmnGn) =0-  (6-90)
n=1

Recall that Egn. (6-90) is applied to the boundary condition at point m. Next, we collect terms to
clearly identify the expression for the circulation. The resulting expression defines a system of
eguations for al the panels, and is the system of linear algebraic equations that is used to solve
for the unknown values of the circulation distribution. Theresultis:
2NaEm:Cm +EC ﬂFC C%-- WA osacosbﬂ:-smbE +snacostl‘J
Q Ex i Ty o g omag g x y 12t
m=1,..2N (6-91)
This is the general equation used to solve for the values of the circulation. It is arbitrary,

containing effects of both angle of attack and sidedlip (if the vehicle is at sidedlip the trailing
vortex system should by yawed to aign it with the freestream).

If the surface is primarily in the x-y plane and the sidedlip is zero, we can write a simpler
form. In this case the natural description of the surfaceis

z= f(x,y) (6-92)
and
F(x,y,2) = z- f(x,y)=0. (6-93)
The gradient of F becomes
E:_ﬂ_f E:_ﬂ_f E:l (6'94)

x x fy Ty 1z
Substituting into the statement of the boundary condition, Egn. (6-91), we obtain:

g fif i u & If )
g-mni ~ g omni T g G = — -sna~ . . (695
r?-:lgcm,nk ﬂXCm,ni ﬂyq“’”iHG‘ V¥gcosa i sna’,  m 1...2N- (6-99)

This equation provides the solution for the vortex lattice problem.
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Note that if an essentially vertical surface is of interest, the form of F is more naturally

F=y-9(x2,

and this should be used to work out the boundary condition in asimilar fashion.

To illustrate the usual method, consider the simple planar surface case, where there is no
dihedral. Furthermore, recalling the example in the last section and the analysis at the beginning
of the chapter, the thin airfoil theory boundary conditions can be applied on the mean surface,
and not the actual camber surface. We also use the small angle approximations. Under these
circumstances, Eqg. (6-95) becomes:

2N y
o f

Wm = A Cnp, G = W d;-ag . (6-96)
n=1

m
Thus we have the following equation which satisfies the boundary conditions and can be used to
relate the circulation distribution and the wing camber and angle of attack:

2N . i}
o &G, 0 @ o)

Cmp, G2+ = -ax m=1,...,2N- (6-97)
21 "k gV¥ g €dx 9y -

Equation (6-97) contains two cases:

1. The Analysis Problem. Given camber slopes and a, solve for the circulation strengths,
(GVy) [ asystem of 2N simultaneous linear equations].
or

2. The Design Problem. Given (G/Vy ), which corresponds to a specified surface
loading, we want to find the camber and a required to generate this loading (only
requires ssmple algebra, no system of equations must be solved).

Notice that the way df/dx and a are combined illustrates that the division between camber,
angle of attack and wing twist is arbitrary (twist can be considered a separate part of the camber
distribution, and is useful for wing design). However, care must be taken in keeping the
bookkeeping straight.

One reduction in the size of the problem is available in many cases. If the geometry is
symmetrical and the camber and twist are also symmetrical, then G, is the same on each side of
the planform (but not the influence coefficient). Therefore, we only need to solve for NG's, not
2N (this is true also if ground effects are desired, see Katz and Plotkin'). The system of
eguations for this case becomes:

<|>\| . N o £ ..
r?-:lngMMeft * Gk igne lﬁ\z] P d_>((: ) ag m=1...N. (6-98)

m
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Thisiseasy. Why not just program it up ourselves? Y ou can, but most of the work is:

A. Automatic layout of panelsfor arbitrary geometry. Asan example, when considering
multiple lifting surfaces, the horseshoe vortices on each surface must “line up”. The
downstream leg of a horseshoe vortex cannot pass through the control point of
another panel.

and

B. Converting G, to the aerodynamics values of interest, C, , Cy,, €tc., and the spanload,
istedious for arbitrary configurations.

Nevertheless, many people (including previous students in the Applied Computational
Aerodynamics class) have written vim codes. The method is widely used in industry and
government for aerodynamic estimates for conceptual and preliminary design predictions. The
method provides good insight into the aerodynamics of wings, including interactions between
lifting surfaces.

Typical analysis uses (in adesign environment) include

* Predicting the configuration neutral point during initial configuration layout, and
studying the effects of wing placement and canard and/or tail size and location.

 Finding the induced drag, Cp;, from the spanload in conjunction with farfield methods.

» With care, estimating control and device deflection effectiveness (estimates where
viscous effects may be important require calibration. Some examples are shown in the
next section. For example, take 60% of the inviscid value to account for viscous losses,

and also realize that a deflection of df = 20 - 25° is about the maximum useful device
deflection in practice).

* Investigating the aerodynamics of interacting surfaces.
» Finding thelift curve slope, C| 5, approach angle of attack, etc.
Typical design applicationsinclude:

 |nitial estimates of twist to obtain a desired spanload, or root bending moment.
» Starting point for finding a camber distribution in purely subsonic cases.

Before examining how well the method works, two special cases require comments. The first
case arises when a control point is in line with the projection of one of the finite length vortex
segments. This problem occurs when the projection of a swept bound vortex segment from one
side of the wing intersects a control point on the other side. This happens frequently. The
velocity induced by this vortex is zero, but the equation as usually written degenerates into a
singular form, with the denominator going to zero. Thus a special form should be used. In
practice, when this happens the contribution can be set to zero without invoking the specia form.
Figure 6-16 shows how this happens. Using the Warren 12 planform and 36 vortices on each side
of the wing, we see that the projection of the line of bound vortices on the last row of the left
hand side of the planform has a projection that intersects one of the control points on the right
hand side.
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Figure 6-16. Example of case requiring special treatment, the intersection of the projection of

avortex with a control point.

A model problem illustrating this can be constructed for a simple finite length vortex
segment. The velocity induced by this vortex is shown in Fig. 6-17. When the vortex is
approached directly, x/I = 0.5, the velocity is singular for h = 0. However, as soon as you
approach the axis (h = 0) off the end of the segment (x/I > 1.0) the induced velocity is zero. This
illustrates why you can set the induced velocity to zero when this happens.

This second case that needs to be discussed arises when two or more planforms are used with
this method. Thisis one of the most powerful applications of the vortex lattice method. However,
care must be taken to make sure that the trailing vortices from the first surface do not intersect
the control points on the second surface. In this case the induced velocity is in fact infinite, and
the method breaks down. Usually this problem is solved by using the same spanwise distribution
of horseshoe vortices on each surface. This aligns the vortex the legs, and the control points are
well removed from the trailing vortices of the forward surfaces.
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Figure 6-17. Velocity induced by finite straight line section of a vortex.
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6.8 Examples of the Use and Accuracy of the vim M ethod

How well does the method work? In this section we describe how the method is normally
applied, and present some example results obtained using it. More examples and a discussion of
the aerodynamics of wings and multiple lifting surfaces are given in Section 6.10.

The vortex lattice layout is clear for most wings and wing-tail or wing-canard configurations.
The method can be used for wing-body cases by simply specifying the projected planform of the
entire configuration as a flat lifting surface made up of a number of straight line segments. The
exact origin of this somewhat surprising approach is unknown. The success of this approach is
illustrated in examples given below.

To get good, consistent and reliable results some simple rules for panel layout should be
followed. This requires that a few common rules of thumb be used in selecting the planform
break points: i) the number of line segments should be minimized, ii) breakpoints should line up
streamwise on front and rear portions of each planform, and should line up between planforms,
iii) streamwise tips should be used, iv) small spanwise distances should be avoided by making
edges streamwise if they are actually very highly swept, and v) trailing vortices from forward
surfaces cannot hit the control point of an aft surface. Figure 6-18 illustrates these requirements.

y

line up spanwise >
breaks on a common
break, and make the ‘ |
edge streamwise

\N / first planform

' Model Tips
wstartsimple

* crude representation
of the planform is all right

* keep centroids of areas
the same: actual planform to
vim model

second planform

¥ x

Figure 6-18. Example of avim model of an aircraft configuration. Note that one side of a
symmetrical planform is shown.
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Examples from three reports have been selected to illustrate the types of results that can be
expected from vortex lattice methods. They illustrate the wide range of uses for the vim method.

Aircraft configurations examined by John Koegler®™

As part of a study on control system design methods, John Koegler at McDonnell Aircraft
Company studied the prediction accuracy of several methods for fighter airplanes. In addition to
the vortex lattice method, he also used the PAN AIR and Woodward Il panel methods (see
Chapter 4 for details of the panel methods). He compared his predictions with the three-surface
F-15, which became known as the STOL/Maneuver demonstrator, and the F-18. These
configurations are illustrated in Fig. 6-19.

Figure 6-19. Configurations used by McDonnell Aircraft to study vim method accuracy
(Reference 15).
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Considering the F-15 STOL/Maneuver demonstrator first, the basic panel layout is given in
Figure 6-20. This shows how the aircraft was modeled as a flat planform, and the corner points
of the projected configuration were used to represent the shape in the vortex lattice method and
the panel methods. Note that in this case the rake of the wingtip was included in the
computational model. In this study the panel methods were also used in a purely planar surface
mode. In the vortex lattice model the configuration was divided into three separate planforms,
with divisions at the wing root leading and trailing edges. On this configuration each surface
was at a different height and, after some experimentation, the vertical distribution of surfaces
shown in Figure 6-21 was found to provide the best agreement with wind tunnel data.

dhcen
L i

i
i, 1
!.:
o H
Y, LY
L

Vortex Lattice Woodward Pan Air
233 panels 208 panels 162 panels

Figure 6-20. Panel models used for the three-surface F-15 (Ref.15).

Figure 6-21. Canard and horizontal tail height representation (Ref. 15).
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The results from these models are compared with wind tunnel datain Table 6-1. The vortex
lattice method is seen to produce excellent agreement with the data for the neutral point location,
and lift and moment curve slopes at Mach 0.2.

Subsonic Mach number effects are smulated in vim methods by transforming the Prandtl-
Glauert equation which describes the linearized subsonic flow to Laplace’s Equation using the
Gothert transformation. However, this is only approximately correct and the agreement with
wind tunnel data is not as good at the transonic Mach number of 0.8. Nevertheless, the vim
method is as good as PAN AIR used in this manner. The vim method is not applicable at
supersonic speeds. The wind tunnel data shows the shift in the neutral point between subsonic
and supersonic flow. The Woodward method, as applied here, over predicted the shift with Mach
number. Note that the three-surface configuration is neutral to slightly unstable subsonically, and
becomes stable at supersonic speeds.

Figure 6-22 provides an example of the use of the vim method to study the effects of
moving the canard. Here, the wind tunnel test result is used to validate the method and to provide
an “anchor” for the numerical study (it would have been useful to have to have an experimental
point a -15 inches). This is typical of the use of the vim method in aircraft design. When the
canard is above the wing the neutral point is essentially independent of the canard height.
However when the canard is below the wing the neutral point varies rapidly with canard height.

Table6-1
Three-Surface F-15 Lonaitudinal 1Derivatives
Neutral C C
Data Source Point ma La

(% mac) (1/deg) (1/deg)

Wind Tunnel 15.70 .00623 .0670

_ Vortex Lattice 15.42 .00638 .0666
M=02 Woodward 14.18 .00722 .0667
Pan Air 15.50 .00627 .0660

Wind Tunnel 17.70 .00584 .0800

M=0.8 Vortex Lattice 16.76 .00618 .0750
Pan Air 15.30 .00684 .0705

_ Wind Tunnel 40.80 -.01040 .0660
M=16 Woodward 48.39 -.01636 .0700

from reference 15, Appendix by John Koegler
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Figure 6-22. Effect of canard height variation on three-surface F-15 characteristics (Ref. 15).

Control effectiveness is also of interest in conceptual and preliminary design, and the vim
method can be used to provide estimates. Figure 6-23 provides an apparently accurate example
of this capability for F-15 horizontal tail effectiveness. Both C, 4, and C,q, are presented. The

vim estimate is within 10% accuracy at both Mach .2 and .8. However, the F-15 has an all
moving horizontal tail to provide sufficient control power under both maneuvering and
supersonic flight conditions. Thus the tail effectiveness presented here is effectively a measure of
the accuracy of the prediction of wing lift and moment change with angle of attack in a non-
uniform flowfield, rather than the effectiveness of a flap-type control surface. A flapped device
such as a horizontal stabilizer and elevator combination will have significantly larger viscous
effects, and the inviscid estimate from a vortex lattice or panel method (or any inviscid method)
will overpredict the control effectiveness. Thisis shown next for an aileron.

The aileron effectiveness for the F-15 presented in Fig. 6-24 is more representative of
classical elevator or flap effectiveness correlation between vim estimates and experimental data.
This figure presents the roll due to aileron deflection. In this case the device deflection is subject
to significant viscous effects, and the figure shows that only a portion of the effectiveness
predicted by the vim method is realized in the actual data. The vim method, or any method,
should always be calibrated with experimental data close to the cases of interest to provide an
indication of the agreement between theory and experiment. In this case the actual results are
found to be about 60% of the inviscid prediction at low speed.
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Figure 6-23. F-15 horizontal tail effectiveness (Ref. 15).
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Figure 6-24. F-15 aileron effectiveness (Ref. 15).
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The F/A-18 was aso considered by Koegler. In this case the contributions to the
longitudinal derivatives by the wing-tip missiles and the vertical tail were investigated (the
vertical tails are canted outward on the F/A-18). The panel scheme used to estimate the effects of
the wing-tip missile and launcher is shown in Figure 6-25. The results are given in Table 6-2.
Here the computational increments are compared with the wind tunnel increments. The vim
method over predicts the effect of the wing-tip missiles, and under predicts the effects of the
contribution of the vertical tail to longitudinal characteristics due to the cant of the tail (recall
that on the F/A-18 the rudders are canted inward at takeoff to generate an additional nose up
pitching moment) .

th
-

Figure 6-25. F/A-18 panel scheme with wing-tip missile and launcher (Ref. 15).
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Table 6-2
F/A-18 Increments Due To Adding Wing-Tip Missilesand
Launchers,
and Vertica Talls
DNeutral
Number | oy mac) | (Udeg) | (Udeg)

Wind
Tunnel 0.2 1.10 -0.00077 0.0020
0.8 1.50 -0.00141 0.0030
" 1.6 -1.60 0.00148 0.0030
Wing Tip | Vortex 0.2 1.48| -0.00121 0.0056

Missiles Lattice
and

Launchers " 0.8 211 -0.00198 0.0082
Woodward 0.2 1.52 -0.00132 0.0053
" 0.8 1.77 -0.00180 0.0079
1.6 -0.17 0.00074 0.0022

Wind
Tunnel 0.2 1.50 -0.00110 0.0050
_ " 0.8 2.00 -0.00202 0.0080

Vertica

Tails Vortex
| attice 0.2 111 -0.00080 0.0022
" 0.8 1.32 -0.00108 0.0026

from refernce 15, Appendix by John Koegler

Finally, the effects of the number of panels and the way they are distributed is presented in
Figure 6-26. In this case the vim method is seen to take between 130 to 220 panels to produce
converged results. For the vortex lattice method it appears important to use a large number of
spanwise rows, and arelatively small number of chordwise panels (5 or 6 appear to be enough).
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Figure 6-26. F/A-18 panel convergence study (Ref. 15).

Although this study has been presented last in this section, a study like this should be
conducted before making a large number of configuration parametric studies. Depending on the
relative span to length ratio the paneling requirements may vary. The study showed that from
about 120 to 240 panels are required to obtain converged results. The vortex lattice methods
obtains the best results when many spanwise stations are used, together with a relatively small
number of chordwise panels. In that case about 140 panels provided converged results.
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Sender lifting body results from Jim Pittman®

To illustrate the capability of the vortex lattice method for bodies that are more fuselage-like
than wing-like, we present the lifting body comparison of the experimental and vim results
published by Jim Pittman of NASA Langley. Figure 6-27 shows the configuration used. Figure
6-28 provides the results of the vortex lattice method compared with the experimental data. In
this case the camber shape was modeled by specifying camber slopes on the mean surface. The
model used 138 vortex panels. The bars at severa angles of attack illustrate the range of
predictions obtained with different panel arrangements. For highly swept wings, leading edge
vortex flow effects are included, as we will describe in Section 6.12. The program VLMpc
available for this course contains the option of using the leading edge suction analogy to model
these effects. Remarkably good agreement with the force and moment data is demonstrated in
Fig. 6-28. The nonlinear variation of lift and moment with angle of attack arises due to the
inclusion of the vortex lift effects. The agreement between data and computation breaks down at
higher angles of attack because the details of the distribution of vortex flow separation are not
provided by the leading edge suction analogy. The drag prediction is aso very good. The
experimental drag is adjusted by removing the zero lift drag, which contains the drag due to
friction and separation. The resulting drag due to lift is compared with the vim estimates. The
comparisons are good primarily because this planform is achieving, essentially, no leading edge
suction, and hence the drag issimply Cp = C tana.

copyrighted figure from the AIAA Journal of Aircraft

Figure 6-27. Highly swept lifting body type hypersonic concept (Ref. 16).
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copyrighted figure from the AIAA Journal of Aircraft

Figure 6-28. Comparison of C , C,;, and Cp predictions with data (Ref. 16).

Non-planar results from Kalman, Rodden and Giesing,"

All of the examples presented above considered essentially planar lifting surface cases. The
vortex lattice method can also be used for highly non-planar analysis, and the example cases
used at Douglas Aircraft Company in a classic paper'’ have been selected to illustrate the
capability. To avoid copyright problems, several of the cases were re-computed using the
Virginia Tech code JKayVLM, and provide an interesting comparison with the original results
from Douglas. Figure 6-29 presents an example of the prediction capability for the pressure
loading on awing. In this case the geometry is complicated by the presence of awing fence. The
pressures are compared with data on the inboard and outboard sides of the fence. The agreement
is very good on the inboard side. The comparison is not so good on the outboard side of the
fence. This quality of agreement is representative of the agreement that should be expected using
vortex lattice methods at low Mach numbers in cases where the flow would be expected to be
attached.

Figure 6-30 provides an example of the results obtained for an extreme non-planar case: the
ring, or annular, wing. In this case the estimates are compared with other theories, and seen to be
very good. The figure also includes the estimate of Cy. Although not included in the present
discussion, Cyq and Gy, can be computed using vim methods, and this capability is included in
the vortex lattice method provided here, VL Mpc.
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copyrighted figure from the AIAA Journal of Aircraft

Figure 6-29. Comparison of DC, loading on awings with afence (Ref. 17).

copyrighted figure from the AIAA Journal of Aircraft

Figure 6-30. Example of aerodynamic characteristics of aring wing (Ref. 17).
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Figure 6-31 provides an example of the effects of the presence of the ground on the
aerodynamics of simple unswept rectangular wings. The lift and pitching moment slopes are
presented for calculations made using JKayVLM and compared with the results published by
Kalman, Rodden and Giesing,” and experimental data. The agreement between the data and
calculations is excellent for the lift curve slope. The AR = 1 wing shows the smallest effects of
ground proximity because of the three dimensional relief provided around the wing tips. As the
aspect ratio increases, the magnitude of the ground effects increases. The lift curve slope starts to
increase rapidlyi as the ground is approached.

Solid lines: computed using JKayVLM (Ref. 12)
Dashed lines: from Kalman, Rodden and Giesing (Ref. 17)
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Figure 6-31. Example of ground effects for a simple rectangular wing (a case from Ref. 17).

The wings aso experience a significant change in the pitching moment slope
(aerodynamic center shift), and this is also shown. Note that the predictions start to differ as the
ground is approached. JKayVLM actualy rotates the entire surface to obtain another solution to
use in estimating the lift curve slope. The standard procedure used by most methods is to simply
change the slope condition at the mean line, as discussed previously in this chapter. Because of
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the proximity to the ground, this might be a case where the transfer of the boundary condition
may not be accurate. | have not asked Joe Giesing if he remebers how these calculations were
made (nearly 30 years ago!).

Figure 6-32 presents similar information for the effect of dihedral angle on awing. In this
case the effects of anhedral, where the wing tip approach the ground, are extremely large. The
results of dihedral changes for a wing out of ground effect are shown for comparison. Both
methods agree well with each other, with differences appearing only as the wingtips approach
the ground. Here again, JKayVLM actually rotates the entire geometry, apparently resulting in
an increase in the effects as the tips nearly contact the ground. It also prevents calculations from
being obtained as close to the ground as thepublished results. In making these calculations it was
discovered that the wing panel was rotated and not sheared, so that the projected span decreases
as the dihedral increases, and this produces much more pronounced changes in the lift curve
slope due to the reduction in projected span.

12 | Solid lines: com'puted usiﬁg JKay\/LM (Ref.I 12)
Dashed lines: from Kalman, Rodden and Giesing (Ref. 17)
" ARref = 4, Planform rotated by G.
I | | |
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Cia |
ta | \ /h/c:05
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- Note: Most of the decreasein lift curve slope for the wing out of ground
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Figure 6-32. Example of ground effects for awing with dihedral (a case from Ref. 17).
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6.9 Program VLMpc and theWarren 12 Test Case

This vortex lattice method can be used on personal computers. The version of the Lamar
program described in NASA TN D-7921° fits easily into personal computers, and is available for
student use (students typed this code in from the listing in the TN) as VLM pc. The code and
input instructions are described in Appendix D.6.

This codeis still used in advanced design work, and can be used to investigate many ideasin
wing aerodynamics. As shown above, results can be obtained and used before the large time
consuming methods of CFD are used to examine a particular ideain detail.

This section defines one reference wing case that is used to check the accuracy of vortex
lattice codes. It provides a ready check case for the evaluation of any new or modified code, as
well as a check on the panel scheme layout. Thiswing is known as the Warren 12 planform, and
is defined, together with the “official” characteristics from previous calculations, in Fig. 6-33
below.

AR =22 1.50
L =5354° 1.91421
Slving :2\/_2

|‘

CL =2.743/ rad

a

Cy, =-3.10/rad

J‘
I

0.50

|«

1.41421
Warren-12 Planform
Figure 6-33. Definition and reference results for the Warren-12 wing.

For the results cited above, the reference chord used in the moment calculation is the average
chord (slightly nonstandard, normally the reference chord used is the mean aerodynamic chord)
and the moment reference point is located at the wing apex (which is also nonstandard).
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6.10 Aerodynamics of Wings

With a three-dimensional method available, we can examine the aerodynamics of wings.
Most of the results presented in this section were computed using VL M pc. One key advantage of
the vortex lattice method compared to lifting line theory is the ability to treat swept wings.
Classical Prandtl lifting line theory is essentially correct for unswept wings, but is completely
erroneous for swept wings. Aerodynamics of unswept wings are closely related to the airfoil
characteristics of the airfoil used in the wing. This relationship is less direct for swept wings.
Many of the most important wing planform-oriented characteristics of wings arise when the
planforms are swept. Even though sweep is used primarily to reduce compressibility effects, the
important aerodynamic features of swept wings can be illustrated at subsonic speeds using the
vim method.

6.10.1 - Basic Ideas

Wings are designed to satisfy stability and handling characteristics requirements, while
achieving low drag at the design conditions (usually cruise and sustained maneuver). They must
also attain high maximum lift coefficients to meet field performance and maneuver requirements.
Although these requirements might at first appear overwhelming, a small number of key
characteristics can provide a basic physical understanding of the aerodynamics of wings.

Aerodynamic Center: The first key characteristic is the aerodynamic center of the wing,
defined as location at which dC,/dC; = 0. The neutral point of the configuration is the
aerodynamic center for the entire configuration. The vim method was shown to provide accurate
predictions of the neutral point for many configurations in the previous sections. The location of
the neutral point is important in initial configuration layout to position the wing and any
longitudinal stability and control surfaces at the proper location on the aircraft. Subsequently this
information is fundamental in developing the control system. Wing planform shaping, as well as
positioning, is used to control the location of the configuration neutral point.

Spanload: The next key consideration is the spanload distribution, ccj/c,, where cis the local
chord, c, is the average chord, and ¢ is the local section lift coefficient. The spanload controls
the location of the maximum section lift coefficient, the induced drag, and the magnitude of the
wing root bending moment. The location and value of the maximum section lift coefficient
determines where the wing will stall first.” If the wing airfoil stallsin front of a control surface,
control will be poor at flight conditions where the control becomes very important. The shape of
the spanload, together with the actual value of the wingspan, determines the value of the induced

" For atrapezoidal wing with an elliptic spanload the maximum value of the local lift coefficient occursath =1-1.
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drag. For a specified span, the performance of the wing is evaluated by finding the value of the
span efficiency factor, e, as described in Chapter 5. Finally, the wing root bending moment
provides an indication of the structural loading requirements that the wing structure must be
designed to accommodate. When considering the total system, the basic aerodynamic efficiency
may be compromised to reduce structural wing weight. The shape of the spanload can be
controlled through a combination of planform selection and wing twist. Typica twist
distributions required to produce good wing characteristics are presented below.

The simplest example of planform shaping is the selection of wing aspect ratio, AR, wing
taper, | , and wing sweep, L. While the aerodynamicist would like to see high values the aspect
ratio, several considerations limit aspect ratio. Perhaps the most important limitation is the
increase of wing structural weight with increasing aspect ratio. In addition, the lift coefficient
required to maximize the benefits of high aspect ratio wings increases with the square root of the
aspect ratio. Hence, airfoil performance limits can restrict the usefulness of high aspects ratios,
especialy for highly swept wings based on airfoil concepts. In recent years advances in both
aerodynamics and structures have allowed aircraft to be designed with higher aspect ratios and
reduced sweep. Table 6-3 provides some key characteristics of transport wings designed to
emphasize efficient cruise while meeting takeoff and landing requirements.

Taper: Several considerations are used in selecting the wing taper. For a straight untwisted,
unswept wing, the minimum induced drag corresponds to a taper ratio of about 0.4. However, a
tapered wing is more difficult and hence expensive to build than an untapered wing. Many
genera aviation aircraft wings are built with no taper (all ribs are the same, reducing fabrication
cost, and the maximum section C; occurs at the root, well away from the control surface). To
reduce structural weight the wing should be highly tapered, with | < .4. However, although
highly tapered wings are desirable structurally, the section lift coefficient near the tip may
become high. This consideration limits the amount of taper employed (current jet transports use
taper ratios in the range of 0.2 to 0.3, as well as progressively increasing twist upward from the
tip). As an example, the Aero Commander 500 had an aspect ratio of 9.5 and a taper ratio of 0.5
(it also had -6.5° of twist and the quarter chord of the wing was swept forward 4°).

Sweep: Sweep is used primarily to delay the effects of compressibility and increase the drag
divergence Mach number. The Mach number controlling these effects is approximately equal to
the Mach number normal to the leading edge of the wing, Mg+ = My cosL . The treatise on swept
planforms by Kichemann is very helpful in understanding swept wing aerodynamics.®®
Aerodynamic performance is based on the wingspan, b. For a fixed span, the structural span
increases with sweep, bg = b/cosL, resulting in a higher wing weight. Wing sweep also leads to
aeroelastic problems. For aft swept wings flutter becomes an important consideration. If the wing
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is swept forward, divergence is a problem. Small changes in sweep can be used to control the
aerodynamic center when it is not practical to adjust the wing position on the fuselage (the DC-3
is the most famous example of this approach).

Table 6-3
Typical Planform Characteristics of Major Transport Aircraft
1st Flight |  Aircraft WIS AR L o(cra) !
1957 B707-120 105.6 7.04 35 0.293
1958 DC-8-10 111.9 7.32 30 0.230
1963 B707-320C 110.0 7.06 35 0.250
1970 B747-200B 149.1 6.96 37.5 0.240
1970 L-1011 124.4 8.16 35 0.200
1972 DC-10-30 153.7 7.57 35 0.230
1972 A300 B2 107.9 7.78 28 0.230
1982 A310-100 132.8 8.80 28 0.260
1986 B767-300 115.1 7.99 315 0.182
1988 B747-400 149.9 7.61 37.5 0.240
1990 MD-11 166.9 7.57 35 0.230
1992 A330 119.0 9.3 29.74 0.192
data courtesy of Nathan Kirschbaum

To understand the effects of sweep, the Warren 12 wing is compared with wings of the same
gpan and aspect ratio, but unswept and swept forward. The planforms are shown in Figure 6-34.
The wing leading edge sweep of the aft swept wing becomes the trailing edge sweep of the
forward swept wing. Figure 6-35 provides the spanload and section lift coefficient distributions
from VLMpc. The spanload, cq /c,, isgivenin Fig. 6-35a, where, cisthelocal chord, ¢ isthe
local lift coefficient, based on the local chord, and c, is the average chord, Sb. Using this
nomenclature, the area under the curve is the total wing lift coefficient. Note that sweeping the
wing aft increases the spanload outboard, while sweeping the wing forward reduces the spanload
outboard. This follows directly from a consideration of the vortex lattice model of the wing. In
both cases, the portion of the wing aft on the planform is operating in the induced upwash
flowfield of the wing ahead of it, resulting in an increased spanload. Figure 6-35b shows the
corresponding value of the local lift coefficient. Here the effect of sweep is more apparent. The
forward swept wing naturally results in a spanload with a nearly constant lift coefficient. This
means that a comparatively higher wing lift coefficient can be achieved before the wing stall
begins. The program LIDRAG can be used to compare the span €'s associated with these
spanloads (an exercise for the reader).
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Figure 6-34. Comparison of forward, unswept, and aft swept wing planforms, AR = 2.8.

3/11/98



Aerodynamics of 3D Lifting Surfaces6 - 51

160 T 1 1 1 ]
140 [P % we .
[0~ 0-0—g_qg_ <" %- ]
120 [ —e=3—§= ]
Spanload, - ]
100 |- -
cclc : ]
I "a R i
0.80 ;_ aft swept wing _
0.60 :— unswept wing / ‘
0.40 :— forward swept wing \‘:
N x ]
020 [ _
- Warren 12 planform, sweep changed ]
L ] ] ] ] i
0.00 0.0 0.2 0.6 0.8 1.0
y/(b/2)
a) comparison of spanloads
1.40 ¢ . . . . 1
- aft swept wing 1
1.20 - .
100 [ -
0.80 . -
- forward swept wing ALY
0.60 |- b
N x
0.40 [- .
0.20 |- -
- Warren 12 planform, sweep changed
0.00 1 ] ] ] ]
0.0 0.2 04 0.6 0.8 1.0

yl(b/2)

b) comparison of section lift coefficients

Figure 6-35. Effects of sweep on planform spanload and lift coefficient distributions, AR = 2.8.
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Similar results are now presented for a series of wings with larger aspect ratios (AR = 8)
than the wings used in the study given above. Figure 6-36 shows the planforms used for
comparison, and Figure 6-37 presents the results for the spanwise distribution of lift and section
lift coefficient. These results are similar to the previous results. However, the trends observed
above are in fact exaggerated at the higher aspect ratio.

Aerodynamic problems as well as structural penalties arise when using a swept wing.
Because of the high section lift coefficient near the tip, aft swept wings tend to stall near the tip
first. Since the lift at the tip is generated well aft, the pitching moment characteristics change
when the this stall occurs. With the inboard wing continuing to lift, a large positive increase in
pitching moment occurs when the wingtip stalls. Thisis known as pitchup, and can be difficult to
control, resulting in unsafe flight conditions. Frequently the swept wing pitching moment
characteristics are compounded by the effects of flow separation on the outboard control surface.
Figure 6-38 provides an example of the pitching moment characteristics of an isolated aspect
ratio 10 wing using experimental data.® The figure also includes the predictions from VLM pc.
The agreement is reasonably good at low angle of attack, but deteriorates at high angle of attack
as viscous effects become important. Thisis another reason that sweep is minimized.

Forward
Swept
Wing

Unswept
Wing

< \
N g Aft

| Ny Swept

. Wing

Figure 6-36. Comparison of forward, unswept, and aft swept wing planforms, AR = 8.
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Figure 6-37. Effects of sweep on planform spanload and lift coefficient distributions, AR = 8.
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Figure 6-38. Example of isolated wing pitchup: NACA data™ compared with VLMpc.

To control the spanload, the wing can be twisted. Figure 6-39 shows typical twist
distributions for aft and forward swept wings, obtained from John Lamar’s program L amDes.”
(see Chapter 5 for a description). In each case the twist is used to reduce the highly loaded areas,
and increase the loading on the lightly loaded portions of the wing. For an aft swept wing this
means the incidence is increased at the wing root, known as washin, and reduced, known as
washout, at the wing tip. Just the reverse is true for the forward swept wing. The sudden drop in
required twist at the tip for the forward dwept wing case is frequently seen in typical design
methods and attribute to a weakness in the method and “faired out” when the aerodynamicist
gives his design to the lofting group.

Although geometric sweep is used to reduce the effective Mach number of the airfail, the
geometric sweep is not completely effective. The flowfield resists the sweep. In particular, the
wing root and tip regions tend to effectively unsweep the wing. Aerodynamicists study lines of
constant pressure on the wing planform known as isobars to investigate this phenomenon. Figure
6-40 presents the computed isobars for a typica swept wing® using a transonic small
disturbance method.? The effect is dramatic. The effective sweep may actually correspond to
the isobar line from the wing root trailing edge to the leading edge at the wing tip. To increase
the isobar sweep, in addition to geometric sweep and twist, the camber surface and thickness are
typically adjusted to move the isobars forward at the wing root and aft at the wing tip. Thisisa
key part of the aerodynamic wing design job, regardless of the computational, methodology used
to obtain the predicted isobar pattern.
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Figure 6-39. Typical twist distribution required to improve spanload on swept wings

(b) Upper Surface Isobars

Figure 6-40. Example of the isobar distribution on an untwisted swept wing.”

Using the wing planform and twist, together with a constant chord loading, Fig. 6-41
provides the camber lines required to support the load near the root, the mid-span and the wing
tip. These results were also computed using LamDes.® At each station a similar chord load is
specified. Here we clearly see the differences in the camber required. This is an explicit
illustration of the modification to an airfoil camberline required to maintain two-dimensional
airfoil-type performance when the airfoil is placed in a swept wing. These modifications
represent the explicit effects of the three dimensionality of the flowfield.
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Figure 6-41. Comparison of camber lines required to devel op the same chord load shape at
the root, mid-span and tip region of an aft swept wing. (from LamDes®)

Many other refinements are available to the aerodynamic designer. Insight into both the
human and technical aspects of wing design prior to the introduction of computational
aerodynamicsis available in two recent books describing the evolution of the Boeing series of jet
transports.?# One interesting refinement of swept wings has been the addition of trailing edge
area at the wing root. Generally known as a“Y ehudi flap”, this additional area arises for at least
two reasons. The reason cited most frequently is the need to provide structure to attach the
landing gear at the proper location. However, the additional chord lowers the section lift
coefficient at the root, where wing-fuselage interference can be a problem, and the lower
required section lift makes the design job easier. Douglas introduced this planform modification
for swept wings on the DC-8, while Boeing did not incorporate it until the -320 model of the
707. However, the retired Boeing engineer William Cook, in his book,? on page 83, says it was
first introduced on the B-29 to solve an interference problem between the inboard nacelle and the
fuselage. The aerodynamic benefit to the B-29 can be found in the paper by Snyder.% Cook says,
in aletter to me, that the device got its name because each wind tunnel part needed a name and
there was a popular radio show at the time that featured the continuing punch line “Whao’'s
Yehudi?’ (the Bob Hope Radio show featuring Jerry Colonna, who had the line). Thus, a Boeing
engineer decided to call it a Yehudi flap. This dight extra chord is readily apparent when
examining the B-29, but is very difficult to photograph.
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6.10.2 The Relation Between Airfoils and Swept Wings

Chapter 4 examined the basic aerodynamics of airfoils using panel methods. This chapter has
emphasized the planform shape, and its analysis using vortex lattice methods. The connection
between the airfoil and planform is important. In most cases the integration of the airfoil concept
and the wing planform concept is crucia to the development of a successful configuration.
Simple sweep theory can be used to provide, at least approximately, the connection between the
airfoil and the planform. The typical aerodynamic design problem for an airfoil in a wing is
defined by specifying the streamwise thickness to chord ratio, t/c, the local section lift
coefficient, C| 4es, and the Mach number. This three-dimensional problem is then converted to a

corresponding two-dimensional problem. The desired two dimensional airfoils are then designed
and transformed back to the streamwise section to be used as the wing airfoil section. Examples
of the validity of this technique, together with details on other properties, including the “cosine
cubed” law for profile drag due to lift are available in the NACA report by Hunton.?® The
relations between the streamwise airfoil properties and the chordwise properties (values normal
to the leading edge, as shown in Fig. 6-42) are:

4
L
Cnh = CgcosL
o Mp, = MycosL
G, \P" t/c)p = t/c)dcosL (6- 99)
G and
ClLs= C|ncos?L

v

Figure 6-42. Swept wing definitions.

These relations demonstrate that the equivalent two-dimensional airfoil is thicker, operates
at alower Mach number, and at a higher lift coefficient than the three dimensional wing airfoil
section. Taper effects on real wings require the selection of an effective sweep angle. Numerous
approaches have been used to determine the effective angle, where guidance has been obtained
by examining experimental data. The quarter chord sweep or shock sweep are typical choices.
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One good example of airfoil/planform matching is the Grumman X-29. In that case wind tunnel
testing of advanced transonic maneuver airfoil sections on aft swept wing configurations led the
aerodynamicists (Glenn Spacht in particular) to conclude that the proper planform to take
advantage of the advanced airfoil section performance should be swept forward.

6.10.3 - Wing/Tail and Canard/Wing Aerodynamics

Additional lifting surfaces are used to provide control over a wide range of conditions. If
modern advanced control systems are not used, the extra surface is also designed, together with
the rest of the configuration, to produce a stable design. Considering aft tail configurations first,
the problem of pitchup described above for isolated wings must be reconsidered for aft tailled
configurations. In particular, T-tail aircraft can encounter problems when the horizonta tail
interacts with the wake of the wing a stall. Figure 6-43 provides the pitching moment
characteristics of the DC-9.% The initial abrupt nose-down characteristic is the result of careful
design, before the large pitchup develops. Note that even though pitch-up is a viscous effect,
inviscid calculations clearly show why it happens, and can provide valuable information.

Figure 6-43 shows that a stable trim condition occurs at an angle of attack of 43°. Thisisan
undesirable equilibrium condition, which could result in the vehicle actually trying to “fly” at
this angle of attack. If adequate control power is not available, it may even be difficult to
dislodge the vehicle from this condition, which is commonly known as a deep or hung stall. This
will result in arapid loss of atitude due to the very high drag. Although for this configuration
full down elevator eliminates the possibility of getting “trapped” in atrimmed flight condition at
this angle of attack, the amount of pitching moment available may not be sufficient to affect a
rapid recovery from this condition. Examples of pitchup characteristics are not readily available.
Aerodynamic designers do not like to admit that their configurations might have this
characteristic. This aspect of swept wing and wing-tail aerodynamics is an important part of
aerodynamic configuration devel opment.

Even low tail placement cannot guarantee that there will not be a problem. Figure 6-44
shows the pitching moment characteristics for an F-16 type wind tunnel model.? In this case a
deep stall is clearly indicated, and in fact the allowable angle of attack on the F-16 is limited to
prevent the airplane from encountering this problem. In this case the pitchup arises because of
powerful vortices generated by the strakes, which continue to provide lift as the wing stalls. This
type of flowfield isdiscussed in Section 6.12.

Canard configurations provide another interesting example of multiple lifting surface
interaction. The downwash from the canard wake, as it streams over the wing, reduces the
effective angle of attack locally, and hence the local lift on the wing behind the canard. Wing
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twist is used to counteract this effect. Figure 6-45 illustrates how this interaction occurs. The
relative loading of the surfaces is an important consideration in configuration aerodynamics. The
induced drag is highly dependent on the relative wing loading, which is determined by the
selection of the configuration stability level and the requirement to trim about the center of
gravity. in determining the induced drag. Figure 6-46, also computed using L amDes,® shows
how the trimmed drag changes with cg position. Three different canard heights are shown for a
range of cg positions, which is equivalent to varying the stability level. Figure 6-47 provides an
example of the wing twist required to account for the effect of the canard downwash. Note that
the forward swept wing twist increment due to the canard acts to reduce the twist required, which
is exactly opposite the effect for the aft swept wing.

a copyrighted figure from the AIAA Journal of Aircraft

Figure 6-43. Pitching moment characteristics of the DC-9.%’
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Figure 6-44. Pitching moment characteristics of an F-16 type wind tunnel model.?
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Figure 6-45. lllustration of wing-canard interaction.
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Figure 6-47. Effects of canard on twist requirements. Twist required for minimum drag
using LamDes® (Note: results depend on configuration details, balance).

6.11 Inver se Design Methods and Program DesCam

Although most of the analysis discussed above corresponds to the analysis problem, the
design problem can also be treated. In this section we provide one example: the determination of
the camber line shape required to obtain a specific chord load in the two dimensional case. We
take the opportunity to illustrate a method due to Lan® that uses a mathematically based selection
of vortex and and control point placements instead of the 1/4 - 3/4 rule used above.

Recall that a line of vortex singularities induces a vertical velocity on the singularity line
given by (see chapter 4 and Karamcheti**:

W(x) = - —t §9(9 4 (6-100)

For thin wing theory the vertical velocity can be related to the slope as shown above in Section
6.2. The vortex strength can be related to the streamwise velocity by g= u® - u. Thisin turn can
be used to relate the vorticity to the change in pressure, DCp through:

— — - + _ + - -
DC, =Cpy - Cp, =- 20 - 2" =2(u" - v (6-101)

which leads to:
DCh(X)
2
resulting in the expression for camber line slope in terms of design chord load:

=g(x) (6-102)

dx 4p 0 x- x¢
0

C
dz__ 14D% . (6-103)
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Here dz/dx includes the slope due to the angle of attack. Note that the integral contains a
singularity, and this singularity introduces the extra complications that require special anaysis
for numerical integration. The original Lan theory was used to find DCp (in a dlightly different
form), but it can also be used to obtain dz/dx from DCp. To do this, Lan derived a summation
formulato obtain the slope. Once the slope is known, it isintegrated to obtain the camber line.

Lan showed that the integral in Eq. (6-100) could be very accurately found from the
summation:

dz _ ig DCp JXk@- %) (6-104)
dxl; N 40 X=X
where:
81 co K- ngg’ k=12..N (6-105)
and:
_1¢  dipuu - (6-106)
X'_2@1 COSIL N%B 1=0,12,...,N.

Here N + 1 isthe number of stations on the camber line at which the slopes are obtained.

Given dzdx, the camber line is then computed by integration using the trapezoidal rule
(marching forward starting at the trailing edge):

éX41- Xj0€dzl dzl U (6-107)
=z - = +— :
NS4 E S B i dxlieali
The design angle of attack is then:
apes = tan 1z, (6-108)

The camber line can then be redefined in standard nomenclature, i.e., z(x=0) = z(x=1) = 0.0:
% =7 - (1- xj)tanapgs (6-109)

How well does this work? Program DesCam implements the method described here, and the
user’s manual is provided in App. D.7. Here we compare the results from DesCam with the
analytic formula given in Appendix A.1 for the NACA 6 Series mean line with a = .4. The
results are shown in Figure 6-48 below. Notice that the camber scale is greatly enlarged to
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demonstrate the excellent comparison. Even though the chord load is constructed by two straight
line segments, the resulting required camber line is highly curved over the forward portion of the
airfoil. Note also that thin airfoil theory alows only two possible values for the pressure
differential at the leading edge, zero or infinity. A close examination of the camber line shape
required to produce afinite load reveals a singularity. The slope is infinite. This feature is much
easier to study using the analytic solution, as given in Appendix A. This approach can easily be
extended to three dimensions. Notice that design problem is direct, in that it does not require the

solution of a system of equations.
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Figure 6-48. Example and verification of camber design using DesCam.
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6.12 Vortex Flow Effectsand the L eading Edge Suction Analogy

For highly swept wings at even moderate angles of attack, the classical attached flow/trailing
edge Kutta condition flow model we' ve adopted is wrong. Instead of the flow remaining attached
on the wing and leaving the trailing edge smoothly, the flow separates at the leading edge,
forming awell defined vortex. This vortex plays an important role in the design of highly swept,
or “dender wing” aircraft. The most notable example of this type of configuration is the
Concorde. Sharp leading edges promote this flow phenomena. The basic ideaisillustrated in the
sketch from Payne and Nelson® given herein Fig. 6-49.

a Vortica flow

\<: abova adeltawing

Figure 6-49. Vortex flow development over adelta wing with sharp edges.”

An important consequence of this phenomena is the change in the characteristics of the
lift generation as the wing angle of attack increases. The vortex that forms above the wing
provides an additional low pressure force due to the strongly spiraling vortex flow. The low
pressure associated with the centrifugal force due to the vortex leads to the lower pressure on the
wing surface. As the wing increases its angle of attack the vortex gets stronger, further reducing
the pressure on the wing. The resulting increase in lift due to the vortex can be large, as shown in
Fig. 6-50, from Polhamus.*

This is an important flow feature. Slender wings have very low attached flow lift curve
slopes, and without the additional vortex lift it would be impractical to build configurations with
low aspect ratio wings. The low attached flow aone lift curve slope would prevent them from
being able to land at acceptable speeds or angle of attack. Vortex lift made the Concorde

possible. Another feature of the flow is the high angle of attack at which maximum lift occurs,
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and typically a very mild lift loss past maximum lift. These features are a direct result of the
leading edge vortex flow structure that occurs on slender wings.

Subsonic lift o
— o VR -
15— LLE=T5 /{ LN

Attached flow

l J
00 0 20 40

a, deg

Figure 6-50. Vortex lift changes the characteristic lift development on wings.®

Although the vortex lattice method formulation presented above does not include this effect,
vortex lattice methods are often used as the basis for extensions that do include the leading edge
vortex effects. A remarkable, reasonably accurate, flow model for leading edge vortex flows was
introduced by Polhamus®® at NASA Langley in 1966 after examining lots of data. This flow
model is known as the “Leading Edge Suction Analogy.” The concept is quite simple and was
invented for sharp edged wings. The leading edge suction that should exist according to attached
flow theory (see section 5.8) is assumed to rotate 90° and generate a vortex induced force instead
of a suction when leading edge vortex flow exists. Thus the vortex flow force is assumed to be
egual to the leading edge suction force. However, the force now acts in the direction normal to
the wing surface in the direction of lift rather than in the plane of the wing leading edge. The
concept is shown in the Fig. 6-51 from the original Polhamus NASA report.® Further details on
the effects of vortex flow effects are also available in the reports by Kulfan.**
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Figure 6-51. The Polhamus |eading edge suction analogy.

Polhamus developed charts to compute the suction force for ssmple wing shapes. For a
delta wing with a sharp leading edge, the method is shown compared with the data of Bartlett
and Vidal® in Figure 6-52. The agreement is quite good (my reconstruction doesn’t show
agreement as good as that presented by Polhamus,* but it is still impressive).

The figure also shows the large size of the vortex lift, and the nonlinear shape of the lift
curve when large angles are considered. This characteristic was exploited in the design of the
Concorde.

To find the vortex lift using the leading edge suction analogy, an estimate of the leading edge
suction distribution is required. However the suction analogy does not result in an actual
flowfield analysis including leading edge vortices. The Lamar vortex lattice code (VLM pc)
optionally includes a fully developed suction analogy based on Polhamus ideas, with extensions
to treat side edge suction by John Lamar® also included.

Other approaches have been developed to compute leading edge vortex flows in more detail.
Many of these methods allow vortex filaments, simulating the leading edge vortices, to leave the
leading edge. The location of these vortices, and their effect on the wing aerodynamics as they
roll up are explicitly computed. Mook and co-workers are leaders in this methodol ogy.

The area of vortex flows in configuration aerodynamics is fascinating, and an entire
conference was held at NASA Langley® devoted to the topic. The references cited above were
selected to provide an entry to the literature of these flows. Interest in the area remains strong.
The effects of round leading edges have been investigated by Ericsson and Reding® and
Kulfan.® The relation between sweep, vortex lift, and vortex strength has been given recently by
Hemsch and Luckring. *
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Figure 6-52. Comparison of the leading edge suction analogy with data.

6.13 Alternate and Advanced VLM Methods
Many variations of the vortex lattice method have been proposed. They address both the

improvement in accuracy for the traditional case with a planar wake, and extensions to include
wake position and rollup as part of the solution. Areas requiring improvement include the ability
to predict leading edge suction, the explicit treatment of the Kutta condition, and the
improvement in convergence properties with increasing numbers of panels.® The traditional
vortex lattice approaches assume that the wing wake remains flat and aligned with the
freestream. This assumption is acceptable for most cases. The effect of the wake on the wing that
generates it is small unless the wing is highly loaded. However, the interaction between the wake
from an upstream surface and a trailing lifting surface can be influenced by the rollup and
position.

In the basic case where the wake is assumed to be flat and at a specified location, the primary
extensions of the method have been directed toward improving the accuracy using a smaller
number of panels. Hough’ demonstrated that improvement in accuracy could be achieved by
using a lattice that was slightly smaller than the true planform area. Basically, he proposed a 1/4
panel width inset from the tips.
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Perhaps the most important revision of the vortex lattice method was proposed by Larf, and
called the “quasi vortex lattice method.” In this method Lan used mathematical methods, rather
than the more heuristic arguments described above, to find an approximation for the thin airfail
integral in the streamwise direction. The result was, in effect, a method where the vortex and
control point locations were established from the theory of Chebychev polynomials to obtain an
accurate estimate of the integrals with a small number of panels. The mathematically based
approach also led to an ability to compute |eading edge suction very accurately.

The wake rollup and position problem has been addressed by Mook™ among others, and his
work should be consulted for details. A method similar to Mook’ s has been presented recently in
the book by Katz and Plotkin.* They propose a vortex ring method, which has advantages when
vortices are placed on the true surface of a highly cambered shapes.

Unsteady flow extension

Analogous extensions have been made for unsteady flow. For the case of an assumed flat
wake the extension to harmonically oscillating surfaces was given by Albano and Rodden.*
When the vortex is augmented with an oscillating doubl et, the so-called doubl et-lattice method is
obtained. The doublet-lattice method is widely used for subsonic flutter calculations. Kalman,
Giesing and Rodden'” provide additional details and examples (they also included the steady
flow examples given above).

General unsteady flows calculations, including wake location as well as the incorporation of
leading edge vortices, have been carried out by Mook among others. The resulting codes have
the potential to be used to model time accurate aerodynamics of vehicles in arbitrary
maneuvering flight, including the high angle of attack cases of interest in fighter aerodynamics.
These codes are currently being used in studies where the aircraft aerodynamics is coupled with
advanced control systems. In this case the active control is incorporated and the dynamics of the
maneuver change dramatically due to the incorporation of a stability and control augmentation
system.

To sumup

The summary provided above illustrates the current state of affairs. Vortex lattice methods,
per se, are not being developed. However, they are being used in advanced methods where
severa disciplines are being studied simultaneously and an affordable model of the
aerodynamicsis required.
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6.14 Exercises

1

8.

0.

Get acopy of VLM pc from the web site. The detailed instructions for this program are
included in Appendix D.6. Install the program on your personal computer and repeat the
sample case, checking that your output is the same as the sample output files on the web.
Study the output to familiarize yourself with the variety of information generated. Turnin a
report describing your efforts (not the output), including any mods required to make the code
run on your computer.

. How good is thin airfoil theory? Compare the thin airfoil theory DCp for a 2D flat plate airfoil

with program VLM pc.
Flat plate thin airfoil theory:

@- x/c)

xlc
I. Pick an aspect ratio 10 unswept wing at a = 3° and 12° and run VLMpc.
ii. Plot (DCp)/a as afunction of x/c at the wing root.
iii. How many panels do you need to get a converged solution from VLM?
iv. What conclusions do you reach?

DCp =4a

. Compare the validity of an aerodynamic strip theory using VL M pc. Consider an uncambered,

untwisted wing, AR=4, | = .4, L|e=50° at alift coefficient of 1. Plot the spanload, and the
DCp distribution at approximately the center section, the midspan station, and the 85%

semispan station. Compare your results with a spanload constructed assuming that the wing
flow is approximated as 2D at the angle of attack required to obtain the specified lift. Also
compare the chordloads, DCp, at the three span stations. How many panels do you need to

obtain converged results. Document your results. Do you consider this aerodynamic strip
theory valid based on this investigation? Comment.

. Compare the wing aerodynamic center location relative to the quarter chord of the mac for the

wing in exercise 3, aswell as similar wings. Consider one wing with zero sweep on the
quarter chord, and a forward swept wing with a leading edge sweep of -50°. Compare the
spanloads. Document and analyze these results. What did you learn from this comparison?

. For the wings in exercise 4, compare the section lift coefficients. Where would each one stall

first? Which wing appears to able to reach the highest lift coefficient before the section stalls.

. For the problem in exercise 5, add twist to each wing to obtain near elliptic spanloads.

Compare the twist distributions required in each case.

. Pick aNASA or NACA report describing wind tunnel results for a simple one or two lifting

surface configuration at subsonic speeds. Compare the lift curve slope and stability level
predicted by VL M pc with wind tunnel data. Submit a report describing your work and
assessing the results.

Add a canard to the aft and forward swept wings analyzed in exercise 4. Plot the sum of the
spanloads. How does the canard effect the wing spanload.

Consider the wings in exercise 8. How does lift change with canard deflection? Add an
equivalent tail. Compare the effect of tail or canard deflection on total lift and moment. Did
you learn anything? What?

10. Construct a design code using the 1/4 - 3/4 rule and compare with DESCAM.
11. Construct alittle 2D code to study ground effects.
12. Compare wing and wing/tail(canard) results for C|_g with standard analytic formulas.
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8. Introduction to
Computational Fluid Dynamics

We have been using the idea of distributions of singularities on surfaces to study the
aerodynamics of airfoils and wings. This approach was very powerful, and provided us with
methods which could be used easily on PCs to solve real problems. Considerable insight into
aerodynamics was obtained using these methods. However, the class of effects that could be
examined was somewhat restricted. In particular, practical methods for computing fundamentally
nonlinear flow effects were excluded. This includes both inviscid transonic and boundary layer
flows.

In this chapter we examine the basic ideas behind the direct numerical solution of differential
equations. This approach leads to methods that can handle nonlinear equations. The simplest
methods to understand are developed using numerical approximations to the derivative terms in
the partial differential equation (PDE) form of the governing equations. Direct numerical
solutions of the partial differential equations of fluid mechanics constitute the field of
computational fluid dynamics (CFD). Although the field is still developing, a number of books

12345,

have been written. ® In particular, the book by Tannehill et al,* which appeared in 1997 as a
revision of the original 1984 text, covers most of the aspects of CFD theory used in current codes
and reviewed here in Chapter 14. Fundamental concepts for solving partial differential equations
in general using numerical methods are presented in a number of basic texts. Smith” and Ames®

are good references.

The basic idea is to model the derivatives by finite differences. When this approach is used
the entire flowfield must be discretized, with the field around the vehicle defined in terms of a
mesh of grid points. We need to find the flowfield values at every mesh (or grid) point by writing
down the discretized form of the governing equation at each mesh point. Discretizing the
equations leads to a system of simultaneous algebraic equations. A large number of mesh points
is usually required to accurately obtain the details of the flowfield, and this leads to a very large
system of equations. Especially in three dimensions, this generates demanding requirements for
computational resources. To obtain the solution over a complete three dimensional aerodynamic
configuration millions of grid points are required!
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In contrast to the finite difference idea, approximations to the integral form of the governing
equations result in the finite volume approach. A book has been written recently devoted solely to
this approach,® and we will cover this approach briefly here.

Thus CFD is usualy associated with computers with large memories and high processing
speeds. In addition, massive data storage systems must be available to store computed results,
and ways to transmit and examine the massive amounts of data associated with a computed result
must be available. Before the computation of the solution is started, the mesh of grid points must
be established. Thus the broad area of CFD leads to many different closely related but
neverthel ess specialized technology areas. These include:

* grid generation

* flowfield discretization algorithms

* efficient solution of large systems of equations

» massive data storage and transmission technology methods
» computational flow visualization

Originally, CFD was only associated with the 2"d and 3d items listed above. Then the
problem with establishing a suitable mesh for arbitrary geometry became apparent, and the
specialization of grid generation emerged. Finally, the availability of large computers and remote
processing led to the need for work in the last two items cited. Not generaly included in CFD
per se, a current limiting factor in the further improvement in CFD capability is development of
accurate turbulence models, discussed in Chapter 10.

This chapter provides an introduction to the concepts required for developing discretized
forms of the governing equations and a discussion of the solution of the resulting algebraic
equations. For the most part, we adopt the viewpoint of solving equilibrium (elliptic) problems.
This in contrast to the more frequent emphasis on solving hyperbolic systems. Although the
basic idea of CFD appears straightforward, once again we find that a successful numerical
method depends on considerable analysis to formulate an accurate, robust, and efficient solution
method. We will see that the classification of the mathematical type of the governing equations
(Sec. 2.8) plays an important role in the development of the numerical methods. Although we
adopt finite difference/finite volume methods to solve nonlinear equations, to establish the basic
ideas we consider only linear equations. Application to nonlinear equations is addressed in
Chapters 10, 11 and 12, where additional concepts are introduced and applied to the solution of
nonlinear equations. Chapter 13 describes the most advanced approaches currently in use.

8.1 Approximationsto partial derivatives

There are many ways to obtain finite difference representations of derivatives. Figure 8-1
illustrates the approach intuitively. Suppose that we use the values of f at a point Xy and apoint a
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distance Dx away. Then we can approximate the slope at x; by taking the slope between these
points. The sketch illustrates the difference between this ssmple slope approximation and the
actual slope at the point xy. Clearly, accurate slope estimation dependents on the method used to
estimate the slope and the use of suitably small values of Dx.

A Trueslope ‘

Approximate slope
at XO

Figure 8-1. Example of slope approximation using two values of the function.

Approximations for derivatives can be derived systematically using Taylor series
expansions. The simplest approach is to find an estimate of the derivative from a single series.
Consider the following Taylor series:

2 42 3
f(x +Dx) = f(xg)+ Dxﬂ +(DX) df2 +(DX) d3f3 + (8-1)
dX XO 2 dX XO 6 dX XO
o df
and rewriteit to solve for —
Xlx,
df| _ f(xo+Dx)- f(x) . 1d%
— = -DxX-—| -
dX XO DX 2 dX XO
or:
d _ f{0+Dx)- f(%) o(Dx) (8-2)
Tryggion

where the last term is neglected and called the truncation error. In this case it is O(Dx). The term
“truncation error” means that the error of the approximation vanishes as Dx goes to zero.” The

" This assumes that the numerical results are exactly accurate. Thereis alower limit to the size of the difference step
in Dx due to the use of finite length arithmetic. Below that step size, roundoff error becomes important. In most
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form of the truncation error term is frequently important in developing numerical methods. When
the order of the truncation error is O(Dx), the approximation is described as a “first order
accurate” approximation, and the error is directly proportional to Dx. The other characteristic of
this representation is that it uses only the information on one side of X, and is thus known as a
one-sided difference approximation. Finally, because it uses information ahead of X, it's known
as a forward difference. Thus, EQ.(8-2) is a first order, one sided, forward difference
approximation to the derivative.

We could also write the approximation to the derivative using information prior to the point
of interest. The corresponding first order accurate one sided backward difference approximation

is obtained by expanding the Taylor seriesto a point prior to the point about which the expansion
is carried out. The resulting expansion is:

df (Dx)? d? (Dx)3 d¥
f(xy- DX) = f(xg)- Dx— - (8-3)
(% )= 100) dxlx, 2 . 6 dx
0 X0
Solving for the first derivative in the same manner we used above, we obtain:
d _f00)- fx0-DY, 5y (8-4)
dx Dx

X0
the first order accurate, one sided, backward difference approximation.

Note from Fig. 8-1 above that one sided differences can lead to afairly large truncation error.
In many cases a more accurate finite difference representation would be useful. To obtain a
specified level of accuracy, the step size Dx must be made small. If a formula with a truncation

term of O(Dx)?2 is used,” the required accuracy can be obtained with significantly fewer grid
points. A second order, O(Dx)2, approximation can be obtained by subtracting the Taylor series

expansions, Eq.(8-3) from Eq.(8-1):

f(x +Dx) - f(Xg - DX) :+2Dx%(

(5 B
X

+
3 dd

XO XO
Here the O(Dx) terms cancel in the subtraction. When we divide by 2Dx and solve for the first

derivative, we get an expression with a truncation error of O(DX)2. The resulting expression for
the derivativeis:

cases the stepsize used for practical finite difference calculationsis larger than the limit imposed by roundoff errors.
We can't afford to compute using grids so finely spaced that roundoff becomes a problem.
" With Dxsmall, Dx2 is much smaller than Dx
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o _ f(xo*Dx)- f(x- DY
dxlx, 2Dx

+0(Dx)?. (8-5)

Thisisasecond order accurate central difference formula since information comes from both
sides of X5 Numerous other approximations can be constructed using this approach. It's also
possible to write down second order accurate forward and backward difference approximations.

We also need the finite difference approximation to the second derivative. Adding the Taylor
series expressions for the forward and backward expansions, Eq.(8-1) and EQ.(8-3), resultsin the
following expression, where the odd order terms cancel:

2
f (X + DX) + f(Xg- Dx) :2f(>@)+(Dx)2% +O(D()4
X
X0
Solving for the second derivative yields:
2
d 2f _ f (xo +DX) - 2f(x%) + f(xg - DX)+O(D()2. (8-6)
dx X (Dx)

The formulas given above are the most frequently used approximations to the derivatives
using finite difference representations. Other methods can be used to develop finite difference
approximations. In most cases we want to use no more than two or three function values to
approximate derivatives.

Forward and backward finite difference approximations for the second derivative can aso be
derived. Note that formally these expressions are only first order accurate. They are:
» aforward difference expression:

d2f| _ f(xg)- 2f (xg +Dx) + f(xg +2DX)

+0(Dx (8-7)
dx® X (Dx)2 (D)
* a backward difference expression:
2 - - -
d 2f _ f(%0)- 2f (g sz) + (X - 2Dx) +O(DX). (8-8)
dx X (Dx)

In addition, expressions can be derived for cases where the points are not evenly distributed.
In genera the formal truncation error for unevenly spaced pointsis not as high as for the evenly
spaced point distribution. In practice, for reasonable variations in grid spacing, this may not be a
serious problem. We present the derivation of these expressions here. A better way of handling
non-uniform grid points is presented in the next chapter. The one sided first derivative
expressions Eq.(8-2) and Eq.(8-4) are already suitable for use in unevenly spaced situations. We
need to obtain a central difference formula for the first derivative, and an expression for the
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second derivative. First consider the Taylor expansion as given in Egs. (8-1) and (8-3). However,

the spacing will be different in the two directions. Use Dx" and DX to distinguish between the
two directions. Egs. (8-1) and (8-3) can then be rewritten as:

. + df (DX+)2 o2 (DX+)3 o
fp+Dx")=f(xg)+ X" —| + >+ 3|+ (8-9)
dxly, 2 dx X 6  dx X
2 3
o _ df (DX') d’f (DX') d
f(x- D)= f(x)- Dx &XO+ 2 el (8-10)
X0 X0

Define Dx' = a DX . To obtain the forms suitable for derivation of the desired expressions,

replace Dx" in Eq. (8-9) witha Dx , and multiply Eq. (8-10) by a. The resulting expressions
are:

2 3
aDx aDx
f()@+D(+)=f(xO)+an'£ +( )dzfz +( )d3f3 +... (811)
dXXO 2 dX XO 6 dX XO
2 3
Dx Dx
af (xg- Dx ) =af(x)- aox” & +a(—L£fz -auﬁg +... (812
dXXO 2 dX XO 6 dX XO

To obtain the expression for the first derivative, subtract Eq ( 8-12) from Eq. (8-11).

f(x+Dx")-af(xg- DX ) = f(xg)- af(xg) +2aDxX 3—;

X0
é 2\2 _\20 (8-13)
é(an ) (Dx ) G
+e 2 -a 2 udX2
é g %o
and rearrange to solve for df/dx:
df|  _ f(xo +Dx")+(a - 1)f(xg)- af(xg- Dx") +O(DX ) (8-14)
dXXO ZaD(-
To obtain the expression for the second derivative, add (8-11) and (8-12):
é - -\2u
alaDX DX | g2
f (4 + D<) +af (xo - Dx‘>=f(xO)+af<xO)+§( . .ol 2) iz +000’
8 G

which is then solved for d2f/dx2:
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d_2f2_ _ f(x +Dx") _a(1+a)f (Xo) ;af(xo - DX) LoD ) (8-15)
X1, - (1+a)(Dx')
2

Note that both Egs. (8-14) and (8-15) reduce to the forms given in Eq.(8-5) and EQ.(8-6)
when the grid spacing is uniform.

Finally, note that a slightly more sophisticated analysis (Tannehill, et al,* pages 61-63) will
lead to a second order expression for the first derivative on unevenly spaced points:

of f(x0+Dx+)+(a2-l)f(xo)-azf(xo- DX")
d_xx0 - a(a +1)Dx’

Tannehill, et al,* give additional details and a collection of difference approximations using
more than three points and difference approximations for mixed partial derivatives (Tables 3-1
and 3-2 on their pages 52 and 53). Numerous other methods of obtaining approximations for the
derivatives are possible. The most natural one is the use of a polynomial fit through the points.
Polynomials are frequently used to obtain derivative expressions on non-uniformly spaced grid
points.

+O(Dx" )? (8-16)

These formulas can also be used to represent partial derivatives. To simplify the notation, we
introduce a grid and a notation common in finite difference formulations. Figure 8-2 illustrates
this notation using Dx = Dy = const for these examples.

A Assume:
J(i,j+1
) Dx = Dy = const.
yor " X = iDx
y = jDx
i-1,] I I+1,)
Tij-1
-
xor"i"

Figure 8-2. Nomenclature for usein partia differential equation difference expressions.
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In this notation the following finite difference approximations for the first derivatives are:

g - i
L E N O(x) 1st order forward difference  (8-17)
ix Dx

f. .o f DT
o _fi- Nieaj O(x) 1st order backward difference (8-18)
x Dx
1t _ Mg - fiag

+0(Dx)? 2nd order central difference  (8-19)
x 2Dx

and the second derivativeis:

12f _ fivaj - 265 +figj
(1% (D%°

Similar expressions can be written for they derivatives. To shorten the expressions, various

+0O(Dx)?  2nd order central difference (8- 20)

researchers have introduced different shorthand notations to replace these expressions. The
shorthand notation is then used in further operations on the difference expressions.

8.2 Finite differencerepresentation of Partial Differential Equations (PDE'S)

We can use the approximations to the derivatives obtained above to replace the individual
terms in partial differential equations. The following figure provides a schematic of the steps
required, and some of the key terms used to ensure that the results obtained are in fact the
solution of the origina partial differential equation. We will define each of these new terms
below.

Steps and Requirements To Obtain a Valid Numerical Solution

Governing . System
Partial DiscretizatioNej-

Differential Algebralc
Equatlon Consistency Equations

Stability

Approximate
Solution

Exact

Convergence
Solution 9

asDx,D® 0

Figure 8-3. Overall procedure used to develop a CFD solution procedure.
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Successful numerical methods for partial differential equations demand that the physical
features of the PDE be reflected in the numerical approach. The selection of a particular finite
difference approximation depends on the physics of the problem being studied. In large part the
type of the PDE is crucial, and thus a determination of the type, i.e. eliptic, hyperbolic, or
parabolic is extremely important. The mathematical type of the PDE must be used to construct
the numerical scheme for approximating partial derivatives. Some advanced methods obscure the
relationship, but it must exist. Consider the example given in Fig. 8-4 illustrating how
information in agrid must be used.

subsonic flow . supersonic flow
\
ij+1 /\\ J(i,j+1
\
zone of \
dependence \
\\ ‘ \\ - . .
i-1,j 1 i+1,] i-1,] />I,J i+1,j
/
/
/] N\
-1 S i
/
/
i,j depends on all ’ I,] depends only on the points
ne ghboring points in the zone of dependence
(elliptic system) (hyperbolic system)

Note: velocity direction relative to
the grid becomes important
Figure 8-4. Connection between grid points used in numerical method and equation type.

Any scheme that fails to represents the physics correctly will fail when you attempt to obtain
a solution. Furthermore, remember, in this case we were looking at a uniformly spaced cartesian
grid. In actual “real life” applications we have to consider much more complicated non-uniform
grids in non-Cartesian coordinate systems. In this section we use smple uniform Cartesian grid
systems to illustrate the ideas. The necessary extensions of the methods illustrated in this chapter
are outlined in the next chapter.

In Fig. 8-3 above, we introduced several important terms requiring definition and discussion:

* discretization
* consistency

* stability

* convergence
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Before defining the terms, we provide an example using the heat equation:

Tu__ T2 (8-21)
TR

We discretize the equation using a forward difference in time, and a central difference in
gpace following the notation shown in the following sketch:

>

n-1 n n+1
Figure 8-5. Grid nomenclature for discretization of heat equation.

The heat equation can now be written as:

ﬂu ﬂZU un+1 un
[T or I_( )Z(Uin*l'zqnwrll)+
PDE FDE
€ g2, |" 40" my2 U
a T7u bt T &), oy (8-22)
gNt 2 Ixy 12 H

Truncation Error

where we use the superscript to denote time and the subscript to denote spatial location. In Eq.
(8-18) the partial differential equation (PDE) is converted to the related finite difference equation

(FDE). The truncation error is O(Dt)+O(Dx)? or O[Dt(Dx)Z] . An understanding of the
truncation error for a particular scheme isimportant.

Using the model equation give here, we define the termsin the schematic given above:
discretization

This is the process of replacing derivatives by finite difference approximations. Replace
continuous derivatives with an approximation at a discrete set of points (the mesh). This
introduces an error due to the truncation error arising from the finite difference approximation
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and any errors due to treatment of BC's. A reexamination of the Taylor series representation is
worthwhile in thinking about the possible error arising from the discretization process:

Tt _f(xo+Dx)- f(%- D Dx? 1% | (859

x - 2Dx 6 qx
%f_/
formally valid for Dx® O,

but when Dx = finite, 15 /x>
can be big for rapidly changing
solutions (shock wave cases)

Thus we see that the size of the truncation error will depend locally on the solution. In most
cases we expect the discretization error to be larger than round-off error.

consistency

A finite-difference representation of a PDE is consistent if the difference between the PDE
and its difference representation vanishes as the mesh isrefined, i.e.,
lim (PDE- FDE)= lim (T.E)=0 (8-23)
mesh® 0 mesh® 0
When might this be a problem? Consider a case where the truncation error is O(DV/Dx). In
this case we must let the mesh go to zero just such that:
lim &2L0_ (8-24)
Dt,x® 0 Dx 9@
Some finite difference representations have been tried that weren’t consistent. An example
cited by Tannehill, et al,* is the DuFort-Frankel differencing of the wave equation.

stability

A stable numerical scheme is one for which errors from any source (round-off, truncation)
are not permitted to grow in the sequence of numerical procedures as the calculation proceeds
from one marching step, or iteration, to the next, thus:

errorsgrow ® unstable
errorsdecay ® stable

and
» Stability is normally thought of as being associated with
marching problems.

» Stability requirements often dictate allowable step sizes.

* In many cases a stability analysis can be made to define the
stability requirements.
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convergence

The solution of the FDE's should approach the solution of the PDE as the mesh is refined. In
the case of alinear equation there is a theorem which proves that the numerical solution to the
FDE isin fact the solution of the original partial differential equation.

L ax Equivalence Theorem® (linear, initial value problem): For a properly posed
problem, with a consistent finite difference representation, stability is the necessary
and sufficient condition for convergence.

In practice, numerical experiments must be conducted to determine if the solution appears to
be converged with respect to mesh size.” Machine capability and computing budget (time as well
as money) dictate limits to the mesh size. Many, many results presented in the literature are not
completely converged with respect to the mesh.

So far we have represented the PDE by an FDE at the point i,n. The PDE is now a set of
algebraic equations written at each mesh point. If the grid is (in three dimensions) defined by a
grid with IMAX, JMAX and KMAX mesh points in each direction, then we have a grid with
IMAX"~ JMAX~ KMAX grid points. This can be a very large number. A typical recent case
computed by one of my students was for the flow over a ssimple aircraft forebody. The
calculation required 198,000 grid points. Thus the ability to carry out aerodynamic analysis using
finite difference methods depends on the ability to solve large systems of algebraic equations
efficiently.

We need to obtain the solution for the values at each grid point. We now consider how thisis
actually accomplished. Since the computer requirements and approach are influenced by the
mathematical type of the equation being solved, we illustrate the basic types of approaches to the
solution with two examples.

1st example - typical parabolic/hyperbolic PDEs

Explicit Scheme: Consider the finite difference representation of the heat equation given
above in Eq. (8-18). Using the notation shown in the Fig. 8-6 below, we write the finite
difference representation as:

n+l _

Ui n

Uy _ a
Dt (Dx)*

and the solution at time step n is known. At time n+1 there is only one unknown.

(Uﬁn+1 - 20+ 1) (8-25)

" Thisis convergence with respect to grid. Another convergence requirement is associated with the satisfaction of the
solution of a system of equations by iterative methods on afixed grid.
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>

n-l n n+l t
Figure 8-6. Grid points used in typical explicit calculation.

We solve for the value of u at i and the n+1 time step:
& o]
it =ul+ aQ_th juinﬂ - 24"+ 1) (8-26)
e(Dx)

and thus at each i on n+1 we can solve for ui”+l algebraically, without solving a system of

equations. This means that we can solve for each new value explicitly in terms of known values
from the previous time step. This type of algorithm is known as an explicit scheme. It is a very
straight forward procedure. To summarize:
» Thealgebraissimple.
» The bad news for non-vector computers: stability requirements require very
small steps sizes.

» The good news: this schemeis easily vectorized” and a natural for massively
paralel computation.

Implicit Scheme: Now consider an alternate finite difference representation of the heat
equation given above in Eq. (8-18). Use the notation shown in the Fig. 8-7 below to define the
location of grid points used to define the finite difference representation.

X A

| >
t
Nl n nt+l

Figure 8-7. Grid points used in typical implicit calculation.

" see Chapter 3 for a brief discussion of vectorization.
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Now we write the finite difference representation as:

n+l _

Ui n

Ui a n+l n+1 n+1 _
= - 2u™ + ] (8-27)
Dt (DX)2 (Uﬁ +1 i i 1)

where we use the spatial derivative at time n+1. By doing this we obtain a system where at each i

on n+l, u{”l depends on all the values at n+1. Thus we need to find the values along n+1

simultaneously. Thisleadsto a system of algebraic equations that must be solved. For our model
problem this system is linear. We can see this more clearly by rearranging Eq. (8-27). Defining
Dt
| =a+—=> (8-28)
(Dx)

we can re-write EQ.(8-27) after some minor algebra as.

durte@+2)™ gt = fori=1.N. (8-29)

This can be put into a matrix form to show that it has a particularly simple form:

§1+2|) - 0 0 0 0 0 ggu{”lg gu{‘ﬂ

g -l @) -l 0 0 0 sy eud g

e E - - ‘ RV < VI Y

a N W gl @ L0 g
< a2y - : - g@™Ma=ed g €30
é ' - - - . @ u ey

é . G€ g0 €. 0

5 O 0 . 0 @2y - gaktin @teag

€ 0 0 0 0 0 -1 (1+21)8ul™ e Eul 8

Equation (8-30) is a specia type of matrix form known as a tridiagonal form. A particularly
easy solution technique is available to solve this form. Known as the Thomas algorithm, the
details are described in Section 8.5 and a routine caled tridag is described in Appendix H-1.
Many numerical methods are tailored to be able to produce this form.

The approach that leads to the formulation of a problem requiring the simultaneous solution
of a system of equations is known as an implicit scheme. To summarize:

* The solution of a system of equationsis required at each step.
» The good news: stability requirements allow alarge step size.
* The not so good news: this scheme is harder to vectorize/parall€elize.

A common feature for both explicit and implicit methods for parabolic and hyperbolic

eguations:
* A large number of mesh points can be treated, you only need the values a a
small number of marching stations at any particular stage in the solution.
This means you can obtain the solution with a large number of grid points
using a relatively small amount of memory. Curiously, some recent codes
don’'t take advantage of thislast fact.
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2nd Example - éliptic PDE
We use Laplace' s equation as the model problem for elliptic PDE’s:

fyx +fyy =0 (8-31)

and consider the grid shown below in Figure 8-8.

YA
j+1
J *
j-1
>
i-1 i i+1 X

Figure 8-8. Grid points used in atypical representation of an elliptic equation.

Use the second order accurate central difference formulasat i,j:

fivgj- 25 +fi g 2
foy = ' +0O(Dx (8-32)
and:
Fijw- 2 +ij-a 2
f — ') ) ) +O([)y) 1 (8‘33)

and substitute these expressions into the governing equation:

P~ 2ij*fiong P 2 +Higa (8-34)
2 2 B
(D) (Dy)

Solve this equation for fij:

(D)

Fij = (Ez)y)2 2 (f i+1, ] +fi-lj)+ 2 (fi'i+1+fi'i-1) (839
(0% + (OyY’] 2](0%7 + (Oy)’|
where if Dx = Dy
fi zzll(fiﬂ,j +fioqj +f i,j+1+fi,j-1) (8-36)
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This expression illustrates the essentia physics of flows governed by elliptic PDE’s:

« fijj dependson all the values around it

» all vauesof f must be found simultaneously
e computer storage requirements are much greater than those required for
parabolic/hyperbolic PDE’s

Because of the large number of mesh points required to resolve the flowfield details, it is
generally not practical to solve the system of equations arising from applying the above equation
at each mesh point directly. Instead, an iterative procedure is usually employed. In this procedure
an initial guess for the solution is made and then each mesh point in the flowfield is updated
repeatedly until the values satisfy the governing equation. This iterative procedure can be
thought of as having a time-like quality, which has been exploited in many solution schemes to
find the steady flowfield.

A Note on Conservation Form

Care must be taken if the flowfield has discontinuities (shocks). In that case the correct
solution of the partial differential equation will only be obtained if the conservative forms of the
governing equations are used.

8.3 Other approaches, including the finite volume technique

Finite difference methods are the most well known methods in CFD. However other methods
have also proven successful, and one method in particular, the finite volume technique, actually
forms the basis for most current successful codes. The other methods in use are categorized as
finite element and spectral. Each method eventually leads to a large set of algebraic equations,
just as with the finite difference methods. See References 1 and 3 for more details of the latter
two methods. In US aircraft aerodynamics work they don’'t currently have an impact.

The finite volume method is important. Instead of discretizing the PDE, select the integral
form of the equations. Recall that each conservation law had both differential and integral
statements. The integral form is more fundamental, not depending on continuous partial
derivatives.

Example of Finite Volume Approach (Fletcher,® val. I, pg.105-116, Tannehill, et al,* pg 71-76)

Consider the general conservation equation (in two dimensions for our example analysis):

Ja [T, TC o (8-37)
Tt Ix Ty

Pick the particular form to be conservation of mass:

3/17/98



Introduction to CFD 8 - 17

q=r
F=ru, (8-38)
G=rv
and recall that this conservation law could also come from the integral statement:
% &y OV = - gy Vnds. (8-39)

Introducing the notation defined above and assuming two dimensiona flow, the conservation
law can be rewritten as:

%(‘mdv +gHndS=0 (8-40)
where
H=(F.G)=rV (8-41)
and
Hy =F=ru (8-42)
Hy=G=rv’
A D= C
Y,
n

>
X, i

Figure 8-9. Basic nomenclature for finite volume analysis.
Using the definition of n in Cartesian coordinates, and considering for illustration the

Cartesian system given in Fig. 8-9, we can write:

HndS= (H,d +Hyj)ndS

(8-43)
=(Fi+G)=ndS
along AB, n=-j, dS= dx, and:
H>ndS=- Gdx (8-44)
aong BC, n=i,dS=dy, and:
H xndS=F dy (8-45)
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or in genera:
H >ndS= Fdy - Gdx. (8-46)

Using the general grid shown in the Fig. 8-10, our integral statement, Eq. (8-40) can be
written as:

DA
1 (Agj) +a (FDy- GDx) = 0. (8-47)
Tt AB

Here Aisthe area of the quadrilateral ABCD, and g i isthe average value of q over ABCD.

cell centered
atj,k

k-1

Figure 8-10. Circuit in agenera grid system.

Now define the quantities over each face. For illustration consider AB:

Dyag = YB- YA
DXAB =XB - XA

1
=_(F; ; -4
FAB Z(Fj’k-1+ Fj.k) ) (8 8)

Gpg = % (Gj k1 + G ,k)

and so on over the other cell faces.
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Assuming A is not a function of time, and combining:

flgjk 1 1
A 0t +§(Fj,k-1+ Fj,k)DYAB‘ ‘Z(Gj,k-l"'Gj,k DXag

+‘;(Fj,k + Fj,k+1) Dycp -

)
+_]2-(Fj,k +Fj+lk)DYBC - é(GJ K +Gj +lk)DXBC
%(Gj K +Gj,k+1)DXCD' (8'49)
(

+‘;(Fj-1,k + Fj,k)DYDA - % Gj.1k+ Gj,k)DXDA
=0
Supposing the grid isregular cartesian as shown in Fig. 8-11. Then A = DxDy, and along:
AB: Dy=0, Dxpg=Dx
BC.  Dx=0, Dygc=Dy

. (8-50)
CD: Dy=0, Dxcp=-Dx
DA Dx =0, DyDA =- Dy
YA
k+1
DL —.C
| ]
|
' ]
k A-—T—"g
k-1
>
: , X
j-1 J J+1
Figure 8-11. General finite volume grid applied in Cartesian coordinates.
Thus, in Eq. (8-49) we are left with:
Tojk 1 1
_'-—G'k_l+G'kDX+— F'k+F' kDy

1 1
+—(Gj K +Gj,|(+1)DX_ _(Fj-l,k + Fj,k)Dy_ 0
Collecting terms:
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fq L Fi+1k - Fj- 1k +Gj,k+1' Gjk-1 —o (8-52)
Tt 2Dx 2Dy

for thisreversion to Cartesian
coordinates the equation just reduces
to simple central differences of the original
partial differential equation

or:

Jo [T, TC o (8-53)
Tt Ix Ty

Thus, and at first glance remarkably, the results of the finite volume approach can lead to the
exact same equations to solve as the finite difference method on a simple Cartesian mesh.
However, the interpretation is different:”

* Finite difference: approximates the governing equation at a point

* Finite volume: over avolume

» Finite volumeisthe most physical in fluid mechanics codes, and is actually used in
most codes.

» Finite difference methods were developed earlier, the analysis of methods is easier
and further devel oped.

Both the finite difference and finite volume methods are very similar. However, there are
differences. They are subtle but important. We cite three points in favor of the finite volume
method compared to the finite difference method:

» Good conservation of mass, momentum, and energy using integrals when mesh is
finite size

» Easier to treat complicated domains (integral discretization [averaging] easier to
figure out, implement, and interpret)

» Averageintegral concept much better approach when the solution has shock waves
(i.e. the partial differential equations assume continuous partial derivatives).

Finally, special considerations are needed to implement some of the boundary conditionsin
this method. The references, in particular Fletcher,® should be consulted for more details.

8.4 Boundary conditions

So far we have obtained expressions for interior points on the mesh. However, the actual
geometry of the flowfield we wish to analyze is introduced through the boundary conditions. We
use an eliptic PDE problem to illustrate the options available for handling boundary conditions.

Consider the flow over asymmetric airfoil a zero angle of attack, as shown in Fig. 8-12.

" Summarized from Professor B. Grossman’s unpublished CFD notes.
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7 e _:
I

I I
I A I
| Y I
I I
I I
' |
L _
R, x> Y

Figure 8-12. Example of boundary condition surface requiring consideration.

Here, because there is no lift, symmetry allows usto solve only the top half of the region. If
isaperturbation potential [see Chap. 2, Eq. (2-123)],
U= U¥ +f X

8-54
ety (8-54)
then far away from the surface,
u=v=20 (8- 59
or
f®0 as x°+y°® ¥. (8- 56)

For alifting airfoil, the farfield potential must take the form of a potential vortex singularity
with acirculation equal to the circulation around the airfoil.

The boundary condition on the surface of primary interest is the flow tangency condition,
where the velocity normal to the surface is specified. In most cases the velocity normal to the
surfaceis zero.

Consider ways to handle the farfield BC
There are severa possibilities:

A. “goout” far enough (?) and set f =0 for f ® O, as the distance from the body goes to
infinity (or v =0, u =0 where these are the perturbation velocities, or u = Uy if itisthe
total velocity).

How good is this? This method is frequently used, although clearly it requires
numerical experimentation to ensure that the boundary is “far enough” from the body.
In lifting cases this can be on the order of 50 chord lengths in two-dimensions. In
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3/17/98

addition, this approach leads to excessive use of grid points in regions where we
normally aren’t interested in the details of the solution.

Transform the equation to another coordinate system, and satisfy the boundary
condition explicitly at infinity (details of this approach are given in Chap. 9).

Figure 8-13 demonstrates what we mean. In the x system the physical distance from O
to infinity is transformed to the range from O to 1. Although this approach may lead to
efficient use of grid points, the use of the resulting highly stretched grid in the physical
plane may result in numerical methods that lose accuracy, and even worse, do not
converge during an iterative solution.

points evenly spaced in x plane
1.20 - X=¥isx=1

1.00 /

0.80 —
0.60 —

0.40

points spaced progressively

0.20 further apart in physical plane

/ . .

1 1 J
0.00 5.00 10.00 15.00 20.00 25.00
X

0.00

Figure 8-13. One example of away to handle the farfield boundary condition.

Blocks of Grids are sometimes used, a dense “inner” grid and a “coarse” outer grid. In
this approach the grid points are used efficiently in the region of interest. It isa simple
version of the adaptive grid concept, where the the grid will adjust automatically to
concentrate pointsin regions of large flow gradients.

Match the numerical solution to an analytic approximation for the farfield boundary
condition.

This is emerging as the standard way to handle the farfield boundary conditions. It
alows the outer boundary to be placed at a reasonable distance from the body, and
properly done, it ensures that the boundary numerical solution reflects the correct
physics at the boundary. This has been found to be particularly important in the solution
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of the Euler equations. Effort is still underway to determine the best way to implement
this approach.

To summarize this discussion on farfield boundary conditions:
» BC'son the FF boundary are important, and can be especially important for Euler
codes which march in time to a steady state final solution.

* How to best enforce the FF BC is still under study - research papers are still being
written describing new approaches.

Consider ways to handle the nearfield BC

There are are also several ways to approach the satisfaction of boundary conditions on the
surface. Here we discuss three.

A. Use a standard grid and allow the surface to intersect grid lines in an irregular manner.
Then, solve the equations with BC's enforced between node points. Figure 8-14
illustrates this approach. In the early days of CFD methodology development this
approach was not found to work well, and the approach discussed next was developed.
However, using the finite volume method, an approach to treat boundary conditions
imposed in this manner was successfully developed (primarily by NASA Langley and its
contractors and grantees). It has not become a popular approach, and is considered to lead
to an inefficient use of grid points. Many grid points end up inside the body.

I I I I I
| Airfoil placed in simpl
—r rectangular grick_

LN

L [~

2

——

~ Irregular Intersection of.
airfoil surface and grid

Figure 8-14. Surface passing through a general grid.

B. The most popular approach to enforcing surface boundary conditions is to use a
coordinate system constructed such that the surface of the body is a coordinate surface.
An example of this approach is shown in Figure 8-15. This is currently the method of
choice and by far the most popular approach employed in CFD. It works well. However,
it complicates the problem formulation. To use this approach, grid generation became an
area of study by itself. Grid generation is discussed in Chapter 9.
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a. Entire geometry b. Closeup of the trailing edge
Figure 8-15. Body conforming grid for easy application of BCs on curved surfaces.™

C. Another approach is to use thin airfoil theory boundary conditions, as described in detail
in Chapter 6. This eliminates many of the problems associated with the first two
approaches. It is expedient, but at some lossin accuracy (but very likely not that much, as
shown in Chap. 6, Fig. 6-14).

.| Apply boundary conditions
approximately on agrid line”

Figure 8-16. Approximate approach to boundary condition specification.

Finite difference representation of the BC's

After defining a coordinate system, the finite difference representation of the boundary
condition must be written down. Using Laplace’ s Equation as an example, consider that there are
normally two types of boundary conditions associated with the boundary: 1) the Dirichlet
problem, where f is specified on the boundary, and 2) the Neumann problem, where If /fin is
specified. If the Dirichlet problem is being solved, the value on the boundary is simply specified
and no special difference formulas are required.
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When the solution requires that the gradient normal to the surface be specified, a so-called
“dummy row” isthe easiest way to implement the boundary condition. As an example, following
Moran,* consider a case where the normal velocity, v, is set to zero at the outer boundary. The
boundary is at grid linej = NY. Assume that another row isadded at | = NY + 1, asindicated in
Fig. 8-17.

J=NY+1 —————— 4 —
I

] = NY i
I

j=NY-1 ——————— ——— — —-

Figure 8-17. Boundary condition at farfield.
The required boundary condition at j = NY is:

f. -f.
E -0= LNY+1 ™ "i,NY-1 +O(DY)2 (8-57)
fin YNY+1 - YNY-1

and to ensure that the boundary condition is satisfied, ssmply define:

finy+1°finy-1- (8-58)

The eguations are then solved up to Y|y, and whenever you need f at NY+1, ssimply use the
vaue at NY-1.
Now, we present an example demonstrating the application of thin airfoil theory boundary

conditions at the surface. Recall that the boundary condition is:

af df
Ty T i

where yfoj| = f(X). Assuming that in the computer code v has been nondimensionalized by Uy,

the boundary condition is:

%:% (8-60)
Yy X

and the grid near the surface is defined following Fig. 8-18.
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Figure 8-18. Boundary condition at surface.

Writing the derivative in terms of central differencesat j =2,

fig-fig _df (8-61)
Y3 - Y_I_ dx
we solve for fj 1:
df
fia=fiz- (%- Y])E(' (8-62)

Note that sincej = 1 is adummy row, you can select the grid spacing such that the spacing is
egual on both sides of | = 2, resulting in second order accuracy. Thus, asin the previous example,
anytime we need f 1 we use the value given by Eq. (8-62). Using these boundary condition

relations, the boundary conditions are identically satisfied. Note also that this approach is the
reason that in many codes the body surface corresponds to the second grid line, j = 2.

Imposition of boundary conditions is sometimes more difficult than the analysis given here
suggests. Specifically, both the surface and farfield boundary conditions for the pressure in the
Navier-Stokes and Euler equations can be tricky.

8.5 Solution of Algebraic Equations

We now know how to write down a representation of the PDE at each grid point. The next
step is to solve the resulting system of equations. Recall that we have one algebraic equation for
each grid point. The system of algebraic equations may, or may not, be linear. If they are
nonlinear, the usual approach isto form an approximate linear system, and then solve the system
iteratively to obtain the solution of the original nonlinear system. The accuracy requirement
dictates the number of the grid points required to obtain the solution. Previously, we assumed
that linear equation solution subroutines were available, as discussed in Chapter 3. However, the
development of CFD methods requires a knowledge of the types of algebraic systems of
equations.
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Recall that linear algebraic equations can be written in the standard form:
Ax=b. (8-63)

For an inviscid two-dimensional solution, a grid of 100 X 30 is typical. Thisis 3000 grid points,

and results in a matrix 3000 X 3000. In three dimensions, 250,000 ~ 300,000 grid points are
common, 500,000 points are not uncommon, and a million or more grid points are often
required. Clearly, you can't expect to use classical direct linear equation solvers for systems of
thissize.

Standard classification of algebraic equations depends on the characteristics of the elements
inthe matrix A. If A:

1. containsfew or no zero coefficients, it is called dense,
2. contains many zero coefficients, it is called sparse,

3. contains many zero coefficients, and the non-zero coefficients are close to
the main diagonal: the A matrix is called sparse and banded.

Dense Matrix

For a dense matrix direct methods are appropriate. Gauss elimination is an example of the
standard approach to these systems. LU decomposition*! is used in program PANEL, and is an
example of a standard method for solution of a dense matrix. These methods are not good for
large matrices (> 200-400 equations). The run time becomes huge, and the results may be
susceptible to round-off error.

Sparse and Banded

Special forms of Gauss elimination are available in many cases. The most famous banded
matrix solution applies to so-called tridiagonal systems:

é b o] U x u éd u
é ue ua é U
! b C 0 a Xo o 2Oy C
e 27 (e "2 u &2
é S 6 : u é
e , _ w8 u_éy U 8-64
: RN AR N
€ ' ' @ : 0 é: ¢
é : a é G
& 0 an-1 bn-1 CN-1E%<N- 14 N1
e ap by Bxy @ €dy @

The algorithm used to solve Eg. (8-64) is known as the Thomas algorithm. This algorithm is very
good and widely used. The Thomas agorithm is given in detail in the sidebar, and a sample
subroutine, tridag, isdescribed in App H-1.

3/17/98



8 - 28 Applied Computational Aerodynamics

Solution of tridiagonal systems of equations

The Thomas Algorithm is a specia form of Gauss elimination that can be used to solve
tridiagona systems of equations. When the matrix is tridiagonal, the solution can be

obtained in O(n) operations, instead of O(n3/3). The form of the equation is:
aXi-1thX +Gx=d  i=1...,n

where a; and ¢, are zero. The solution agorithm® startswith k = 2,....,n:

e
b-1
b =hb¢ - Mo q.
d¢ =dy - mdi_q
Then:
d
X :b—”
n
and finaly, fork=n-1,...1:
o = i - GcX+1
k_ h( -

In CFD methods this algorithm is usually coded directly into the solution procedure,
unless machine optimized subroutines are employed on a specific computer.

General Sparse

These matrices are best treated with iterative methods. In this approach an initial estimate of
the solution is specified (often simply 0), and the solution is then obtained by repeatedly
updating the values of the solution vector until the equations are solved. This is also a natural
method for solving nonlinear algebraic equations, where the equations are written in the linear
equation form, and the coefficients of the A matrix are changed as the solution develops during
the iteration. Many methods are available.

There is one basic requirement for iterative solutions to converge. The elements on the
diagonal of the matrix should be large relative to the values off the diagonal. The condition can

be give mathematically as:
n

lail* alaj (8-65)

5t

=l

and for at least one row:
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n
lail> & [a] (8-66)
=
A matrix that satisfies this condition is diagonally dominant, and, for an iterative method to
converge, the matrix must be diagonally dominant. One example from aerodynamics of a matrix
that arises which is not diagonally dominant is the matrix obtained in the monoplane equation
formulation for the solution of the lifting line theory problem.

One class of iterative solution methods widely used in CFD is “relaxation.” As an example,
consider Laplace's Equation. Start with the discretized form, Eq.(8-31). The iteration proceeds
by solving the equation at each grid pointi,j a an iteration n+1 using values found at iteration n.

Thus the solution at iteration n+1 is found from:

1_1 !
fy =l fj iy + e+ -] (8-67)

The values of f are computed repeatedly until they are no longer changing. The “relaxation” of
the values of f to final converged values is roughly analogous to determining the solution for an
unsteady flow approaching a final steady state value, where the iteration cycle is identified as a
time-like step. Thisis an important analogy. Finaly, the idea of “iterating until the values stop
changing” as an indication of convergence is not good enough. Instead, we must check to see if
the finite difference representation of the partial differential equation using the current values of
f actually satisfies the partial differential equation. In this case, the value of the equation should
be zero, and the actual value of the finite difference representation is know as the residual. When
theresidual is zero, the solution has converged. Thisis the value that should be monitored during
the iterative process. Generally, as done in THINFOIL, the maximum residual and its location
in the grid, and the average residua are computed and saved during the iterative process to
examine the convergence history.

Note that this method uses all old values of f to get the new value of f. This approach is
known as point Jacoby iteration. Y ou need to save all the old values of the array as well as the

new values. This procedure converges only very slowly to the final converged solution.

A more natural approach to obtaining the solution is to use new estimates of the solution as
soon as they are available. Figure 8-19 shows how this is done using a simply programmed
systematic sweep of the grid. With a conventional sweep of the grid this becomes:

1
f ir,]j+1 = Z f ir']Fl,j + fln--'fj + f|r,]] 1 1f i':]j-’-_ll . (8-68)
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This scheme s called the point Gauss-Seidel iteration. It also elliminates the need to store all
the old iteration values as well as al the new iteration results, which was required with the point
Jacoby method.

P old values available

\ \ availabl ,A/,¢
\\

\ \ T Svaueto be found here

" sweep up each line, and
then move to the next,
starting at the bottom

Figure 8-19. Grid sweep approach to implement the Gauss-Seidel solution iteration scheme.

The point Gauss-Seidel iteration procedure also converges slowly. One method of speeding
up the convergence is to make the change to the value larger than the change indicated by the
normal Gauss-Seidel iteration. Since the methods that have been described are known as
relaxation methods, the idea of increasing the change is known as successive over-relaxation, or
SOR. Thisisimplemented by defining an intermediate value:

f n+1 [f i+1,j flmil] +f| J+l +f Inj+11] (8-69)

and then obtaining the new value as:
n+1 n+1 n _
L=t w6 0). (8-70)

The parameter w is a relaxation parameter. If it is unity, the basic Gauss-Seidel method is
recovered. How large can we make it? For most model problems, a stability analysis (presented
in the next section) indicates that w < 2 is required to obtain a converging iteration. The best
value of w depends on the grid and the actual equation. For most cases of practical interest the
best values of w must be determined through numerical experimentation. Figure 8-20 presents an
example of the manner in which the solution evolves with iterations. The value of f after 2000
iterations is approached very gradually. The figure also illustrates the time-like nature of the
iteration.

3/17/98



Introduction to CFD 8 - 31

002 . ! ! ' value at 2000 iterations
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Figure 8-20. Typical variation of f during solution iteration.

Another way to speed up the iteration is to sweep the flowfield a“line” at atime rather than a
point at a time. Applying over-relaxation to this process, the so-caled successive line over-
relaxtion, or SLOR, process is obtained. In this method a system of equations must be solved at
each line. Figure 8-21 illustrates this approach. The method is formulated so that the system of
equations is tridiagonal, and the solution is obtained very efficiently. This approach provides a
means of spreading the information from new values more quickly than the point by point sweep
of the flowfield. However, all of these approaches result in a very slow approach to the final
value during the iterations.

The effect of the value of the over relaxation parameter is shown in Figure 8-22. Here, the
convergence level is compared for various values of w. Notice that as convergence requirements
are increased, the choice of w becomes much more important. Unfortunately, the choice of w

may not only be dependent on the particular numerica method, but also on the particular
problem being solved.

Mathematically, the convergence rate of an iterative process depends on the value of the so-
called spectral radius of the matrix relating the value of the unknowns at one iteration to the
values of the unknowns at the previous iteration. The spectral radius is the absolute value of the
largest eigenvalue of the matrix. The spectral radius must be less than one for the iterative
process to converge. The smaller the value of the spectral radius, the faster the convergence.
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Figure 8-21. Solution approach for SLOR.
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Figure 8-22. Effect of the value of w on the number of iterations required to achieve
various levels of convergence.™

Another way to spread the information rapidly is to aternately sweep in both the x and y
direction. This provides a means of obtaining the final answers even more quickly, and is known
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as an aternating direction implicit or ADI method. Figure 8-23 illustrates the modification to the
SLOR method that is used to implement an ADI scheme. Several different methods of carrying
out the details of this iteration are available. The traditional approach for linear equations is
known as the Peaceman-Rachford method, and is described in standard textbooks, e.g., Ames
and Isaacson and Keller.™ This approach is also known as an approximate factorization or “AF’
scheme. It is known as AF1 because of the particular approach to the factorization of the
operator. A discussion of ADI including a computer program is given in the first edition of the
Numerical Recipes book.™

Another approach has been found to be more robust for nonlinear partial differentia
equations, including the case of mixed sub- and supersonic flow. In this case the time-like nature
of the approach to a final value is used explicitly to develop a robust and rapidly converging
iteration scheme. This scheme is known as AF2. This method was first proposed for steady flows
by Ballhaus, et al,'® and Catherall'” provided a theoretical foundation and results from numerical
experiments. A key aspect of ADI or any AF scheme is the use of a sequence of relaxation
paramters rathers a single value, as employed in the SOR and SLOR methods. Typicaly, the
sequence repeats each eight to eleven iterations.

Holst™ has given an excellent review and comparison of these methods. Figure 8-24, from
Holst,' shows how the different methods use progressively “better” information at a point to find
the solution with the fewest possible iterations. The advantage is shown graphically in Figure 8-
25, and is tabulated in Table 8-1 (also from Holst™®). Program THINFOIL, described in Section
8.7, uses these methods and App. G-1 contains a description of the theoretical implementation of
these methods. Further details are given in Chapter 11, Transonic Aerodynamics.

| ] | |
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Figure 8-23. ADI Scheme solution approach.
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Line Gauss-Seidel SLOR ADI

Figure 8-24. Stencil of information (Holst™)

In addition to these methods, solutions can be obtained more rapidly by using so-called
multigrid methods. These methods accelerate the convergence iterative procedures by using a
sequence of grids of different densities and have become one of the most important techniques
used to solve field problems of all types. The overall levels of the solution are established by the
solution on a crude grid, while the details of the solution are established on a series of finer grids.
Typicaly, one iteration is made on each successively finer grid, until the finest grid is reached.
Then, one iteration is made on each successively courser grid. This process is repeated until the
solution converges. This procedure can reduce the number of fine grid iterations from possibly
thousands, as shown above, to from 10 to 30 iterations.

This approach to the solution of partial differential equations was highly developed by
Jameson®® for the solution of computational aerodynamics problems. He used the multigrid
approach together with an aternating direction method in an extremely efficient algorithm for
the two-dimensional transonic flow over an airfoil.

The details of the multigrid method are, as they say, beyond the scope of this chapter, and the
reader should consult the standard literature for more details. This includes the origina treatise
on the subject by Brandt™® (which includes an example FORTRAN program), another tutorial
which includes a FORTRAN code,® and more recent presentations by Briggs™ and Wesseling.”
The most recent Numerical Recipes™ book aso includes a brief description and sample program.
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Figure 8-25. Comparison of convergence rates of various relaxation schemes (Holst™). Thisis

the number of iterations estimated to be required to reduce the residual by one order of
magnitude

Table8-1
Convergence rate estimates for various relaxation schems (Holst™)

Number of iterations required
for a one order-of-magnitude

Algorithm reduction in error
Point - Jacobi 2/5
Point - Gauss- Seidel 1/ 5
SOR 1/(2Dp)
Line- Jacobi i)
Line- Gauss- Seidel 1/ 20F)
SLOR 1/2\2p
ADI - logp/2)/155
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To carry out the solution to large systems of equations, the standard numerical procedures
require that the approach be generalized dslightly from the one given above. Specificaly, we
define an operator, such that the partial differential equation is written (continuing to use
Laplace's equation as an example):

Lf =0 (8-71)
where
12 92
L= —s+—sy. (8-72)
e 1y

To solve this equation, we re-write the iteration scheme expressions given above in Equation.
(8-70) as:

N Cj +w Lf =0. (8-63)
&vy—‘ HL’
ntM iteration nt iteration
correction residual, = 0

when converged
solution is achieved

Thisform is known as the standard or deltaform. C is given by

n _¢n+l n _
G =1 - 1. (8-64)

The actual form of the N operator depends on the specific scheme chosen to solve the problem.
8.6 Stability Analysis

The analysis presented above makes this approach to solving the governing equations for
flowfields appear deceptively simple. In many cases it proved impossible to obtain solutions.
Frequently the reason was the choice of an inherently unstable numerical algorithm. In this
section we present one of the classical approaches to the determination of stability criteriafor use
in CFD. These types of analysis provide insight into grid and stepsize requirements (the term
stepsize tends to denote time steps, whereas a grid size is thought of as a spatial size). In

addition, this analysis is directly applicable to a linear equation. Applications in nonlinear
problems are not as fully developed.
Fourier or Von Neumann Stability Analysis
Consider the heat equation used previoudly,
2
Ju_, Tu (8-17)
It X
and examine the stability of the explicit representation of this equation given by Eg. (8-21).
Assume at t = O, that an error, possibly due to finite length arithmetic, is introduced in the form:
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u(x,t) =y () erX | (8-75)
m?r ks actigly Cﬁglt%rtr)ﬁ as'ess

where:
b - areal constant

j=v-1
Here we restate the explicit finite difference representation,

u(x,t + Dt) - u(xt) . u(x +Dxt) - 2u(x,t) +u(x - Dx,t) (8-21)
Dt - (Dx)? '

Substitute Eg. (8-75) into this equation, and solve for y (t + Df). Start with

y (t+ Dt)ejbx- y (t)ejbx y ® {ejb(X+DX) Zej bx +ejb(X Dx)} (8-76)
Dt (Dx)

and collecting terms:

y (t+D0el®X=y el +a %zy (t)ejbx{eijx_ 2+e-ijx} (8-77)
- 24 IPDX 4o~ jbDx
2cosbDx
Note that the e/™ term cancel s, and Eq. (8-77) can be rewritten:
Dt u
y(t+Dt)=y (t)el+a —2( 2+ 2 cosbDx)y
(Bx) G
¢ ae o
é =
e L (©78)
=y (1)€1- 2a —G1- cosbbx U
& T D¢ el
& ouble angIeformuIa L0
8 é =1- 28in® b= BH

which reduces to:

y (t+Dt) = y(t)el+2a—z§ 1+ 2sin? b @Ld

b (8-79)
Dt . o, DxU
= tél 4 b —
y() a(m)zsm 20

Now look at theratio of y (t + Dt) toy (t), which is defined as an amplification factor G,
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=Yt _5. 4a—thsin2b2(H. (8-80)
y@® e (Dx) 2 ¢
For stability the requirement is clearly:
|5 <1, (8-81)
which means that the error introduced decays. For arbitrary b, what does this condition mean?
Observe that the maximum value of the sine term is one. Thus, the condition for stability will be:

Dt
1- da ——| <1 (8-82)
(Dx)
|
and the limit will be:
[1- 4l |=1. (8-83)
Thelargest | that can satisfy thisrequirement is:
1- 4 =-1
or
-4 =-2, (8-84)
and
=1
2
Thus, thelargest | for |G| < 1 means
Dt 1
| =a——> <= (8-85)
(Dx) 2
or:
Dt 1
a—><=. (8-86)
(Dx)° 2

This sets the condition on Dt and Dx for stability of the model equation. This is a rea
restriction. It can be applied locally for nonlinear equations by assuming constant coefficients.
An analysis of the implicit formulation, Eq. (8-23), demonstrates that the implicit formulation is
unconditionally stable.

Is this restriction on Dt and Dx real? Rightmyer and Mortor?® provided a dramatic example
demonstrating this criteria. Numerical experiments can quickly demonstrate how important this
condition is. Figure 8-26 repeats the analysis of Rightmyer and Morton,” demonstrating the
validity of the analysis. Theinitial and boundary conditions used are:
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u(x,0=j (x)(given) forOExXEp
u0,t)=0, u(p,t)=0 fort>0

Figure 8-26a presents the development of the solution and shows the particular choice of
initial value shape, y, using a value of | < 1/2: 5/11. Figure 8-26b-d provide the results for a
valueof | > 1/2: 5/9. Theoreticaly, this stepsize will lead to an unstable numerical method, and
the figure demonstrates that thisis, in fact, the case.

Our model problem was parabolic. Another famous example considers a hyperbolic equation.
Thisisthe wave equation, where c is the wave speed:

2 2
% - c% =0. (8-87)

This equation represents one-dimensional acoustic disturbances. The two-dimensional small
disturbance equation for the potential flow can also be written in this form for supersonic flow.
Recall,

(1- ME N + 4y =0 (8-88)

or when the flow is supersonic:

LI (8-89)

f oy - =0
*mg -1 Y

and we see here that xis the timelike variable for supersonic flow.

Performing an analysis similar to the one above, the stability requirement for Eq. (8-87) is
found to result in a specific parameter for stability:

n=ct (8-90)
Dx
which is known as the Courant number. For many explicit schemes for hyperbolic equations, the
stability requirement is found to be
nl£ 1. (8-91)

This requirement is known as the CFL condition, after its discoverers. Courant, Friedrichs,
and Levy. It has a physical interpretation. The analytic domain of influence must lie within the
numerical domain of influence.

Recalling that the evolution of the solution for an elliptic system had a definite time-like
quality, a stability analysis for éliptic problems can aso be carried out. For the SOR method,
that analysis leads to the requirement that the over-relaxation factor, w, be less than two.
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Figure 8-26. Demonstration of the step size stability criteriaon numerical solutions.
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Figure 8-26. Demonstration of the step size stability criteria on numerical solutions (concluded).
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8.7 Program THINFOIL

An example of the solution of Laplace’ s Equation by finite differences is demonstrated in the
program THINFOIL. This program offers the users options of SOR, SLOR, AF1 and AF2 to
solve the system of agebraic equations for the flow over a biconvex airfoil at zero angle of
attack. An unevenly spaced grid is used to concentrate grid points near the airfoil. The program
and the theory are described in Appendix G-1. It can be used to study the effects of grid
boundary location, number of grid points, and relaxation factor, w.

Figure 8-27 provides the convergence history for the case for which the comparison with the
exact solution is given below. Using SOR, this shows that hundreds of iterations are required to
reduce the maximum change between iteration approximately three orders of magnitude. Thisis
about the minimum level of convergence required for useful results. A check against results
converged further should be made. The reader should compare this with the other iteration
options.

10° T T T T T
* 5% Thick Biconvex Airfail
102 * 74 x 24 grid
* SORw=1.80 3
* AF 2 factor: 1.333 ]
10t E
Maximum SOR 3
Residual _ i
10 3 E
10" F 3
10° £ E
103 E
10 | | | | |
0 100 200 300 400 500 600

Iteration

Figure 8-27. Convergence history during relaxation solution.

The convergence history presented above is actualy the maximum residual of f at each
iteration. The solution is assumed to have converged when the residual goes to zero. Typical
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engineering practice is to consider the solution converged when the residual is reduced by 3 or 4
orders of magnitude. However, a check of the solution obtained at a conventional convergence
level with a solution obtained at much smaller residual (and higher cost) level should be made
before conducting an extensive analysis for a particular study.

The solution for a 5% thick biconvex airfoil obtained with THINFOIL is presented in
Figure 8-28, together with the exact solution. For this case the agreement with the exact solution
is excellent. The exact solution for a biconvex airfoil is given by Milton Van Dyke,* who cites
Milne-Thompson® for the derivation.

-0.30 i T T T T
[ 5% Thick Biconvex Airfail
8 (THINFOIL usesthin airfoil theory BC's)
-0.20 [ -
010 |
Cp I
0.00 [
0.10
o Cp(THINFOIL)
020  —— SPEa
I 74 x 24 grid
0.30 [ 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
X/C

Figure 8-28. Comparison of numerical solution with analytic solution for a biconvex airfoil.

The material covered in this chapter provides a very brief introduction to an area which has been
the subject of an incredible amount of research in the last thirty years. Extensions to include
ways to treat flows governed by nonlinear partial differential equations are described after some
basic problemsin establishing geometry and grids are covered in the next chapter.
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8.8 Exercises

1

How accurate are finite difference approximations? Over one cycle of asine wave,
compare first and second order accurate finite difference approximations of the 1st
derivative and the second order accurate 2nd derivative of the shape with the exact values.
How small does the step size have to be for the numerical results to accurate to 2
significant figure? 4 figures? 6? What conclusions about step size can you make?

Get some experience with the solution of Laplace’ s Equation using finite differences.

i) Download acopy of THINFOIL from the web page
i) Makeit run on your PC.
iii) Study the program to understand the procedure.

Pick as abasdline case: Xmin=-2.2, Xmax=3.2, Y max=2.4, and NUP=14, NDOWN=14,
NON=30, NABOVE=18

iv) Run SOR with w = 1.6 and see how many iterations to “convergence’
v) Runwithw=10, 1.50, 1.75, 1.90, 1.99 (400 iterations max)

vi) Plot the convergence history as afunction of iteration for each w. Notethat it is
standard procedure to plot the log of the residual. See examplesin the text.

vii) For onew, increase the number of grid points and compare (watch dimensions)

- convergence rate with the same w case above
- the surface pressure distribution results for the two grids
viii) Draw conclusions about SOR as a numerical method for solving PDE's.
iX) Repeat the studies using SLOR, AF1 and AF2. What do you conclude about the
relative convergence times and solution accuracy?

Examine the effect of the number of grid points on the solution obtained using program
THINFOIL. How many grid points are required for a grid converged solution?

Examine the effect of the location of the farfield boundary condition on the solution
obtained using program THINFOI L. What do you conclude?

Change the farfield boundary condition to set f =0, instead of f /n = 0. How does this
affect the solution? the convergence rate?

Modify program THINFOIL to obtain the solution to the flow over an NACA 4-Digit
airfoil thickness shape. Address the following issues:
i) storethe boundary condition values before the calculation beginsinstead of
recomputing each time the BC needs the value

i) recognizing that the slope at the leading edge isinfinite, assesstwo methods of
avoiding numerical problems

» place the leading edge between grid points
* use Riegels' factor to modify the slope boundary condition, replacing df/dx by
df /dx

1+( df/d x)?
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Appendix A Geometry for Aerodynamicists

Aerodynamicists control the flowfield through geometry definition, and are always interested in
possible geometric shapes that would be useful in design. This appendix provides the detailed
definition of many of the classic shapes frequently specified in aerodynamics. It is not
encyclopedic. Section A.1.1 gives some other sources for airfails.

A.1 Airfoil Geometry
The NACA Airfoils

The NACA airfoils were designed during the period from 1929 through 1947 under the direction
of Eastman Jacobs at the NACA’s Langley Field Laboratory. Most of the airfoils were based on
simple geometrical descriptions of the section shape, athough the 6 and 6A series were
developed using theoretical analysis and don’t have simple shape definitions. Although a new
generation of airfoils has emerged as a result of improved understanding of airfoil performance
and the ability to design new airfoils using computer methods, the NACA airfoils are still useful
in many aerodynamic design applications. A number of references have been included to allow
the reader to study both the older NACA literature and the new airfoil design ideas. Taken
together, this literature provides a means of obtaining a rather complete understanding of the
ways in which airfoils can be shaped to obtain desired performance characteristics.

The NACA airfoils are constructed by combining a thickness envelope with a camber or mean
line. The equations which describe this procedure are:

Xy = X—Y¥;(X)sin® (A-1)
Yu = Ye(X) + yi(x) cosd

and
X = X+ Y;(x)sin® (A-2)
W = Ye(X) =y (x) cosd

where y¢(x) is the thickness function, y(X) is the camber line function, and

0 =tan 4%% (A-3)

isthe camber line slope. It is not unusual to neglect the camber line slope, which simplifies the
eguations and makes the reverse problem of extracting the thickness envelope and mean line for
agiven airfoil straightforward.
The primary reference volume for all the NACA subsonic airfoil studies remains:

Abbott, I1.H., and von Doenhoff, A.E., Theory of Wing Sections, Dover, 1959.
The following paragraphs provide a brief history of the development of the NACA Airfails.

Appendix B provides references to the development of the NASA advanced airfoils, which were
developed from 1966- approx. 1977.
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Evolution of the NACA airfoils

1. The 4-digit foils: According to Abbott,
Pinkerton found that the thickness
distribution of the Clark Y and Gottingen 398
airfoils were similar, and Jacobs selected
afunction to describe this thickness distribution.
The mean lines were selected to be described
by two parabolic arcs which were tangent
at the position of maximum camber.

2. The 4-digit modified foils: The camber
lines were identical to the 4-digit series,
and amore general thickness distribution
was defined, which alowed variationsin
the leading edge radius and position of
maximum thickness to be investigated.

3. The 5-digit foils: The thickness distribution
was kept identical to the 4-digit series, and
anew camber line was defined which
allowed for camber to be concentrated near
the leading edge. A reflexed camber line was
designed to produce zero pitching moment,
but has generally not been used. These foils
were derived to get good high lift with
minimum Cpy.

4. The 6-seriesfoils. The foils were designed
to maintain laminar flow over alarge
portion of the chord by delaying the adverse
pressure gradient. The thickness envelope
was obtained using exact airfoil theory,
and no simple formulas are available to describe
the shapes. The camber lines were designed
using thin airfoil theory and simple formulas are
available which describe their shape.

Primary
NACA Report Authors
R-460 Jacobs, Ward
and Pinkerton
R-492 Stack and
von Doenhoff
R-537 Jacobs,
R-610 Pinkerton and
Greenberg
R-824" Abbott,
von Doenhoff
and Stivers
R-903* Loftin

5. The 6A-series foils. To improve the trailing edge
structurally, the foils were designed to provide
sections with simple (nearly straight) surface
geometry near the trailing edge, while maintaining
the same general properties as the 6-series foils.
The camber line can be described by asimple
alteration of the standard 6-series mean line.

Historical accounts of the NACA airfoil program are contained in:

Date

1933

1934

1935
1937

1945

1948

Abbott, I1.H., “Airfoils,” Evolution of Aircraft Wing Design, AIAA Dayton Section

Symposium, March 1980, AIAA Paper 80-3033.

" Additional section datais contained in NASA R-84, 1958, by Patterson and Braslow.
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and

Jones, R.T., “Recollections From an Earlier Period in American Aeronautics,” Annual
Review of Fluid Mechanics, Vol. 9, pp. 1-11, 1977.

NASA has published two reports describing computer programs that produce the NACA airfail
ordinates:

Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for the NACA 4-Digit, 4-Digit Modified, 5-Digit, and 16-Series Airfoils,” NASA
TM X-3284, November 1975.

Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for the NACA 6- and 6A-Series Airfoils,” NASA TM X-3069, September 1974.
This program isincluded in the utility programs described in App. E, as LADSON. It is not
extremely accurate for sections less than 6% thick or greater than 15% thick.

An extensive and excellent survey of the older airfoilsis contained in the German book
(available in English trandlation):

Riegels, Airfoil Sections, Butterworths, London, 1961. (English language version)
NASA supercritical airfoil development is described in the following references:

Whitcomb, “Review of NASA Supercritical Airfoils,” ICAS Paper 74-10, August 1974
(ICAS stands for International Council of the Aeronautical Sciences)

Harris, C.D., “NASA Supercritical Airfoils,” NASA TP 2969, March 1990.
Becker, J.V., “The High-Speed Airfoil Program,” in The High Speed Frontier, NASA SP-
445, 1980.
The NACA 4-Digit Airfoil
The numbering system for these airfoils is defined by:
NACA MPXX
where XX is the maximum thickness, t/c, in percent chord.
M is the maximum value of the mean line in hundredths of chord,
P isthe chordwise position of the maximum camber in tenths of the chord.
Note that although the numbering system implies integer values, the equations can provide 4
digit foilsfor arbitrary values of M, P, and XX.

Anexamplee NACA 2412 * a12% thick airfail,
» amax value of the camber line of 0.02, at x/c = 0.4.

The NACA 4-digit thickness distribution is given by:

% = %ﬁao‘/ xIC —ay( x/c) — a(x/c )? +ag(x/c)® - a( x/c)4] (A-4)
where:
ag = 1.4845 a, =1.7580 ay = 0.5075
a; = 0.6300 ag = 1.4215
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The maximum thickness occurs at x/c = 0.30, and the leading edge radiusis

ﬁ'LTE @: 1.1019%@2 (A-5)

The included angle of thetrailing edge is:

51 = 2tan_1@[16925§% (A-6)

It isimportant to note that the airfoil has a finite thickness at the trailing edge.

The camber lineis given by:

Ye - M 210
=< = P(x/c)—-(x/c)
dyc Ej ]% %@ P (A7)
d_ :—2( —(X/C)) g]
and
Yo - [1 2P +2P(x/c) - ]
c @- E
dye 2M %%> P (A9
R A

The camber line slope is found from (A-3) using (A-7) and (A-8), and the upper and lower
surface ordinates resulting from the combination of thickness and camber are then computed
using equations (A-1) and (A-2).

The NACA 5-Digit Airfoil

This airfoil is an extension of the 4 digit series which provides additional camber lines. The
numbering system for these airfoilsis defined by:

NACA LPQXX
where XX is the maximum thickness, t/c, in percent chord.
L isthe amount of camber; the design lift coefficient is 3/2 L, in tenths

P is the designator for the position of maximum camber, X, where x = P/2,
and P isgiven in tenths of the chord

Q = 0; standard 5 digit foil camber
=1, “reflexed” camber
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An example: NACA 23012, is a 12% thick airfoil, the design lift coefficient is 0.3, the position
of max camber islocated at x/c = 0.15, and the “standard” 5 digit foil camber lineis used.

The thickness distribution is the same as the NACA 4 digit airfoil thickness distribution
described above in equation (A-4).

The standard five-digit series camber lineis given by:

Ye - ﬁ[(x/c)?’ =3m(x/ 0)2 + m2(3— m)(x/c)]g
dyC f 0 0<(x/c)sm
@ _ K1 2 _ 2(3- O
6 [3(x/c) 6m(x/c)+m=(3 m)] - (A-9)
and
Ye K m[1— (x/ c)]g
c 6 0 m<(x/c)<1
de __Ki3 0
dx 6 O (A-10)

wherem is not the position of maximum camber, but is related to the maximum camber position
by:

O C
x¢ =mil-. |2 ¢ (A-11)
O V3t

and mis found from a simple fixed point iteration for a given x;. K1 is defined to avoid the
leading edge singularity for a prescribed Cjj and m:

K]_:ﬁ (A-12)
Q
where:
_3m-7nmP+8mi-4m* 3. o g, [ A-13
Q= CED 5(1 2m)§ sin”~(1-2m); (A-13)

Note that K1 is a linear function of Cjj and the K1's were originally tabulated for Cjj = .3.
The tabulated K1's are multiplied by (Cyi/.3) to get values at other Cjj. To compute the
camber line, the values of Q and K1 must be determined. In some cases the computed values
of K1 and Q differ slightly from the official tabulated values (remember these were computed
in the 1930s). The tabulated values should be used to reproduce the official ordinates. The
following table illustrates the differences.
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K1

Mean m using using
Line Xf tabulated computed tabulated tabulated m computed m
210 0.05 0.0580  0.0581 361.4 351.56 350.332
220 0.10 0.1260  0.1257 51.65 51.318 51.578
230 0.15 0.2025  0.2027 15.65 15.955 15.920
240 0.20 0.2900  0.2903 6.643 6.641 6.624
250 0.25 0.3910  0.3913 3.230 3.230 3.223

Once the camberline parameters are chosen, the airfoil is constructed using the equations given
above.

Camber lines designed to produce zero pitching moment.

The reflexed mean line equations were derived to produce zero pitching moment about the
guarter chord.

Ye_ K a(x/c) -m? LY (1- m)3(x/c) -m3(x/c) + m3§ O<(x/c)sm  (A-14)
C 6 Kl
_Ki o {(x/c)-m}3- Ka (1-m)3(x/c) -m3(x/c) + m?’ﬁ m<(x/d<1 (A-15
6 0K Ky
where
2
Ko _ 3[m-x¢)”-m? (A-16)
1 (L-m)°

The parameters are defined as follows: i) given X, find m to give Cye/4 = 0 from thin airfail
theory; ii) given xf and m, calculate K1 to give Cjj = 0.3.

The tabulated values for these camber lines are:

Mean (P12)
Line X m Ky Kq/Kp
211 .05 - - -
221 10 0.1300 51.99 0.000764
231 A5 0.2170 15.793 0.006770
241 .20 0.3180 6.520 0.030300
251 25 0.4410 3.191 0.135500
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The NACA Modified 4-Digit Airfoil

Thisairfoil is an extension of the 4-digit seriesto allow for a variation of leading edge radius and
location of maximum thickness. The numbering system is defined by:

NACA MPXX-IT

where MPXX is the standard 4-digit designation and the IT appended at the end describes the
modification to the thickness distribution. They are defined as:

| - designation of the leading edge radius
T - chordwise position of maximum thickness in tenths of chord

fie :1.1019% [l@z forl <8 (A-17)
C C

and
%e =3X 1.1019@‘5@Z forl =9 (A-18)

| = 6 produces the leading edge radius of the standard 4-digit airfoils.

An example. NACA 0012-74 denotes an uncambered 12% thick airfoil, with a maximum
thickness at x/c = 0.40 and a leading edge radius of 0.0216, which is 36% larger than the
standard 4-digit value.

The NACA 16 series is a special case of the modified 4-digit airfoil with a leading edge radius
index of | = 4 and the maximum thickness located at x/c = 0.5 (T = 5). As an example, the
NACA 16-012 is equivaent to an NACA 0012-45.

The thickness distribution is given by:

% ) 5%%%0\/% +alﬁéﬁ+ az%ﬁz + as%ﬁg 0 <->é <T (A-19)
%:%ﬁ%}opd@—é% dzﬁl——’c(ﬁzmﬂ—%ﬁg T<ic‘g1 (A-20)

The coefficients are determined by solving for the d’s first, based on the trailing edge slope and
the condition of maximum thickness at x/c = T. Once these coefficients are found, the a’s are
found by relating ag to the specified leading edge radius, the maximum thickness at x/c = T, and
the condition of continuity of curvature at x/c = T. These constants are all determined for t/c =
0.2, and then scaled to other t/c values by multiplying by 5(t/c). The value of d; controls the
trailing edge slope and was originally selected to avoid reversals of curvature. In addition to the
tabulated values, Riegels has provided an interpolation formula.

The official (tabulated) and Riegels approximate values of dq are given in the following table.

and
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T Tabulated dq Approximate dq
0.2 0.200 0.200
0.3 0.234 0.234
0.4 0.315 0.314
0.5 0.465 0.464
0.6 0.700 0.722

where the Riegels approximation is given by:

(2.24-5.427 +12.37?)
oh O (A-21)
10(1-0.878T)
Oncethe value of dq is known, d, and dg are found from the relations given by Riegels:
(1-T)
and
5 = -0.196 +(1— T)dl (A-23)
@-7)
With the d’s determined, the @'s can be found. ag is based on the leading edge radius:
ap = 0.296904 [X | (A-24)
where
I
XLE _é forl <8 (A-25)
=10.3933 for | =9
Defining:
o = @} (L-T) (A-26)
50]0.588 - 2cy(1-T)|
therest of the a's can be found from:
g =22 Bg T (A-27)
T 8 JT 10y
03 5 & 1
A =——n +— — (A-28)
2=t Ty,

an = _ —_
3713 1572 10p,T

The camber lines are identical to the standard 4-digit airfoils described previously. The upper
and lower ordinates are then computed using the standard equations.
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The NACA 6 and 6A-SeriesMean Lines

The 6-series mean lines were designed using thin airfoil theory to produce a constant loading
from the leading edge back to x/c = a, after which the loading decreases linearly to zero at the
trailing edge. Theoretically, the loading at the leading edge must be either zero or infinite within
the context of thin airfoil theory analysis. The violation of the theory by the assumed finite
leading edge loading is reflected by the presence of a weak singularity in the mean line at the
leading edge, where the camber line has an infinite slope. Therefore, according to Abbott and
von Doenhoff, the 6-series airfoils were constructed by holding the slope of the mean line
constant in front of x/c = 0.005, with the value at that point. For round leading edges the
camberline values are essentially not used at points ahead of the origin of the leading edge
radius. The theory is discussed by Abbott and von Doenhoff on pages 73-75, 113, and 120.
Tabulated values are contained on pages 394-405. The derivation of this mean line is a good
exercisein thin airfoil theory.

By smply adding various mean lines together, other load distributions can be constructed.

From Abbott and von Doenhoff: “The NACA 6-series wing sections are usually designated
by a six-digit number together with a statement showing the type of mean line used. For
example, in the designation NACA 65,3-218, a = 0.5, the 6 is the series designation. The 5
denotes the chordwise position of minimum pressure in tenths of the chord behind the leading
edge for the basic symmetrical section at zero lift. The 3 following the comma (sometimes thisis
a subscript or in parenthesis) gives the range of lift coefficient in tenths above and below the
design lift coefficient in which favorable pressure gradients exist on both surfaces. The 2
following the dash gives the design lift coefficient in tenths. The last two digits indicate the
thickness of the wing section in percent chord. The designation a = 0.5 shows the type of mean
line used. When the mean-line is not given, it is understood that the uniform-load mean line (a =
1.0) has been used.”

The 6A series airfoils employed an empirical modification of the a = 0.8 camberline to allow
the airfoil to be constructed of nearly straight line segments near the trailing edge. This
camberline is described by Loftinin NACA R-903.

Basic Camberline Equations

When a = 1 (uniform loading along the entire chord):

- S G-
. S50 B

" Only the mean lines have analytical definitions. The thickness distributions are the result of
numerical methods which produced tabulated coordinates. In addition to the values tabulated in
the NACA reports, the closest approximation for the thickness distributionsis availablein
program LADSON, see App. E.

and
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where Cjj isthe “ideal” or design lift coefficient, which occurs at zero angle-of-attack.

Fora<1,
D X X| 1 X X
5_1%%“%2'”&‘;7@‘;%2'”@‘5%
S *p4a-2- 1 ;
. & 040 cO 3 ¢ i
Y- [ i (A-32)
c 2n(l+a) « B y C
U -2 -hZ C
0 clnEb + g hC -
0 C
0 C
B E
with
=1 22Flna-2H I A-33
g (1—a)ﬁa %Ina 4ﬁ+ e (A-33)
h=(- a)%ln(l—a) - :11% g (A-34)
and

e R R s

The associated angle-of-attack is:

Cih
2L+ a)

a; = (A-36)

a = .8 (modified), the 6A-series mean line

For 0 <x/c < .87437, use the basic a = .8 camberline, but with a modified value of the ideal
lift coefficient, Cjjmod = Ci/1.0209. For .87437 < x/c < 1, use the linear equation:

% =0.0302164 - 0.245209%5 - O.87437E (A-37)
i
and
Y - 0245000 G (A-38)
dx I

Note that at x/c = 1, the foregoing approximate relation gives y/c = -0.000589, indicating an
a shift of .034° for Cjj = 1.
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Other airfoil definition procedures

Interest in defining airfoils by a smal number of parameters for use in numerical
optimization has led to several recent proposed parametric representations that might be useful.
In particular, the work by August and co-workers at McDonnell Douglas in St. Louis, MO, uses
Chebyshev functions to obtain functions with can represent very general airfoil shapes with from
5 to 20 coefficients required. Thiswork is described in AIAA Papers 93-0099 and 93-0100, “An
Efficient Approach to Optimal Aerodynamic Design,” Parts 1 and 2.

Another approach using Bezier methods frequently used in CAD surface representation
software has been used by Ventkataraman. This approach uses 14 design variables to represent
the airfoil, and is described in AIAA Paper 95-1875, “A New Procedure for Airfoil Definition,”
and AIAA Paper 95-1876, “Optimum Airfoil Design in Viscous Flows.” Smith and co-workers
a NASA Langley have used a similar approach based on non-uniform rationa B-splines
(NURBS). A description of their approach appears in AIAA Paper 93-0195, “Grid and Design
Variables Sensitivity Analysisfor NACA Four-Digit Wing-Sections.”
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A.1.1. Tabulated Airfoil Definition and the Airfoil Library

Most modern airfoils are not described by equations, but are defined by a table of
coordinates. Frequently, these coordinates are the results of a computational aerodynamic design
program, and simple algebraic formulas can not be used to define the shape (this was the case
with the NACA 6-series airfoils described above). The following table provides a list of the
tabulated airfoils currently available on the class disk.. The subsequent tables provide a guide to
these airfoils. A standard 2F10 format (the Jameson input format) is used with each set of
coordinates, in the form used asinput in PANELV2. See App. D.2 for an exact description.

Airfoil Library Disk Files:

file name comments
NACA 4 digit airfoils
NACA 0010 NOO10.DAT
NACA 0010-35 NOO1035.DAT (Abbott & VonDoenhoff)
NACA 0012 NOO12.DAT
NACA 4412 N44122.DAT
NACA 6 & 6A airfoils
NACA 63(2)-215 N632215.DAT NASA TM 78503

NACA 63(2)-215 mod B N632215m.DAT

NACA 64A010 N64A010.DAT
NACA 64A410 N64A410.DAT
NACA 64(3)-418 N643418.DAT
NACA 65(1)-012 N651012.DAT
NACA 65(1)-213 N651213.DAT
NACA 65(1)A012 N65A012.DAT
N658299M.DAT
N658299R. DAT
NACA 65(2)-215 N652215.DAT
NACA 66(3)-018 N663018.DAT

NASA General Aviation Series

LS(1)-0417 GAW1.DAT originaly known as: GA(W)-1
LS(1)-0417 mod LS10417M.DAT
LS(1)-0413 GAW2.DAT originaly known as: GA(W)-2
L S(1)-0013 LS10013.DAT
NASA Medium Speed Series
M$(1)-0313 MS10313.DAT
M$(1)-0317 MS10317.DAT
NASA Laminar Flow Series
NLF(1)-1215F NL11215F.DAT
NLF(1)-0414F NL10414F.DAT
NLF(1)-0416 NL10416.DAT
NLF(1)-0414Fmod NLO414FD.DAT  drooped le
NLF(2)-0415 NL20415.DAT
HSNLF(1)-0213 HSNO213.DAT
HSNLF(1)-0213mod HSNO0213D.DAT  drooped le
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NASA Supercrtical Airfoils

10/23/97

SC(2)-0402 SC20402.DAT
SC(2)-0403 SC20403.DAT
SC(2)-0503 SC20503.DAT
SC(2)-0404 SC20404.DAT
SC(2)-0406 SC20406.DAT
SC(2)-0606 SC20606.DAT
SC(2)-0706 SC20706.DAT
SC(2)-1006 SC21006.DAT
SC(2)-0010 SC20010.DAT
SC(2)-0410 SC20410.DAT
SC(2)-0610 SC20610.DAT
SC(2)-0710 SC20710.DAT
SC(2)-1010 SC21010.DAT
SC(2)-0012 SC20012.DAT
SC(2)-0412 SC20412.DAT
SC(2)-0612 SC20612.DAT
SC(2)-0712 SC20712.DAT
SC(3)-0712(B) SC20712B.DAT
SC(2)-0414 SC20414.DAT
SC(2)-0614 SC20614.DAT
SC(2)-0714 SC20714.DAT
SC(2)-0518 SC20518.DAT
FOIL31 FOIL31.DAT
SUPER11 SUPER11.dat
SUPER14 SUPER14.dat
NYU Airfoils
82-06-09 K820609.DAT
79-03-12 K790312.DAT
72-06-16 K720616.DAT
71-08-14 K710814.DAT
70-10-13 K701013.DAT
65-14-08 K651408.DAT
65-15-10 K651510.DAT
75-06-12 KORN.DAT
75-07-15 K750715.DAT
Miscellaneous Transonic Airfoils
CAST 7 CAST7.DAT
DSMA 523 DSMAB23.DAT
NLR HT 731081 NLRHT73.DAT
ONERA M6 ONERAMG.DAT
RAE 2822 RAE2822.DAT
WILBY A WILBYA.DAT
WILBY B WILBYB.DAT
WILBY C WILBYC.DAT
WILBY R WILBYR.DAT
SUPER10 NASA10SC.DAT

MBB-A3.DAT

also known as Foil 33

Raymer, Ref. NASA TP 2890

11% thick, from ICAS paper
14% thick, NASA TM X-72712

the “Korn” Airfoil

from AIAA Papre 75-880
from AGARD AR-138

AGARD AR-138
AGARD AR-138
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Eppler Airfoils
EPPLER 662 EPP662.DAT Raymer’ s book, ref NASA CP 2085
EPPLER 746 EPP746.DAT Raymer’ s book, ref NASA CP 2085
Wortman Airfoils
FX-63-137-ESM FX63137.DAT

FX-72-MS-150A
FX-72-MS-150B

FX72M15A.DAT
FX72M15B.DAT

Miscellaneous Foils

ClarkyY CLARKY .DAT

Early Liebeck High Lift RHLHILFT.DAT

NLR-1 NLR1.DAT Rotorcraft airfoil (NASA CP 2046, Vol. 1)
RAE 100 RAE100.DAT

RAE 101 RAE101.DAT

RAE 102 RAE102.DAT

RAE 103 RAE103.DAT

RAE 104 RAE104.DAT

VariEze Airfoils

VariEze wing bl23 VEZBL32.DAT
VariEze winglet root VEZWLTR.DAT
VariEze winglet tip VEZWLTT.DAT
VariEze canard VEZCAN.DAT

Human powered aircraft airfoils

DAE 11 DAE11.DAT Daedalus airfoils (Mark Drela)
DAE 21 DAE21.DAT

DAE 31 DAE31.DAT

DAE 51 DAE51.DAT (propeller foil?)

Lissaman 7769 LISS769.DAT Gossamer Condor airfoil

Other airfoils are available on the world wide web, check App. F for sources. In particular,
the Applied Aerodynamics group at the University of Illinois, under the direction of Prof.
Michael Selig has established a massive online source for airfoil definitions and includes data
from wind tunnel tests on the airfoils. Their focus is directed toward airfoils designed for low
speeds and low Reynolds numbers. Finally, Richard Eppler has published an entire book of his
airfails, Airfoil design and data, Springer-Verlag, 1990.
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The NASA low and medium speed airfoil program:

NASA Low Speed, Medium Speed, and Natural Laminar Flow Airfoil Chart
Airfail ; : - Ordinatesin
Designation Dﬁ'f?n TEI%?(?]QSS [I)wegc%n Test?|  Airfail Ref. Comment
Library?
GA(W)-1 4/1.0 A7 ¥ ¥ TN D-7428 Low Speed
L S(1)-0417mod 17 ¥
GA(W)-2 13 v ¥ TM X-72697
mod A3 ¥ TM X-74018
? 21 ¥ TM 78650
L S(1)-0013 A3 ¥ ¥ TM-4003
TP-1498 Medium
M$(1)-0313 1
(1) 3 v v Speet
MS(1)-0317 | .30 17 68 | v TP-1786
mod A7 ¥ TP-1919
Raymer's Natural
NLF(1)-0215F | .20 7 15 ? ¥ Book Laminar Elow
NLF(1)-0414F ¥
NLF(1)-0416 v
NLF(1)-0414F
drooped L.E. ‘F’
Raymer's
NLF(2)-0415 | 407 | .157? 2 | ¥ v Book
HSNLF(1)-0213 .20? | .137? ? v TM-87602
HSNLF(1)-0213
mod ‘V"
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The NASA Phase 2 supercritical airfoils are listed in the following chart.

NASA Supercritical Airfoils - Phase 21
Airfail : - : Ordinatesin
Designation Dﬁ'f?n Tﬁleciﬂzﬁs I?\Aegc%n Te?st Iﬁg;f;rl)ll ) Ref. Comment
SC(2)-0402 | 0.40 .02 ¥
SC(2)-0403| 0.40 .03 ¥
SC(2)-0503| 0.50 .03 ¥
SC(2)-0404| 0.40 .04 ¥
SC(2)-0406 | 0.40 .06 v v unpubl.
SC(2)-0606 | 0.60 .06 ¥
SC(2)-0706 | 0.70 .06 795 |4 v unpubl.
SC(2)-1006 | 1.00 .06 v v unpubl.
SC(2)-0010| 0.00 10 v
SC(2)-0410| 0.40 10 785 v
SC(2)-0610| 0.60 10 765 v
SC(2)-0710| 0.70 10 755 | ¢ ¥ TM X-72711 | Airfoil 33
SC(2)-1010| 1.00 10 700 v
SC(2)-0012| 0.00 12 ? v TM-89102
SC(2)-0412| 0.40 12 v
SC(2)-0612| 0.60 12 v
SC(2)-0712| 0.70 12 735 |2 v TM-86370 | TM-86371
SC(2)-0414 | 0.40 14 v
SC(2)-0614 | 0.60 14 v
SC(2)-0714| 0.70 14 715 | ¥ | ¢ Rayme [ TM X-72712 | L2 S
SC(2)-0518| 1.00 18 v
1 Tabulated in NASA TP 2969, March 1990, by Charles D. Harris
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Several transonic airfoils were developed at New Y ork University by a group led by Paul
Garabedian. The following table provides alist of the airfoils they published.

Garabedian and Korn Airfoil Chart

— ) ] , Ordinatesin
Airfoll | peggn| Design | Design Test?| Airfoil

Designatio : :
- Lift | Thickness| Mach Library?

Pagesin Ref.
Korn Il Book Comment

79-03-12 | 293 123 790 v 37,41-43

72-06-16 | .609| .160 720 v 48,52-54

71-08-14 | .799| .144 710 ¥ 55,59-61

70-10-13 | .998| .127 700 v 62,66-68

65-14-08 | 1.409| .083 650 v 73,77-79

65-15-10 | 1.472| .104 650 v 80,84-86

82-06-09 | 0.590( .092 820 v 91,95

75-06-12 | 0.629| .117 750 | ¥ v 96,99-101 | "TheKorn"
75-07-15 | 0.668| .151 750 v 102,106

Their airfoils areincluded in:

Bauer, F., Garabedian, P., and Korn, D., A Theory of Supercritical Wing Sections with

Computer Programs and Examples, Lecture Notes in Economics and Mathematical Systems,
Vol. 66, Springer-Verlag, 1972.

Bauer, F., Garabedian, P., Jameson, A. and Korn, D., Supercritical Wing Sections |1, A
Handbook, Lecture Notes in Economics and Mathematical Systems, Vol. 108, Springer-
Verlag, 1975.

Bauer, F., Garabedian, P., and Korn, D., Supercritical Wing Sections I11, Lecture Notesin
Economics and Mathematical Systems, Vol. 150, Springer-Verlag, 1977.
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A.2 Classic Bodies of Revolution

Bodies of revolution form the basis for a number of shapes used in aerodynamic design and
are also often used in comparing computational methods. The bodies defined in this section are
generally associated with supersonic aerodynamics.

a. Summary of Relations
The body radiusr is given as a function of x, r/l = f(x/I). Oncer is known, a number of other

values characterizing the shape can be determined.
The cross-sectional area and derivatives are:

S(x) =1ir? (A-39)
d_S = anﬁ (A-40)
dx dx
d?s %@2 d?rC
=2mn + 1 —=[ (A-41)
dax? XD dx2E
Basicintegrals are:
Volume,
|
V = [S(x) dx (A-42)
0
Surface area,
|
Swer = 21[r(x)dx (A-43)
0

Length along the contour,

|
p(x)= [ 1+§%ﬁ2dx (A-44)
0

Note that the incremental values can be found by changing the lower limit of the integrals.
Thelocal longitudinal radius of curvatureisgiven by:

R(X) = ——7— (A-45)

Several simple shapes are also of interest in addition to those presented in detail. They are:

Parabolic Spindle:
r Fmid X X
_:4m_ - (A'46)
I |1 ﬁ I %
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Ellipsoid of revolution:

r . Tmid [X X
- = 2 mid o _ (A-47)
I I I @ I %
and the power law body:
Oy O
F-logX g (A-48)
| | Oxn O

where X isthe nose length, and r istheradius at x = . The noseisblunt for 0<n<1.

Another common shape is the spherical nose cap, and is discussed in detail in the reference
by Krasnov. References that discuss geometry of bodies of revolution are:

Krasnov, N.F., Aerodynamics of Bodies of Revolution, edited and annotated by D.N.
Morris, American Elsevier, New Y ork, 1970.

Handbook of Supersonic Aerodynamics, Volume 3, Section 8, “Bodies of
Revolution, NAVWEPS Report 1488, October 1961.

b). Tangent/Secant Ogives

The tangent or secant ogives are frequently used shapes in supersonic aerodynamics. The
nomenclatureisillustrated in the following sketch.

Note that the ogive is actually the arc of a circle and when &, = 0 the ogive ends tangent to
the body, so that o, = O represents the tangent ogive body. If 8, = &y, the cone-cylinder is
recovered. If o, = 0 and &y = 90°, the spherical cap case is obtained.
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The expression for the radius r is determined using three basic constants for a particular case:

O C
a-fom  COSON - (A-49)
| (cosd, —cosdy L
p=plg SMOn - (A-50)
| (cosd, — cosdy L
and
c=lo (A-51)

The radiusisthen given by:

o e B ot
=C

AN X g
I I
where xy is found as follows.
For a tangent ogive (6, = 0), the ogive can be defined by specifying either x\/rg or dy. The
other value can then be found using:

Given 6N!
XN __Sndy (A-53)
o 1-cosdy
Or given x/ro,
C
XNEF _ 1[
—qaar
ON = cos =2 E (A-54)
XN + 1[
o H E

For the secant ogive, the simplest analytical procedure is to define the ogive in terms of &y
and &, and then find x\/I from:

XN _ &DsinéN - sin6r C (A-55)
I | COcosd, — cosdy L

If x\/I is not satisfactory, &y and &, can be adjusted by trial and error to obtain the desired
nose length. A program can be set up to handle this process quite simply.

The first and second derivatives are then given by:

d(r/1) _ B-2(x/1) (A-56)
d(x/1) ~ (r/1)+ A]

and
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d2(r/1) __[B-2 x/|)] 1 (A-57)

dx/1y° ~ 4@m+a  [cm+A

The relationships between radius and area derivatives given in section a) are then used to
complete the calculation.

¢) The von Karman Ogive

The shape that produces minimum wave drag for a specified base area and length, according
to slender body theory. This ogive has a very dlightly blunted nose, and is described by Ashley
and Landahl, Aerodynamics of Wings and Bodies, Addison-Wesley, 1965, pp. 178-181.

In this case it is convenient to work with the cross-sectional area and a new independent
variable:

l

0 g C
8 =cos 1@ 0= - 10 (A-58)
OXnO C
or
:1(1+cose) (A-59)
XN 2

wherethe noseisat 6 = T, and the base islocated at 6 = 0.

Here we use xy to denote the “nose length” or length of the ogive, and allow this shape to be
part of an ogive-cylinder geometry.

The shapeisthen given as.

SX)_S 0 6 sm29 C (A-60)
TT TZ T[ on E

and
r_|si? (A-61)
I L1

where S is the prescribed base areaand | is the total length.

Defining

= S _ X

S—F, X—T, (A-62)
We have _ _

@ _ —iB[l—cosze] (A-63)

do T

d’s 2.

=-Z-%sn» (A-64)
w2 ne

and
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d—§:§':£DI = sin@
dx 7t Bxy
(A-65)
4% _.,_ 801 O 5
dx TU XN H tan®
The radius derivatives are then computed by:
o/ 2 QI 12
ao_S dr_S -t (A-66)
dx 2’ dx® 2w F

d) The Sears-Haack Body

This is the minimum wave drag shape for a given length and volume according to slender
body theory. The body is closed at both ends and has a very dightly blunted nose, and is
symmetric about the mid-point. It is described by Ashley and Landahl, Aerodynamics of Wings
and Bodies, Addison-Wesley, 1965, pp. 178-181.

Although the notation used in section c) for the von Karmén Ogive section could be used, it
is more common to describe the Sears-Haack body in the manner presented below. This form
uses the fineness ratio, f = 1/d, 5 t0 scale the shape. However, it is important to realize that the
Sears-Haack shape is the minimum drag body for a specified volume and length, not for a
specified fineness ratio. The minimum drag body for a specified fineness ratio is described below

in section €) below.
— -_— -
c=1 2%% (A-67)

Defining
the Sears-Haack body is defined as

r 1 2 3/4 )
l——E(l—C ) . (A 68)
The derivatives are given by:
d(r/1) _ X A-69
d(x/I)_l—q2§E (A-69)
and
d?(r/1) _ B 1 3 d(r/1) _ A-70
a1 Hi-c2 d(x/l)+6§% (A-70)

The finenessratio isrelated to the length and volume by:
2.3
f = /3l'_. (A-71)
64 V
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In terms of f and either V or |, the other value can be found from the following:

Givenfand
:32_;'?; (A-72)

Givenfand V:
|:§%f2/3. (A-73)

The relationships between radius and area derivatives given in Section a) are then used to
complete the calculation.

€) The Haack-Adams Bodies

The Haack-Adams bodies define a number of minimum drag shapes, as described by M.C.
Adamsin “Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag,”
NACA TN 2550, November 1951. These bodies correspond to the following cases:

I.  Given length, base area, and contour passing through a specifically located radius.
[1.  Given length, base area, and maximum area.
I1l.  Given length, base area, and volume.

In case |, the specified radius will not necessarily be the maximum radius.

The notation used in TN 2550 is employed in the equations, leading to the following
definitions:

_,S(¥) _SeasE _ 45 _ BV

S—4—IT, B—4—|r, A—4I : V_SE,F

(A-74)

O

where S(x) is the area, Sy corresponds to either the specified area at a given location, or the
maximum area, and V is the volume. The independent variable is defined with its origin at the

body mid-point:
= Z%ﬁ_ 1 (A-75)

and the location of the specified radius (Case ) and maximum radius (Case 1) is designated C
and given in ¢ coordinates. When referred to the x coordinate, this value is designated Cy.

The equation for each case can be written in a standard form:
Case| — Given Sgasg, Sa, Cx

05X C)D\/l c%(1- Q) v1- ¢?(c-0)

A _
@E (1 C)S/Z (1- C)

(A-76)
@——cos “L(0) —c1-c? C_ InN +cos }(—¢)
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where
o —J1-c2.[1-c2
N o1& vimetyleT (A-77)
lc -d

Casell — Given %ASE’ S\AAX:
First find the location of the maximum thickness from the implicit relation

f(o= O:T[—E':‘c—\ll—c2 ~ccos Y(-c). (A-78)
Use Newton'’siteration _

. . |
Jtlod f(cl) (A-79)
f'(c)

where

f'(c) = EI; - cos Y(-c). (A-80)

Aninitial guess of c = O issufficient to start the iteration. Given c, therelation for the areais:

2
S_y1-¢® (c-9° -1, (A-81)
= + INN + cos “(—¢)
B C \'1_C2

where N is the same function as given in Case l.

Caselll — Given Sgpgzand V-

TS_8IV [, 232 — 2 -1, A-82
T 30 131 c) +qy1-¢° +cos (-q) ( )

The maximum thickness for this caseislocated at:

S S (A-83)
AV /B-1)
and in x coordinates
e, = —;(1 +e) (A-84)

Note that if Sgage = 0, the Sears-Haack body is recovered.
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A .3 Cross-Section Geometriesfor Bodies

The axisymmetric bodies described above can be used to define longitudina lines for
aerodynamic bodies. However, many aerodynamic bodies are not axisymmetric (the fuselage
cross section is not round). In this section we define a class of cross section shapes that can be
used to develop more redlistic aerodynamic models. In particular, they have been used to study
geometric shaping effects on forebody aerodynamic characteristics using an analytical forebody
model with the ability to produce a wide variation of shapes. This generic model makes use of
the equation of a super-ellipse to define cross sectional geometry. The super-ellipse, used
previously to control flow expansion around wing leading edges, can recover a circular cross
section, produce elliptical cross sections and can also produce chine-shaped cross sections. Thus
it can be used to define avariety of different cross sectional shapes.

The super-ellipse equation for a cross section is:

Eﬁ@”” +%@“m i (A-85)

where n and m are adjustable coefficients that control the surface slopes at the top and bottom
plane of symmetry and chine leading edge. The constants a and b correspond to the maximum
half-breadth (the maximum width of the body) and the upper or lower centerlines respectively.
Depending on the value of n and m, the equation can be made to produce all the shapes described
above. The case n = m = 0 corresponds to the standard ellipse. The body is circular when a = b.

When n = -1 the sidewall islinear at the maximum half breadth line, forming a distinct crease
line. When n < -1 the body cross section takes on a cusped or chine-like shape. As n increases,
the cross-section starts to become rectangular.

The derivative of z/ b with respectto y/ ais:

dz __ @i%f:ﬁ (A-86)
W - y(2+m)]@%zﬁ

wherez=z/bandy = y/a. Asy - 1, the ope becomes:

& %o n>-1

el n<-1 (A-87)
Yy O
0-(2 +m)yt™™ n=-1

The following sketch shows a quadrant of the cross section for various values of n ranging from
achineto arectangle.
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1.20 L L L L B B
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Different cross sections can be used above and below the maximum half-breadth line. Even
more generality can be provided by allowing n and m to be functions of the axial distance x. The
parameters a and b can also be functions of the planform shape and varied to study planform
effects. Notice that when n = -1 the value of m can be used to control the slope of the sidewall at
the crease line. Also, observe that large positive values of n drives the cross section shape to
approach arectangular or square shape.

Connecting various cross section shapes is part of the subject of lofting, described here in
Chapter 9. One of the few other textbook discussions is contained in Raymer, Aircraft Design: A
Conceptual Approach, published by the AIAA, in Chapter 7. Dan Raymer worked at North
American Aviationn, where Liming literally wrote the book on the analytic definition of aircraft
lines.
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A.4 Planform Analysis

Severa local and integral planform properties are of interest in aerodynamic analysis. They
are summarized in this section. (Note: Biplanes use the total area of both wings as the reference
area). For a more complete presentation see DATCOM.

The local values are the leading and trailing edge locations, X g(y) and Xre(y), the local
chord, c(y), and the leading and trailing edge sweep angles: A g(y) and Aqg(y). The following
sketch illustrates the standard nomenclature.

- y

The integral properties are (assuming the planform is symmetric):
1. Planform Area, S

S= 2b:;)<2:(y) dy (A-88)
2. Mean aerodynamic chord, mac

c :—é b{/)Zcz(y) dy (A-89)
3. X position of centroid of area, Xcen

b/ 2
een =5 o) e+ Loy (A-90)

0
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4. Spanwise position of mac
2b/2

Yimae =5 JYC(Y) dy (A-9D)
0
5. Leading edge location of mac.
2b/2
XLBrac = g g XLe(y)dy) dy (A-92)
In addition, the following derived quantities are often of interest:
Aspect Ratio:
b2
AR=— (A-93)
Stef
Average Chord:
Cp = STef (A-94)
Taper Ratio:
A= i (A'95)
Cr

Sef is usually chosen to be equal to the area of a basic reference trapezoidal planform, and
thus the actual planform area, S, may not equal S ¢f.

When considering two areas, recall that the centroid of the combined surfacesis:

SX=9% + SZXZ. (A-96)
Sy =391+ S
For a standard trapezoidal wing it is convenient to collect the following formulas, where the

sketch shows the nomenclature;
y
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XLE(Y) = XLEy T YtanALE(Y)

(A-97)
xTE(Y) = X1, * YA TE(Y)
and the local chord is:
Y _1-g-a) (A-98)
CrR
where:
b y Cr
=— = d A=—. A-99
y=on oo n=gs o an o (A-99)
The sweep at any element line can be found in terms of the sweep at any other by:
4 E—)\
tanA, = tan\,——n— A-100
An = A AR%n m)m+)\ ( )

where n, m are fractions of the local chord. An alternate formula is available using the trailing
edge sweep angle:

tan/\p, = (L-n)tan/A | g + ntanAyg (A-101)

The integral and other relations are given by:

b
S=—cp(1l+A
Iy
_ S
Cave—B
L R LOSONE
&R 30 1+A

- (A-102)
Xcen = XLEmac + 3

AR= b? b/2§1_ﬁ
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When computing the projected planform area of an entire configuration, the following

formulais useful:
k=N

S= 3 (Ve + %) i = %) (A-103)
=]

where the sketch below defines the nomenclature.

Atk =N, yk+1,X+1 refer to the initial points yq,x1. For normal planforms,yn+1 =y1 =0, so
that the summation can be terminated at N-1. This formula assumes planform symmetry and
provides the total planform area with only one side of the planform used in the computation.

>

1 y

VX

A.5 Conical Camber

An important class of camber distributions is associated with the planform, and not the
airfoil. Conical camber has been widely used. Many forms have been used, however the NACA
defined a specific type of conical camber that is known as NACA conical camber. The most
recent example of NACA conical camber isthe F-15 wing. It improves the drag characteristics of
wings in the subsonic and transonic flow region even though it was developed to reduce the drag
at supersonic speeds!

The key references are:

Hall, C.F., “Lift, Drag, and Pitching Moment of Low Aspect Ratio Wings at Subsonic
and Supersonic Speeds,” NACA RM A53A30, 1953.

This report provided the original mathematical definition of NACA conical camber.
It also provided alarge range of test conditions for which the camber was effective.
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Boyd, JW., Migotsky,E., and Wetzel, B.E., “A Study of Conical Camber for Triangular
and Swept Back Wings,” NASA RM A55G19, Nov. 1955.

This report provided more details of the derivation of the formulas for NACA conical
camber, and corrected errorsin the equations presented in the first report. Additional
experimental results were also presented.

A.6 Three-Dimensional Wing Geometry

Wing geometry is often defined by interpolating between airfoil section-specified at particular
spanwise stations. Some care some be taken to interpolate properly. See Chapter 9, Geometry
and Grids for a discussion of wing lofting. Program WNGLFT is described in App. E, Utility
Codes. This program provides an example of a lofting scheme to provide wing ordinates at any
desired location. It can be used to provide wing ordinates for awide class of wings. It in fact will
produce a very good approximation to the wing design employed by a successful Navy airplane.
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Appendix C Preparation of Written Material

Effective engineering requires good communication skills. Documentation and presentation of
results are two important aspects of computational aerodynamics. This requires good use of both
text and graphics. This appendix provides guidelines for student aerodynamicists. The first
impression you make on the job is extremely important. Learn and practice good written
communication. That is the way bosses “up-the-line” will see your work. You cannot do good
written work without practice. This is especialy true in aerodynamics, where good plots are
crucial. You can't play in the band or on the basketball team without developing skills through
practice. It is even more important to a career to develop good graphics skills while you are in
school.

Text: Analysis and calculations must be documented with enough detail to settle any question
that arises long after the calculations are made. This includes defining the precise version of the
code used, the configuration geometric description, grid details, program input and output. Often
guestions arise (sometimes years later) where the documentation is insufficient to figure out with
certainty exactly what happened. Few of us can remember specific details even after a few
months, and particularly when being grilled because something doesn’t “look right” (this is the
situation when the flight test data arrives). Two personal examples from wind tunnel testing
include inadequate documentation of the exact details of transition fixing and the sign
convention for deflection of surfaces (at high angle-of-attack it may not be at all obvious what
effect a “plus’ or “minus’ deflection would produce on the aerodynamic results). Good
documentation is aso crucial since a typical set of computations might cost many hundreds of
thousands of dollars, and the results might be examined for effects that weren't of specific
interest when the initial calculations were made. An unfortunate, but frequent, occurrence in
practice is that the time and budget expire before the reporting is completed. Since the report is
done last, budget overruns frequently result in poor final documentation. It is best if the
documentation can be put together while the computations are being conducted. Computational
aerodynamics work should copy wind tunnel test procedures and maintain a test notebook. This
approach can minimize the problem.

When writing a memo describing the results be accurate, neat and precise. In a page or two,
outline the problem, what you did to resolve it, and your conclusion. What do the results mean?
What are the implications for your organization? Provide key figures together with the
description of how you arrived at your conclusion. Additional details should be included in an
appendix, possibly with limited distribution. When writing your memo or report provide
specifics, not generdlities, i.e., rather than “greater than,” say “12% greater than.” What do the
results mean? When writing the analysis, do not simply provide tables of numbers and demand
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that the reader do the interpretation. Y ou must tell the reader exactly what you think the results
mean. The conclusion to be drawn from the each figure must be precisely stated. Providing
computer program output and expecting someone else (your boss or your teacher) to examine
and interpret the results is totally unacceptable This is the difference between an engineer and
an engineering aide.

Plots and Graphs: To make good plots using the computer, you must understand how a plot
is supposed to be made. Hand plotting defines the standards. When plotting by hand use rea
graph paper. For A size (8 1/2 x 11) plots this means K&E™ Cat. No. 46 1327 for 10x10 to the
half inch, and an equivalent type for 10x10 to the centimeter. There is an equivalent catalog
number for B size paper.” This is Albanene tracing paper. It is the paper that was actually used
in engineering work, and it's expensive. The University Bookstore will stock this graph paper
until it’s no longer available (I think they keep it separated, stored under my name). Y ou should
use it carefully, and not waste it. With high quality tracing paper, where the grid isreadily visible
on the back side, you plot on the back. This alows you to make erasures and produces a better
looking plot. Orange graph paper is standard, and generaly works better with copy machines,
especially when you plot on the back. Before computer data bases were used, tracing paper
allowed you to keep reference data on a set of plots and easily overlay other results for
comparison (remembering to allow for overlay comparisons by using the same scale for your
graphs).

Always draw the axis well inside the border, leaving room for labels inside the border of the
paper. Labels should be well inside the page margins. In reports, figure titles go on the bottom.
For overhead presentations, the figure titles go on the top. Data plots should contain at least:

 Reference area, reference chord and span as appropriate (include units).
» Moment reference center location.
 Reynolds number, Mach number, and transition information.
* Configuration identification.
If the plots are not portrait style, and must be turned to use landscape style, make sure that
they are attached properly. This means placing the bottom of the figure on the right hand side of
the paper. This is exactly opposite the way output for landscape plots is output from printers.

However, thisis the way it must be done.

Use proper scales: Use of “Bastard Scales’ is grounds for bad grades in class and much,
much worse on the job. This means using the “1,2, or 5 rule”. It smply says that the smallest
divison on the axis of the plot must be easily read. Mgjor ticks should be separated by an

" This paper is very high quality paper. With computers replacing hand plotting, this paper is being
discontinued by K&E. Most art supplies stores (sometimes erroneously also claiming to be engineering
supply stores) don’t stock good graph paper. Cheap paper will not be transparent, preventing easy tracing
from one plot to another.

" Wind tunnel data, especially drag polars, are often plotted on B size paper (11 x 17).
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increment that is an even multiple of 1, 2 or 5. For example, 10, 0.2, 50 and 0.001 are al good
increments between major ticks because it makes interpolation between ticks easy. Increments of
40, 25, 0.125 and 60 are poor choices of increments, and don't obey the 1,2, or 5 rule. The
Boeing Scale Selection Rules chart illustrates the rule, and our version of it isincluded as Fig.
C-1. Label plots neatly and fully. Use good line work. In putting lines on the page, use straight
edges and ship’s curves to connect points, no freehand lines. Ship’s curves and not French
curves are used by aeronautical engineers when working with force and moment data. Some
engineering supply catalogs call them aeronautical engineering curves. Today, pressure
distributions are usually plotted directly by computer software because of the density of data.
The University Bookstore stocks at least the most common size ship’s curve. As a young
engineer, | was told that if the wind tunnel data didn’t fit the ship’s curve, the data were wrong.
More often than not this has indeed turned out to be the case!

Drag polars are traditionally plotted with Cp on the abscissa or X-axis, and C; on the
ordinate or Y-axis. Moment curves are frequently included with the C, -a curve. Figure C-2
provides an example of typical force and moment data plots. The moment axis is plotted from
positive to negative, aso shown in the figure. This alows the engineer to rotate the graph and
examine C,Cj in a“normal” way to see the slope. Study the scales on the plot. Also, the drag,
moment, and lift results typically require the use of different scales.

The traditional way to plot data and results of calculations was to use symbols for data, and a
solid line for calculated results. Recently, and very unfortunately, this style has been reversed
when comparing force and moment data. Experimental data may be much more detailed than the
computations, which may have been computed at only one or two angles of attack. Nevertheless,
| object to using lines for data, and believe that the actual data points should be shown. When
comparing pressure distributions, calculations should always be represented by lines, and the
experimental data shown as symbols. Also, recall that in aeronautics Cp is plotted with the
negative scale upward. Figure C-3 provides a typical example of a Cp plot. When connecting
data with curves, they must pass through the data points. Connect complicated data with straight
lines, as shown in Fig. C-4. If the data points are dense, or atheory is used to compare with data,
you don't need to draw lines between points (curves that don't go through data points are
assumed to be theoretical results).

More comments on proper plots and graphs are contained in the engineering graphics text, by
Giesecke, eat al. (Ref. C-1). The engineer traditionally puts hisinitials and date in the lower right
hand corner of the plot. One problem frequently arises with plot labeling. In reports, the figure
titles go on the bottom. On view graphs and dlides the figure titles go on the top. Many graphics

" This “improvement” was conceived by Joel Grassmeyer. It still requires some study.
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packages are oriented toward placing the titles on the top. This is unacceptable in engineering
reports. Finally, tables are labeled on the top for both reports and presentations.

Engineering plots made using your computer must be of engineering quality. To do this you
have to understand the requirements given above for hand plots, and should have made enough
graphs by hand to be able to identify problems in the computer generated graphs. For force and
moment data it is often easier to make plots by hand than to figure out how to get your plotting
package to do a good job. Typical problems include poor scale selection, poor quality printout,
not being to invert the axis direction, and inability to print the experimental data as symbols and
the theory as lines. Another problem that arises is the use of color. While color is important, it
presents a major problem if the report is going to be copied for distribution. Most engineering
reports don’t make routine use of color— yet (electronic reports will make color much easier to
distribute).

Reference

C-1 Giesecke, F.E., Mitchell, A., Spencer, H.C., Hill, I.L., Loving, R.O., and Dygdon, J.T.,
Principles of Engineering Graphics, Macmillan Publishing Cop., 1990, pap. 591-613.

0 1
Thisisa"5"
>
0 1 2
Thisisa"2" >‘
0 1 2 3 4 5
Thisisa"1" | | QAcceptable
FETEEENETI IRRTENR I ARRNRENETE IRNRNER IR ARRNERNETE T
| Thisisa"4"
‘ Unacceptable
0 1

Minor subdivisions of 1, 2, or 5 alow easy interpolation, and are the only
acceptable values. A minor division of 4, for example, isvery difficult to use.

Scale selection rulesfor engineering graphs
Originally devised by H.C. Higgins, The Boeing Company, re-interpreted for these notes.

Figure C-1. Boeing scale selection chart
(based on afigure in the AIAA Student Journal, April, 1971)
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from Grumman Aero Report No. 393-82-02, April, 1982, “Experimental Pressure Distributions and
Aerodynamic Characteristics of a Demonstration Wing for a Wing Concept for Supersonic Maneuvering,”
by W.H. Mason
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a) lift and moment
Figure C-2. Examples of wind tunnel data plots.
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from Grumman Aero Report No. 393-82-02, April, 1982, “Experimental Pressure Distributions and
Aerodynamic Characteristics of a Demonstration Wing for a Wing Concept for Supersonic Maneuvering,”
by W.H. Mason

Linear T_heory
0.6 Basdine Leading Edge Optimum
Cpp o = 0.0122 \
0.5 Test data, Run 23
0.3
CL 550 632 764
0.2 (god) (WT data)
21% reduction in drag dueto lift
0.1
Uncambered Wing, [CLtan(a -a O)]
0.0 6
M =162, Re/ft=2x 10
o1 char = 14.747 in, Sref = 342.11if
. Xmom o = 16.701 in from wing apex
transistion fixed
_0.2 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |
0.00 0.02 0.04 0.06 0.08 0.10
CD

Drag Performance of a Demonstration Wing for Supersonic Maneuvering

b) drag polar
Figure C-2. Concluded.
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12 T
NACA 4412 airfoil
|
® a = 1875°
-0.8 . M = 191
i Re = 720,000
transition free ]
-04
Cp .
[ X )
0.0 (o222 o ® e 4 ¢ ° o . o o\® i
04
0.8
Calculated, Pgm PANEL | -
e Testdata, NACA R-646 .
0.0 0.2 04 0.6 0.8 1.0 1.2

x/c

Figure C-3. Example of pressure distribution plot.
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from Grumman Memo EG-ARDYN-86-051, 1986.

0.010 ~
B Math Model
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-0.004 Math Model
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o

30.0° 60.0° 90.0°
a

Figure C-4. Example of plotting complicated experimental data.
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D.1 PANEL

Thisis an interactive program directly from Moran, with modifications to improve computa-
tional speed for multiple angle of attack cases. A sample output that can be used to verify that the
program is working properly is given below.

MORAN:  PROGRAM PANEL
| NPUT NLOWER, NUPPER
30, 30

I NPUT NACA NUVBER

4412

BCODY SHAPE

I X Y

1 1. 00000 0. 00000
2 0.99721 -0.00002
3 0.98887 -0.00009
4 0.97509 -0.00022
5 0. 95603 -0.00041
6 0.93193 -0.00069
7 0. 90307 -0.00108
8 0.86980 -0.00162
9 0.83250 -0.00233
10 0.79162 -0.00325
11 0. 74760 -0.00441
12 0. 70097 -0.00583
13 0. 65223 -0.00751
14 0.60193 -0.00942
15 0. 55061 -0.01152
16 0.49883 -0.01372
17 0.44715 -0.01592
18 0. 39616 -0.01798
19 0.34711 -0.02015
20 0.29972 -0.02250
21 0.25444 -0.02479
22 0.21167 -0.02679
23 0.17183 -0.02825
24 0.13529 -0.02895
25 0.10242 -0.02869
26 0.07358 -0.02732
27 0. 04909 -0.02469
28 0.02925 -0.02070
29 0. 01432 -0.01529
30 0. 00451 -0.00839
31 0. 00000 0. 00000
32 0. 00096 0. 00949
33 0. 00753 0. 01960
34 0. 01969 0. 03019
35 0. 03736 0. 04105
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36 0. 06039 0. 05187
37 0. 08856 0. 06233
38 0.12157 0. 07207
39 0. 15904 0. 08074
40 0. 20054 0. 08799
41 0. 24556 0. 09354
42 0. 29354 0. 09715
43 0. 34387 0. 09866
44 0. 39593 0. 09797
45 0. 44833 0. 09541
46 0. 50117 0. 09150
47 0. 55392 0. 08637
48 0. 60599 0. 08018
49 0. 65679 0. 07312
50 0. 70577 0. 06538
51 0. 75240 0. 05719
52 0. 79617 0. 04877
53 0. 83663 0. 04036
54 0. 87334 0. 03220
55 0. 90594 0. 02452
56 0. 93409 0. 01756
57 0. 95751 0. 01152
58 0. 97597 0. 00661
59 0. 98928 0. 00298
60 0.99731 0. 00075

I NPUT ALPHA | N DEGREES:

2.

PRESSURE DI STRI BUTI ON

I X Y cP
1 0. 9986 0. 0000 0. 38467
2 0. 9930 -0. 0001 0. 30343
3 0. 9820 - 0. 0002 0. 25675
4 0. 9656 - 0. 0003 0.22763
5 0. 9440 - 0. 0006 0. 20840
6 0. 9175 - 0. 0009 0. 19523
7 0. 8864 -0.0014 0. 18587
8 0. 8512 -0. 0020 0.17886
9 0.8121 -0. 0028 0.17317
10 0. 7696 -0. 0038 0. 16801
11 0. 7243 -0. 0051 0.16280
12 0. 6766 - 0. 0067 0.15713
13 0.6271 - 0. 0085 0. 15077
14 0. 5763 -0. 0105 0. 14373
15 0. 5247 -0.0126 0. 13638
16 0.4730 -0. 0148 0. 12985
17 0. 4217 -0.0170 0. 12807
18 0. 3716 -0.0191 0. 12602
19 0.3234 -0. 0213 0. 11687
20 0.2771 -0. 0236 0. 10199
21 0. 2331 -0. 0258 0. 08422
22 0.1917 -0. 0275 0. 06568
23 0. 1536 -0. 0286 0. 04878
24 0.1189 - 0. 0288 0. 03693
25 0. 0880 -0. 0280 0. 03573
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[eeooolooololoNoolololololooolololooloololololololololooNe Ne]

. 0613 - 0.
. 0392 - 0.
. 0218 - 0.
. 0094 - 0.
. 0023 - 0.
. 0005
. 0042
. 0136
. 0285
. 0489
. 0745
. 1051
. 1403
. 1798
. 2231
. 2696
. 3187
. 3699
. 4221
. 4747
. 5275
. 5800
. 6314
. 6813
. 7291
. 7743
. 8164
. 8550
. 8896
. 9200
. 9458
. 9667
. 9826
. 9933
. 9987

= 2.000

. 00078

COOOOLLLLLLLLLLLLLOOOO000000000

0260
0227
0180
0118
0042
0047
0145
0249
0356
0465
0571
0672
0764
0844
0908
0953
0979
0983
0967
0935
0889
0833
0766
0692
0613
0530
0446
0363
0284
0210
0145
0091
0048
0019
0004

CL =

Anot her angle of attack? (Y/N):

n

STOP
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0. 05561
0.11840
0.27208
0. 60051
0.98725
0. 62389
-0. 17221
- 0. 59380
-0.77475
- 0. 86631
-0.92155
- 0. 95698
-0.97726
- 0. 98317
-0.97429
- 0. 94986
- 0. 90860
- 0.
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
0
0
0
0
0

84568

. 76754
. 69391
. 62775
. 56419
. 50177
. 43979
L377TT
. 31529
. 25196
. 18742
. 12130
. 05316
. 01760
. 09212
. 17280
. 26569
. 38467

0. 73347

CM = -0.28985
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D.2 PANELV2 User'sManual

This manual describes the input for program PANELV 2, an extended version of program
PANEL from Moran.

This program allows input of arbitrary airfoils for analysis, modification of airfoil shapes using
“bumps,” and output of afilefor plotting or other analysis. The program runs interactively. The
input file for arbitrary airfoilsis given below. (the disk with the program includes sample files,
identified by ending in “.pan”)

INPUT DESCRIPTION (@l numeric input isin 2F10.5 format)

Card Field Variable Description
1 1 Title Up to 80 characters describing the data set/case (A79)
2 1 FNUP number of X,Y pairs describing upper surface
2 FNLOW " " " lower "
3 dummy card (used for descriptor in input data)
4 1 X the upper surface airfoil x/c input station
2 Y the y/c value of the upper surface at this x/c

Notes:

kkkkkkkkkkkk CARD 4 |S rq)eated FNUPtimeS************
dummy card (used for descriptor in input data)

1 X the lower surface airfoil x/c input station
2 Y the y/c value of the lower surface at this x/c

kkhkkkkikkkikkk*k CARD 6 |S rq)emed FNLOW times************

1. Airfoilsare input from leading edge to trailing edge.

2. Theleading edge point must be input twice: once for the upper surface and once for the

lower surface descriptions.

OUTPUT FILE FORMAT

Card

1. TITLE
2. Heading for output
3. 4 fields: 4F10.4, this card contains

i)  angleof attack, in degrees
i) lift coefficient
iii)  moment coeficient (about the quarter chord)
iv) drag coefficient from surface pressure integration (should be zero)
Number of pointsin
Heading for output
4 fields: 4F20.7 Note: this card is repeated for each control point
1) Xx/c, arfoil ordinate
i) ylc, arfail ordinate
iii) Cp, pressure coefficient
i)  Ue/Uinf, the surface velocity at x/c, y/c

o Uk
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A sampleinput fileillustrating the format:

GAWL - THECRETI CAL ORDI NATES

38. 38.
X Y  (UPPER SURFACE)
0.0 0.0
0.00200 0.01300
0.00500 0.02035
0.01250  0.03069
0.02500 0.04165
0.03750  0.04974
0.05000  0.05600
0.07500 0.06561
0.10000  0.07309
0.12500  0.07909
0.15000 0.08413
0.17500 0.08848
0.20000  0.09209
0.25000 0.09778
0.30000 0.10169
0.35000  0.10409
0.40000 0.10500
0.45000 0.10456
0.50000  0.10269
0.55000 0.09917
0.57500 0.09674
0.60000 0.09374
0.62500 0.09013
0.65000 0.08604
0.67500 0.08144
0.70000 0.07639
0.72500 0.07096
0.75000 0.06517
0.77500 0.05913
0.80000  0.05291
0.82500  0.04644
0.85000 0.03983
0.87500  0.03313
0.90000  0.02639
0.92500 0.01965
0.95000 0.01287
0.97500  0.00604
1.00000 -0.00074
LOWER SURFACE

0.0 0.0
0.00200 -0.00974
0.00500 -0.01444
0.01250 -0.02052
0.02500 -0.02691
0.03750 -0.03191
0.05000 -0.03569
0.07500 -0.04209
0.10000 -0.04700
0.12500 -0.05087
0.15000 -0.05426
0.17500 -0.05700
0.20000 -0.05926
0.25000 -0.06265
0.30000 -0.06448
0.35000 -0.06517
0.40000 -0.06483
0.45000 -0.06344
0.50000 -0.06091
0.55000 -0.05683
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. 57500 -0.05396
. 60000 -0.05061
. 62500 -0.04678
. 65000 -0.04265
. 67500 -0.03830
. 70000 -0.03383
. 72500 -0.02930
. 75000 -0.02461
. 77500 -0.02030
. 80000 -0.01587
. 82500 -0.01191
. 85000 -0.00852
. 87500 -0.00565
. 90000 -0.00352
. 92500 -0.00248
. 95000 -0.00257
. 97500 -0.00396

. 00000 -0.00783

mlleleeololoololololooNololoNoNoNe)
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A sample output from PANELv2:

PROGRAM PANELvV2
Revi sed version of Mran code
nodi fi cations by WH. Mason

| NPUT NLOWER, NUPPER
(nupper and nl ower MJST be equal, and nupper + nlower MJST be | ess than 100)
40, 40
for internally generated ordi nates, enter 0
to read an external file of ordinates, enter 1
1
Enter name of file to be read: gawl.pan
Input file name: gawl. pan
File title:: GAWL - THEORETI CAL ORDI NATES
NU = 38 NL = 38

Upper surface ordinates

i ndex X/ C Y/ C
38 0. 000000 0. 000000
39 0. 002000 0. 013000
40 0. 005000 0. 020350
41 0. 012500 0. 030690
42 0. 025000 0. 041650
43 0. 037500 0. 049740
44 0. 050000 0. 056000
45 0. 075000 0. 065610
46 0. 100000 0. 073090
47 0. 125000 0. 079090
48 0. 150000 0. 084130
49 0. 175000 0. 088480
50 0. 200000 0. 092090
51 0. 250000 0. 097780
52 0. 300000 0.101690
53 0. 350000 0. 104090
54 0. 400000 0. 105000
55 0. 450000 0. 104560
56 0. 500000 0. 102690
57 0. 550000 0. 099170
58 0. 575000 0. 096740
59 0. 600000 0. 093740
60 0. 625000 0. 090130
61 0. 650000 0. 086040
62 0. 675000 0. 081440
63 0. 700000 0. 076390
64 0. 725000 0. 070960
65 0. 750000 0. 065170
66 0. 775000 0. 059130
67 0. 800000 0. 052910
68 0. 825000 0. 046440
69 0. 850000 0. 039830
70 0. 875000 0. 033130
71 0. 900000 0. 026390
72 0. 925000 0. 019650
73 0. 950000 0.012870
74 0. 975000 0. 006040
75 1. 000000 -0. 000740
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Lower surface ordinates

i ndex X/ C Y/ C
38 0. 000000 0. 000000
37 0. 002000 -0.009740
36 0. 005000 -0. 014440
35 0. 012500 -0. 020520
34 0. 025000 -0.026910
33 0. 037500 -0. 031910
32 0. 050000 -0. 035690
31 0. 075000 -0.042090
30 0. 100000 -0. 047000
29 0. 125000 - 0. 050870
28 0. 150000 -0. 054260
27 0. 175000 -0. 057000
26 0. 200000 - 0. 059260
25 0. 250000 -0. 062650
24 0. 300000 -0. 064480
23 0. 350000 -0. 065170
22 0. 400000 -0.064830
21 0. 450000 -0. 063440
20 0. 500000 -0. 060910
19 0. 550000 -0. 056830
18 0. 575000 - 0. 053960
17 0. 600000 -0. 050610
16 0. 625000 -0.046780
15 0. 650000 -0. 042650
14 0. 675000 -0. 038300
13 0. 700000 -0.033830
12 0. 725000 -0. 029300
11 0. 750000 -0. 024610
10 0. 775000 -0.020300

9 0. 800000 -0.015870
8 0. 825000 -0. 011910
7 0. 850000 -0.008520
6 0. 875000 - 0. 005650
5 0. 900000 -0. 003520
4 0. 925000 -0.002480
3 0. 950000 -0. 002570
2 0. 975000 - 0. 003960
1 1. 000000 -0.007830

internally generated estinate of |eading edge point

X(I'N=  0.00200 Y(IN)= -0.00974 I N= 37
XC= 0. 02136 YC= -0. 00069
| eadi ng edge radi ous, RN = 0. 02137

Airfoil shape after interpolation in slopy2

| X Y dY/ dX
1 1. 00000 -0.00783 -0.20440
2 0.99846 -0.00752 -0.19879
3 0.99384 -0.00664 -0.18137
4 0.98618 -0.00537 -0.15044
5 0.97553 -0.00401 -0.10315
6 0.96194 -0.00300 -0.05058
7 0. 94550 -0.00248 -0.01697
8 0.92632 -0.00246 0. 01577
9 0.90451 -0.00325 0. 05653
10 0. 88020 -0.00513 0. 09610
11 0. 85355 -0.00808 0.12293
12 0.82472 -0.01195 0. 14645
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13 0.79389 -0.
14 0.76125 -0.
15 0.72700 -0.
16 0.69134 -0.
17 0.65451 -0.
18 0.61672 -0.
19 0.57822 -0.
20 0.53923 -0.
21 0.50000 -O.
22 0.46077 -0.
23 0.42178 -0.
24 0.38328 -0.
25 0.34549 -0.
26 0.30866 -0.
27 0.27300 -0.
28 0.23875 -0.
29 0.20611 -0.
30 0.17528 -0.
31 0.14645 -0.
32 0.11980 -O0.
33 0. 09549 -0.
34 0.07368 -0.
35 0. 05450 -0.
36 0. 03806 -0.
37 0. 02447 -0.
38 0.01382 -0.
39 0.00616 -0.
40 0.00154 -0.
41 0. 00000 0
42 0. 00154 0
43 0. 00616 0
44 0.01382 0
45 0. 02447 0
46 0. 03806 0
47 0. 05450 0
48 0. 07368 0
49 0. 09549 0
50 0. 11980 0
51 0. 14645 0
52 0.17528 0
53 0. 20611 0
54 0. 23875 0
55 0. 27300 0
56 0. 30866 0
57 0. 34549 0
58 0. 38328 0
59 0.42178 0
60 0. 46077 0
61 0. 50000 0
62 0. 53923 0
63 0.57822 0
64 0.61672 0
65 0. 65451 0
66 0.69134 0
67 0. 72700 0
68 0.76125 0
69 0. 79389 0
70 0.82472 0
71 0. 85355 0
72 0. 88020 0
73 0.90451 0
74 0. 92632 0
75 0. 94550 0
76 0.96194 0
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01694
02265
02893
03538
04188
04809
05356
05789
06091
06300
06436
06506
06515
06467
06366
06203
05976
05703
05381
05011
04621
04179
03693
03210
02667
02131
01569
00864

. 00000
. 01144
. 02240
. 03207
. 04126
. 05005
. 05796
. 06517
. 07186
. 07794
. 08346
. 08852
. 09289
. 09666
. 09978
. 10221
. 10394
. 10485
. 10497
. 10429
. 10269
. 10007
. 09639
. 09138
. 08525
.07818
. 07051
. 06248
. 05445
. 04651
. 03888
. 03173
. 02517
. 01929
. 01409
. 00961

[ T T T T S S SO T T S S S T S|
‘NeloloNoNojoloololololoololololololololololoNoNoNeNe]

.
oo
[N

[elololojoNooololoNoNoNoNal i iV}

. 17692
. 17042
. 18827
. 17927
.17160
. 15625
. 12693
. 09288
. 06366
. 04346
. 02638
. 01022
. 00540
. 02049
. 03711
. 05922
. 07942
. 09830
. 12751
. 14721
. 17860
. 23093
. 27172
. 34047
. 44665
. 58795
. 99951
. 62162
. 15408
. 67010
. 61813
. 65629
. 02313
. 74407
. 55767
. 42184
. 33808
L 27773
. 22582
. 19111
. 15839
. 12792
. 10354
. 07915
. 05769
. 03569
. 01334
. 00698
. 02859
. 05335
. 08013
.11084
. 14833
. 17759
. 20459
. 22600
. 24141
. 25101
. 26228
. 26695
. 26948
. 26948
.27014
. 27205
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77 0.97553
78 0.98618
79 0. 99384

do you want to modify this airfoil? (Y/N)

y

0. 00590
0. 00300
0. 00092
80 0.99846 -0.00032
81 1. 00000 -0.00074

-0.27349
-0.27251
-0.27123
-0. 27057
-0.27028

do you want to add a bunp to this airfoil? (Y/N)

y

upper (1) or lower(0) surface?

1

i nput begi ning, niddle and end of bunp
9

.05,.5,.

i nput size of bunp:

+ adds to thickness
- subtracts fromthickness

.03

Airfoil nodification

I Xl C
41 0. 00000
42 0. 00154
43 0. 00616
44 0. 01382
45 0. 02447
46 0. 03806
47 0. 05450
48 0.07368
49 0. 09549
50 0.11980
51 0. 14645
52 0.17528
53 0. 20611
54 0.23875
55 0. 27300
56 0. 30866
57 0. 34549
58 0. 38328
59 0.42178
60 0. 46077
61 0. 50000
62 0. 53923
63 0.57822
64 0. 61672
65 0. 65451
66 0. 69134
67 0. 72700
68 0.76125
69 0. 79389
70 0. 82472
71 0. 85355
72 0. 88020
73 0. 90451
74 0. 92632
75 0. 94550
76 0.96194
77 0. 97553
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Y/ C
. 00000

0000000000000 00000000000000000000000

basel i ne

01144
02240
03207
04126
05005
05796
06517
07186
07794
08346
08852
09289
09666
09978
10221
10394
10485
10497
10429
10269
10007
09639
09138
08525
07818
07051
06248
05445
04651
03888
03173
02517
01929
01409
00961

. 00590

delta Y/C
. 00000

0000000000000 00000000000000000000000

00000
00000
00000
00000
00000
00000
00003
00021
00070
00168
00330
00566
00874
01243
01649
02059
02434
02736
02932
03000
02914
02669
02297
01848
01376
00935
00566
00292
00119
00031
00003
00000
00000
00000

. 00000
. 00000

0000000000000 00000000000000000000000

Y/ C

. 00000

01144
02240
03207
04126
05005
05796
06520
07208
07864
08514
09183
09854
10540
11221
11870
12453
12920
13234
13361
13269
12922
12308
11435
10372
09194
07986
06813
05737
04770
03920
03176
02517
01929
01409

. 00961
. 00590
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0. 00300
0. 00092
-0. 00032

0. 00000
0. 00000
0. 00000

do you want to deflect the trailing edge? (Y/'N)

What is the x/c of the start of the deflection?

78 0. 98618
79 0. 99384
80 0. 99846
y
.8

what is the deflectio
15.

n, in degrees?

Lower Surface deflected
i x(i) y-old
1 1. 00000 -0.00783
2 0. 99846 -0. 00752
3 0. 99384 -0. 00664
4 0. 98618 - 0. 00537
5 0. 97553 -0. 00401
6 0.96194 - 0. 00300
7 0. 94550 -0.00248
8 0.92632 -0. 00246
9 0.90451 - 0. 00325
10 0. 88020 -0. 00513
11 0. 85355 - 0. 00808
12 0. 82472 -0. 01195
Upper Surface deflected
i x(1i) y-old
70 0. 82472 0. 04770
71 0. 85355 0. 03920
72 0. 88020 0.03176
73 0. 90451 0. 02517
74 0. 92632 0. 01929
75 0. 94550 0. 01409
76 0.96194 0. 00961
77 0. 97553 0. 00590
78 0.98618 0. 00300
79 0.99384 0. 00092
80 0. 99846 - 0. 00032
81 1. 00000 -0. 00074

setting up coefficie

Conputing LU deconposition -

i nput al pha in degree

nt matrix -

S

delta y
. 05359
. 05318
. 05194
. 04989
. 04703
. 04339
. 03899
. 03385
. 02800
. 02149
. 01435
. 00662

[eNeolojojoNololoNoNoNoNe]

delta y
. 00662
. 01435
. 02149
. 02800
. 03385
. 03899
. 04339
. 04703
. 04989
. 05194
. 05318
. 05359

eNololojoNoolooNoNeNe]

y- new
-0.06142
- 0. 06070
- 0. 05858
- 0. 05526
- 0. 05105
- 0. 04639
-0. 04147
-0. 03630
-0. 03125
-0. 02662
-0. 02243
-0.01858

y- new
0. 04108
0. 02485
0. 01027

- 0. 00283

- 0. 01455

- 0. 02489

-0.03378

-0.04114

- 0. 04689

- 0. 05102

- 0. 05350

- 0. 05433

takes sone tine

Pressure and Vel ocity distributions

I X

1 0.9992 -0.
2 0. 9962 - 0.
3 0.9900 -0.
4 0. 9809 -0.
5 0. 9687 - 0.
6 0. 9537 -0.
7 0. 9359 -0.
8 0.9154 -0.
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Y
0611
0596
0569
0532
0487
0439
0389
0338

00000000

cP

. 41670
. 51302

60839
63092
60386

. 57453
. 57245
. 57498

nmay take awhile

U Ue
-0. 7637
-0.6978
-0. 6258
-0. 6075
-0. 6294
- 0. 6523
-0. 6539
-0. 6519

0. 00300
0. 00092
-0.00032
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9 0. 8924 -0. 0289 0.57777 -0. 6498
10 0. 8669 - 0. 0245 0. 59221 -0. 6386
11 0. 8391 -0. 0205 0. 63641 -0. 6030
12 0. 8093 -0.0178 0. 67164 -0.5730
13 0.7776 -0.0198 0. 58930 - 0. 6409
14 0.7441 -0. 0258 0.53214 -0. 6840
15 0.7092 -0. 0322 0.47252 -0.7263
16 0.6729 -0. 0386 0. 41531 -0. 7646
17 0. 6356 -0. 0450 0. 35948 - 0. 8003
18 0.5975 - 0. 0508 0. 30927 -0. 8311
19 0. 5587 - 0. 0557 0.27221 - 0. 8531
20 0.5196 -0. 0594 0. 25583 -0. 8627
21 0. 4804 -0. 0620 0. 25355 -0. 8640
22 0. 4413 - 0. 0637 0. 25645 -0. 8623
23 0. 4025 -0. 0647 0.26273 -0. 8586
24 0. 3644 -0. 0651 0.27258 -0. 8529
25 0.3271 - 0. 0649 0. 28574 - 0. 8451
26 0. 2908 -0. 0642 0. 30098 -0. 8361
27 0. 2559 -0. 0628 0. 32177 -0. 8235
28 0.2224 - 0. 0609 0. 35146 - 0. 8053
29 0. 1907 -0. 0584 0. 38532 -0.7840
30 0. 1609 -0. 0554 0. 42540 -0. 7580
31 0.1331 - 0. 0520 0. 47686 -0.7233
32 0. 1076 -0. 0482 0.52766 -0.6873
33 0. 0846 -0. 0440 0. 59616 -0. 6355
34 0. 0641 -0.0394 0. 68317 - 0. 5629
35 0. 0463 -0. 0345 0. 76489 -0. 4849
36 0. 0313 -0. 0294 0.87733 -0. 3502
37 0.0191 -0. 0240 0. 96586 -0.1848
38 0. 0100 -0. 0185 0. 99394 0.0779
39 0. 0038 -0.0122 0.71924 0. 5299
40 0. 0008 - 0. 0043 0. 00089 0. 9996
41 0. 0008 0. 0057 - 0. 84325 1. 3577
42 0. 0038 0. 0169 -1.79413 1.6716
43 0. 0100 0.0272 -2.45163 1. 8579
44 0.0191 0. 0367 -2.56550 1.8883
45 0. 0313 0. 0457 -2.52528 1.8776
46 0. 0463 0. 0540 -2.36679 1. 8349
47 0. 0641 0. 0616 -2.11734 1. 7656
48 0. 0846 0. 0686 -1. 89645 1.7019
49 0. 1076 0.0754 -1.71369 1. 6473
50 0. 1331 0. 0819 -1.57093 1.6034
51 0. 1609 0. 0885 -1.49116 1.5783
52 0. 1907 0. 0952 -1.45244 1. 5660
53 0.2224 0.1020 -1. 45256 1.5661
54 0. 2559 0.1088 -1. 49447 1.5794
55 0. 2908 0. 1155 -1.56755 1. 6024
56 0.3271 0.1216 -1.66552 1.6326
57 0. 3644 0. 1269 -1.77142 1.6648
58 0. 4025 0. 1308 -1.86810 1. 6935
59 0. 4413 0. 1330 -1.94601 1.7164
60 0. 4804 0. 1331 -1.99347 1.7302
61 0. 5196 0. 1310 -1.98282 1.7271
62 0. 5587 0.1261 -1.89361 1.7011
63 0.5975 0.1187 -1.71802 1. 6486
64 0. 6356 0. 1090 -1.49638 1. 5800
65 0.6729 0. 0978 -1.27652 1.5088
66 0.7092 0. 0859 -1.09776 1. 4484
67 0. 7441 0.0740 -0.99374 1.4120
68 0.7776 0. 0628 -1.12848 1. 4589
69 0. 8093 0. 0492 -0. 82110 1. 3495
70 0.8391 0. 0330 -0.48770 1.2197
71 0. 8669 0. 0176 -0. 31486 1. 1467
72 0. 8924 0. 0037 -0.20068 1.0958
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73 0.9154  -0.0087 -0. 11007 1. 0536
74 0.9359  -0.0197 -0. 04075 1. 0202
75 0.9537 -0.0293 0.01110 0.9944
76 0.9687 -0.0375 0. 03867 0. 9805
77 0.9809 -0.0440 0. 04913 0.9751
78 0.9900 -0.0490 0. 09990 0. 9487
79 0.9962  -0.0523 0. 23071 0.8771
80 0.9992  -0.0539 0.41671 0. 7637
I X Y cP U Ue
AT ALPHA = 2.000
CL = 1.82147 CMl.e.) = -0.76764 Cm(c/4) = -0.31257
CD = -0.00344 (theoretically zero)

send output to a file? (Y/'N)
y

enter file nane: gawl. out
enter file title: GAW1 airfoil with upper surface nod and trailing edge deflected

Anot her angle of attack? (Y/N):
n

STOP

The output disk file generated from the above is given here (for a 44,44 panel case):

GAW 1 airfoil with upper surface nod and trailing edge deflected

Al pha CL cnc4 cD
2. 0000 1.8253 -0.3139 -0.0034
90. 0000000
X C Y/ C Cp U UE

1. 0000000 -0.0614198 0. 4218349 -0. 7603717
0.9987261 -0. 0608210 0. 4894220 -0.7145474
0. 9949107 - 0. 0590636 0.5828183 - 0. 6458961
0. 9885734 -0. 0562688 0. 6198552 -0.6165588
0. 9797465 -0. 0526529 0.6121694 -0. 6227604
0.9684749 - 0. 0485395 0. 5824285 -0. 6461977
0. 9548160 -0.0441873 0.5709316 - 0. 6550332
0. 9388395 - 0. 0396023 0.5742147 -0. 6525223
0. 9206268 - 0. 0348995 0.5779232 -0. 6496744
0. 9002706 - 0. 0303699 0. 5814999 -0. 6469159
0. 8778748 -0. 0262270 0.5949170 -0. 6364613
0. 8535534 -0.0224278 0. 6267794 -0.6109178
0.8274304 -0.0189073 0. 7059953 -0. 5422220
0. 7996389 -0. 0159320 0. 6026480 - 0. 6303586
0. 7703204 -0.0211078 0.5561817 -0.6661969
0. 7396245 -0. 0265297 0. 4989320 -0.7078615
0. 7077075 -0. 0324513 0. 4452444 -0.7448192
0.6747321 -0. 0383475 0. 3940417 -0.7784333
0. 6408663 -0. 0441870 0. 3435679 - 0. 8102050
0. 6062826 - 0. 0496877 0. 2998845 -0. 8367290
0.5711573 -0. 0544341 0. 2689947 - 0. 8549885
0. 5356696 - 0. 0582109 0. 2556977 -0. 8627295
0. 5000000 -0. 0609100 0. 2539230 -0. 8637575
0. 4643304 - 0. 0628407 0. 2562625 - 0. 8624022
0. 4288425 -0. 0641589 0.2613289 - 0. 8594598
0.3937173 -0. 0649298 0. 2692938 - 0. 8548135
0. 3591337 -0. 0651852 0. 2802141 - 0. 8484020
0. 3252679 - 0. 0649567 0. 2932411 - 0. 8406895
0. 2922925 -0. 0642823 0. 3083775 -0. 8316385
0. 2603754 -0.0631488 0. 3301547 - 0. 8184408
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. 2296796
. 2003612
. 1725696
. 1464466
. 1221252
. 0997294
. 0793732
. 0611605
. 0451840
. 0315251
. 0202535
. 0114266
. 0050893
. 0012739
. 0000000
. 0012739
. 0050893
. 0114266
. 0202535
. 0315251
. 0451840
. 0611605
. 0793732
. 0997294
. 1221252
. 1464466
. 1725696
. 2003612
. 2296796
. 2603755
. 2922925
. 3252679
. 3591337
. 3937174
. 4288426
. 4643304
. 5000000
. 5356696
. 5711575
. 6062827
. 6408663
. 6747321
. 7077075
. 7396246
. 7703204
. 7996388
. 8274304
. 8535534
. 8778748
. 9002706
. 9206268
. 9388395
. 9548160
. 9684749
. 9797465
. 9885734
. 9949107
. 9987261

[eNeolojoNoooloolojololololoNoloNolooloNojoNolololololoNoolololololoNoololololoNolololoNoloNoloNoNololoNoNoNoNe]
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-0.
- 0.
- 0.
-0.
- 0.
- 0.
-0.
- 0.
- 0.
-0.
- 0.
- 0.
-0.
- 0.

[ T T T T T T T
[eNeolojojoooloolooolooloN oo olooloNooNoolololololoolololoNoloNoolololoNoNoNe]

0614624
0592899
0567585
0538145
0504530
0469538
0430568
0387003
0343281
0296737
0247229
0198401
0145438
0078949

. 0000000
. 0104299
. 0205191
. 0295006
. 0379599
. 0461391
. 0537536
. 0606522
. 0671033
. 0732909
. 0792271
. 0851389
. 0912161
. 0973116
. 1035252
. 1097611
. 1158108
. 1214624
. 1263813
. 1302163
. 1327159
. 1336181
. 1326900
. 1296440
. 1243886
. 1169697
. 1077561
. 0973867
. 0864435
. 0755168
. 0650848
. 0555373
. 0395294
. 0248468
. 0115267
. 0005504
. 0114915
. 0212971
. 0299273
. 0373215
. 0434152
. 0481765
. 0515903
. 0536442

OO O0OO0OO0OO0OO0OO0O0O0OO0OO0OO0ORFrRORRFRPPRPFPFPFPRPRPPPPPPPPPEPEPFPEPEPNNMNNMNMNMNMNNRPOOOCOOOCOOOO0OO0OO0O0O0O0OO0O

. 3589480
. 3902262
. 4273256
. 4750733
. 5206525
. 5783747
. 6562179
. 7307052
. 8209081
. 9181719
. 9870794
. 9721012
. 6358421
. 0395444
. 8027386
. 6840084
. 3751559
. 5661790
. 5584900
. 4712462
. 27401883
. 0435944
. 8532349
. 6915706
. 5635967
. 4915837
. 4534186
. 4457374
. 4751878
. 5325123
. 6132200
. 7096776
. 8051412
. 8901043
. 9578166
. 9988899
. 9909948
. 9168615
. 7714504
. 5728503
. 3658797
. 1803569
. 0399497
. 9781721
. 18704083
. 7750797
. 4784321
. 3243269
. 2185851
. 1328125
. 0640643
. 0094062
. 0304447
. 0494097
. 0697593
. 1362851
. 2603474
. 4218340

OO0 O0O0COoOrRFRFRFRPFRPFRPFRPFRPFRPFRPFRPFRPRFRPRFPRPFRPPRPPRPRPRPPRPRPPRPRPRPRPRPPRPRPPRPRPRPRPRPPRPPRPRPRPRPLPOO

. 8006572
. 7808802
. 7567526
. 7245182
. 6923493
. 6493268
. 5863293
. 5189362
. 4231924
. 2860562
. 1136685
. 1670296
. 6034549
. 0195805
. 3426610
. 6382943
. 8371598
. 8884330
. 8863961
. 8631281
. 8094249
. 7445900
. 6891521
. 6406007
. 6011236
. 5784751
. 5663393
. 5638853
. 5732729
. 5913869
. 6165457
. 6461098
. 6748556
. 7000307
. 7198304
. 7317303
. 7294493
. 7078822
. 6647674
. 6040107
. 5381416
. 4766032
. 4282681
. 4064751
. 4788646
. 3323212
. 2159079
. 1507940
. 1038954
. 0643367
. 0315349
. 0046921
. 9846600
. 9749822
. 9644899
. 9293627
. 8600306
. 7603723
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D.3 Program LIDRAG

This program computes the span e for asingle planar lifting surface given the spanload. It uses
the spanload to determine the “e” using a Fast Fourier Transform. Numerous other methods
could be used. For reference, note that the “ €' for an elliptic spanload is 1.0, and the “ € for atri-
angular spanload is .72. The code isin the file LIDRAG.F. The sample input is also on the disk
and is called B2LDG.INP. The program prompts the user for the name of the input file.

The program was written by Dave Ives, and entered the public domain through the code
contained in AFFDL-TR-77-122, “ An Automated Procedure for Computing the Three
Dimensional Transonic Flow over Wing-Body Combinations, Including Viscous Effects,” Feb.
1978.

The input is the spanload obtained from any method. The output is the Trefftz plane induced
drag e and the integral of the spanload, which producesthe C.. Thisisthe “span” e. Y ou should
include apoint at n =0 and a n = 1 you should include a point with zero spanload. See the sam-
pleinput for an example.

The input instruction:

Card Field Columns Variable Description

1 1 1-10 FSPN Number of spanwise stations of input

2 1 1-10 ETA The spanwise location of input, y/(b/2).

2 1 1-20 CCLCA The spanload, ccl/ca (the local chord times
the local lift coefficient divided by the
average chord)

Note: card 2 is repeated FSPN times

Sampleinput: (from the output of the VL M pc sample case for the B-2, and in the file
B2LDG.INP on the disk))

20.

0.0 0. 58435
0. 01805 0. 58435
0. 06388 0.57919
0.11943 0. 56800
0.17664 0. 55739
0. 23385 0. 54709
0. 30271 0. 52459
0. 37158 0. 48623
0.42713 0. 44590
0. 48269 0. 40097
0. 53925 0. 36490
0. 59581 0.34718
0. 65137 0. 33280
0. 70693 0. 31865
0. 76248 0. 30225
0. 81804 0.27971
0. 86735 0.24229
0. 91667 0. 18494
0.97222 0. 09480
1. 000 0. 000
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D.4ALAMDESUser’'sManual

Thisisthe Lamar design program, LamDes2.f. It can be used as anon-planar LIDRAG to get
span efor multiple lifting surface cases when user supplies spanload. It has also been called the
Lamar/Mason optimization code. It finds the spanload to minimize the sum of the induced and
pressure drag, including canards or winglets. It also provides the associated camber distribution
for subsonic flow. Since two surfaces are included, it can find the minimum trimmed drag while
satisfying a pitching moment constraint.

The program will prompt you for the input file name. A sampleinput file called lamdes.inp ison
the disk, and the output obtained from this case is included here.

References:

J.E. Lamar, “A Vortex Latice Method for the Mean Camber Shapes of Trimmed Non-Coplanar
Planforms with Minimum Vortex Drag,” NASA TN D-8090, June, 1976.

W.H. Mason, “Wing-Canard Aerodynamics at Transonic Speeds - Fundamental Considerations
on Minimum Drag Spanloads,” AIAA Paper No. 82-0097, January 1982.

Input Instructions:

The program assumes the load distribution is constant chordwise until a designated chordwise |o-
cation (XCFW on the first surface and XCFT on the second surface). The loading then decreases
linearly to the trailing edge. This correspondsto a6 & 6A series camber distribution (the value
for the 6A seriesisusualy 0.8). If airfoil polars are used to model the effects of viscosity, the po-
lars are input in a streamwise coordinate system. The user is responsible for adjusting them from
2D to 3D.

This program uses an input file that is very similar to, but not the same as the VLMpcv2 code. It
is based on the same geometry and coordinate system ideas. Section D.6 should be consulted for
adiscussion of the geometry system.

Card # Format Field Name Remarks
1 Literd DATA Title card for the data set
2 8F10.6 1 PLAN Number of lifting surfaces for the

configuration; use 1 or 2.

2 XMREF c.g. shift from origin of input planform
coordinate system (the program originally
trimmed the configuration about the input
planform origin).

+isac.g. shift forward
-isac.g. shift aft

3 CREF reference chord of the configuration,
used only to nondimensionalize the
pitching moment coefficients.

4 SREF reference area of the configuration
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5

6

7

TDKLUE

CASE

SPNKLU

minimization clue
=0 - minimize induced drag only
=1 - minimize induced plus pressure drag

options for the drag polar

=0, model polar, same a, CLmin, CDO
for each surface(see note 3 below).

=1, model polar, each surface hasits
own a, CLmin, CDO

= 2, one general polar for entire config.

= 3, one general polar for each surface

spanload clue

= 0 gpanload isinternally computed using
the minimization

=1, no minimization is done, spanload is
read in, and e and pressure drag are
computed.

Geometric/Planform Data - see the VLM pc section (D.6) for more details

Card #

1-P

Note:

1.

Format Field Name
8F10.6 1 AAN(IT)

2 XS(IT)

3 YS(IT)

4 RTCDHT(IT)

5 PDRGI(IT)

6 PDRG2(IT)

7 PDRG3(IT)
8F10.6 1 XREG

2 YREG

3 DIH

4 AMCD

Remarks

# of straight lines defining this surface
= 0. (not used in this code)

= 0. (not used in this code)

root chord height ( - is“higher”)
CLmin

“ g
CDO

X point of line segment
(positiveis forward)

Y point of line segment
(positiveis forward)

dihedral angle of line

sweep wing move code, set = 1 for this
program

Card 2-Pisread in AAN + 1 times. Surface description starts at forward
centerline and works outboard and around, returning to the aft centerline

of the surface.

Cards 1-P and 2-P areread in as a set for each lifting surface
(see VLM4997 for clarification)

The model polar is given by: C4=a(C; - C; i )>*+ CDg
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Control Data (corresponding to “Group Two” datain Lamar’s nomenclature)

Cad # Format Field Name
1-C 6F5.3,2F106 1 CONFIG
2 SCW
3 VIC
4 XMCH
5 CLDES
6 XITMAX
7 EPSMAX
2-C 6F10.4 1 XCFW
2 XCFT
3 FKON
4 CMB
5 FICAM

Tuesday, January 21, 1997

Remarks
arbitrary configuration number or 1D
(may include up to four digits)

Number of chordwise horseshoe vortices
to be used to represent the wing;
amaximum of 20 may be used,

do not set to zero.

nomina number of spanwise rows at
which chordwise horseshoe may be
located; a maximum of 50 may be used.
The product of SCW and SSW cannot
exceed 400 (see VLM4997 chapter for
details of vortex layout).

Mach number, used to apply Prandtl-
Glauert comressibility correction factor.

design lift coefficient for lifting system

Maximum number of iterations allowed in
finding the solution for minimum +
pressure drag with arbitrary polarsinput.
Must be less than 50. 20 is sufficient for
most cases.

The convergence criteriafor the general
polar case.A value of .0005 appears to be
reasonable.

The chord fraction “a” at which the chord
load shape changes from rooftop to a
linear decrease to zero at the trailing edge
on the first planform. See the introduction
to this section for more discussion.

Same as XCFW, except appliesto the
second planform.

Clue for constraints

= 0 body moment constraint

= 1 no constraints

= 2 root bending moment constraint

= 3 both moment anf root bending
moment constraints.

The design wing CM when FKON =0

Camber computation clue.
= 0, no cambers computed
= 1, wing cambers computed
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6 PUNCH clue to punch cambers out
=0 - no punch file created
=1 - cards output (unit 7)

7 CRBMT Design root bending moment
for FKON = 2.
3-C 8F10.6 1 RELAX The under-relaxation factor for the

genera polar solution. RELAX =.03t0.3
Is satisfactory for most applications.

2 FIOUTW Output clue.
= 0 - full iteration history is output
=1 - only final results are output

3 CDO Basic drag coefficient that will be added to
the drag computed by summing the
induced drag and the profile drag
contained in the input polars.

Arbitrary Polar Input (the following cards are read only if CASE = 2.)

Card # Format Field Name Remarks
1-D Literal TITLE The identifying title for the input drag
polar for this surface.
2-D 8F10.5 1 FNCLCD The number of CL,CD pairs used to
define the input polar.
3-D 8F10.5 1 FQCL The value of streamwise lift coefficient

for this pooint on the drag polar.
2 FQCD The value of streamwise drag coefficient
for the given lift coefficient.
Note: 1. Card 3-Disread FNCLCD times
2. Cards1-D, 2-D and 3-D areread for each planform if CASE = 3.
Spanload Input (the following cards are read only if SPNKLU = 1)

Cad # Format Field Name Remarks

1-S Literal TITLE Thisisthetitle card for the input
spanloads.

2-S 7F10.5 1 FSPNPT Number of points on the spanload to
beread in for this planform.

3-S 7F10.5 1 Y SPNPT Span location in physical coordinates at
which ccl/caisinput (y is positive herel)

2 CLSPNP The spanload at Y SPNPT

Note: 1. Card 3-Sisread FSPNPT times
2. Cards2-Sand 3-Sareread for each planform as a set.
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Sample Input: (note: it isimportant to put data in proper columns!)

Lamar program sanple input - revised forward swept w ng

2.000 -8.000 89. 50 26640. 1.0 3.0 0.0

5. 000 0.0 0.0 -8.8 0.0 0.0

68. 95 0.0 0.0 1.0

68. 95 -34.0

49. 61 -65. 30 0.0 1.0

25. 64 -65. 30 0.0 1.0

22.25 -34.00

22.25 0.00

5.0 0.0 0.0 0.0 0.0 0.0
-25.90 0.0 0.0 1.0
-25.90 -34.0

38.10 -164.0 0.0 1.0

-2.40 -164.0 0.0 1.0
-147.90 -20.0
-147.90 0.0
1.0 10.0 20. 0.9 0.90 40.0 0.0006
0.0 0. 65 0.0 -0.10 1.0
0. 030 1.0 0.0 0.0 0.0 0.0
drag pol ar on canard (conv. sec)
18.0

0.00 0. 0000

0.10 0. 0000

0.25 0. 0002

0. 30 0. 00078

0.40 0. 00175

0.50 0. 00315

0.55 0. 0040

0. 60 0. 00535

0. 65 0. 00685

0.70 0. 00880

0.75 0.01125

0. 80 0.01485

0. 85 0.01975

0. 88 0. 02400

0. 915 0. 03600

1.00 0. 0880

1.20 0. 2680

1.80 0. 9880

drag pol ar
22.0

0. 000 0. 0003

0. 200 0. 0003

0. 300 0. 0005

0. 400 0. 0008

0. 500 0. 00125

0. 600 0.00178

0. 700 0. 00244

0. 800 0. 00324

0. 900 0. 00442

0. 950 0. 00528

0.970 0. 00570

0.990 0. 00621

1. 000 0. 00650

1. 020 0. 00730

1. 040 0. 00820

1. 060 0. 00930

1. 080 0.01090

1.100 0.01280

1.125 0. 02400

1.130 0. 03600

1. 200 0. 20400

2.000 2.12400
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Sample Output:

enter nanme of input file: lamdes.inp
Lamar Desi gn Code nods by WH. Mson

Lamar program sanple input - revised forward swept w ng

pl an = 2.0 xnref = -8.0000 cref = 89. 5000
tdklue = 1.0 case = 3.0 spnklu = 0.0
sref =  26640. 0000
1st REFERENCE PLANFORM HAS 5 CURVES
ROOT CHORD HEI GHT = - 8. 8000
PONT X Y SVEEEP DI HEDRAL
REF REF ANGLE ANGLE
1 76.9500 0.0000 0.00000 0.00000
2 76.9500 -34.0000 31.71155 0.00000
3 57.6100 -65.3000 90.00000 0.00000
4 33.6400 -65.3000 -6.18142 0.00000
5 30.2500 -34.0000 0.00000 0.00000
6 30.2500 0.0000
2nd REFERENCE PLANFORM HAS 5 CURVES
ROOT CHORD HEI GHT = 0. 0000
PONT X Y SVEEEP DI HEDRAL
REF REF ANGLE ANGLE
1 -17.9000 0.0000 0.00000 0.00000
2 -17.9000 -34.0000 -26.21138 0.00000
3 46.1000-164. 0000 90.00000 0.00000
4  5.6000-164. 0000 -45.29687 0.00000
5-139. 9000 -20.0000 0.00000 0.00000
6-139.9000 0.0000
scw = 10.0 vic = 20.0
xitmax = 40.0 epsmax = 0.00060
CONFI GURATI ON NO. 1.
delta ord shift for nonment = - 8. 0000
CURVE 1 |S SWEPT 0.0000 DEGREES ON PLANFORM 1
CURVE 1 IS SVWEPT 0.0000 DEGREES ON PLANFORM 2
BREAK PO NTS FOR THI S CONFI GURATI ON
PONT X Y z SWEEP DI HEDRAL

ANGLE ANGLE

1 76.9500 0.0000 -8.8000 0.0000 0.0000
2 76.9500 -20.0000 -8.8000 0.0000 0.0000
3 76.9500 -34.0000 -8.8000 31.7116 0.0000
4 57.6100 -65.3000 -8.8000 90.0000 0.0000
5 383.6400 -65.3000 -8.8000 -6.1814 0.0000
6 30.2500 -34.0000 -8.8000 0.0000 0.0000
7 30.2500 0.0000 -8.8000

SECOND PLANFORM BREAK PO NTS

1 -17.9000 0.0000 0.0000 0.0000 0.0000
2 -17.9000 -34.0000 0.0000 -26.2114 0.0000
3 -2.4908 -65.3000 0.0000 -26.2114 0.0000
4 46.1000-164.0000 0.0000 90.0000 0.0000
5 5.6000-164.0000 0.0000 -45.2969 0.0000
6-139. 9000 -20.0000 0.0000 0.0000 0.0000
7-139.9000 0.0000 0.0000
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280 HORSESHCE VORTI CES USED

PLANFCRM TOTAL SPANW SE
1 80 8
2 200 20

10. HORSESHCE VORTI CES I N EACH CHORDW SE ROW

xcfw = 0.00 xcft = 0.65 f kon = 0.00
ficam= 1.00 punch = 0.00 crbrmt = 0.000
cnmb = -.10 iflag = 1

relax = 0.03 fioutw = 1.00 cdo = 0. 0000
firbm= 0.00 yrbm = 0.0000 zrbm = 0. 0000

drag polar on canard (conv. sec)

there are 1.0 polars on this surface

18.0 points this polar planform1l

qcl qcd
0. 0000 0. 0000
0. 1000 0. 0000
0. 2500 0. 0002
0. 3000 0. 0008
0. 4000 0.0018
0. 5000 0. 0032
0. 5500 0. 0040
0. 6000 0. 0054
0. 6500 0. 0069
0. 7000 0. 0088
0. 7500 0.0113
0. 8000 0.0148
0. 8500 0. 0198
0. 8800 0. 0240
0. 9150 0. 0360
1. 0000 0. 0880
1. 2000 0. 2680
1. 8000 0.9880
drag pol ar

there are 1.0 polars on this surface

22.0 points this polar planform2

qcl qcd
0. 0000 0. 0003
0. 2000 0. 0003
0. 3000 0. 0005
0. 4000 0. 0008
0. 5000 0.0012
0. 6000 0.0018
0. 7000 0. 0024
0. 8000 0. 0032
0. 9000 0. 0044
0. 9500 0. 0053
0.9700 0. 0057
0. 9900 0. 0062
1. 0000 0. 0065
1. 0200 0.0073
1. 0400 0. 0082
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NRPRRRRR

LM=70 IL =71
BOTL = 164. 000
NMA( KBOT) = 50

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced

nduced
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. 0600

0800
1000
1250
1300

. 2000
. 0000

IM =

BOL

KBOT
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag

drag

1997

72

cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd

NOOOOOO

. 0093

0109
0128
0240
0360

. 2040
. 1240

IM= 73 TSPAN =-164. 000
SNN = 1.6400

65. 300
2

0.

0.

06815

06818

. 06827

. 06839

. 06850

. 06863

. 06876

. 06885

. 06893

. 06898

. 06902

. 06905

. 06907

. 06909

. 06911

. 06913

. 06915

. 06916

. 06917

. 06918

. 06919

. 06920

. 06921

. 06921

. 06922

. 06923

NMA(KBI T) =
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure
pressure

pressure

20

drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag
drag
drag
dr ag

TSPANA
DELTYB
KBI T

cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt
cdpt

-65. 300
3. 2800
1

. 01665

. 01441

. 01255

. 01139

. 01053

. 00976

. 00915

. 00886

. 00868

. 00856

. 00847

. 00841

. 00836

. 00832

. 00829

. 00826

. 00823

. 00821

. 00819

. 00817

. 00816

. 00815

. 00814

. 00813

. 00812

. 00811
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i nduced drag cd = 0.06923 pressure drag cdpt = 0.00810
i nduced drag cd = 0.06924 pressure drag cdpt = 0.00810
i nduced drag cd = 0.06924 pressure drag cdpt = 0.00809
i nduced drag cd = 0.06924 pressure drag cdpt = 0.00809
i nduced drag cd = 0.06925 pressure drag cdpt = 0.00808
pressure drag iteration has converged
k eps cl cdi cdp cdi +cdp
1 28.66362 0.90000 0.06815 0.01665 0.08480
2 0.05789 0.90000 0.06818 0.01441 0.08260
3 0.05278 0.90000 0.06827 0.01255 0.08082
4 0.04274 0.90000 0.06839 0.01139 0.07978
5 0.03408 0.90000 0.06850 0.01053 0.07903
6 0.03155 0.90000 0.06863 0.00976 0.07839
7 0.02773 0.90000 0.06876 0.00915 0.07791
8 0.02043 0.90000 0.06885 0.00886 0.07772
9 0.01549 0.90000 0.06893 0.00868 0.07761
10 0.01218 0.90000 0.06898 0.00856 0.07754
11  0.00994 0.90000 0.06902 0.00847 0.07749
12 0.00847 0.90000 0.06905 0.00841 0.07746
13 0.00724 0.90000 0.06907 0.00836 0.07743
14  0.00616 0.90000 0.06909 0.00832 0.07741
15 0.00519 0.90000 0.06911 0.00829 0.07740
16 0.00442 0.90000 0.06913 0.00826 0.07739
17 0.00371 0.90000 0.06915 0.00823 0.07738
18 0.00310 0.90000 0.06916 0.00821 0.07737
19 0.00263 0.90000 0.06917 0.00819 0.07736
20 0.00221  0.90000 0.06918 0.00817 0.07736
21 0.00183 0.90000 0.06919 0.00816 0.07735
22 0.00154 0.90000 0.06920 0.00815 0.07735
23 0.00131 0.90000 0.06921 0.00814 0.07734
24  0.00112 0.90000 0.06921 0.00813 0.07734
25 0.00095 0.90000 0.06922 0.00812 0.07734
26 0.00084 0.90000 0.06923 0.00811 0.07734
27 0.00076 0.90000 0.06923 0.00810 0.07733
28 0.00069 0.90000 0.06924 0.00810 0.07733
29  0.00064 0.90000 0.06924 0.00809 0.07733
30 0.00061 0.90000 0.06924 0.00809 0.07733
31 0.00057 0.90000 0.06925 0.00808 0.07733

i nduced + pressure drag was minimzed on this run

ref. chord = 89.500 <c average = 81.2195 true area = 32771.566
ref. area = 26640.000 b/2 = 164. 0000 ref ar = 4.0384
true ar = 3.2828 Mach nunmber = 0. 9000
first planform cl = 0.17126 cm = 0.11493 <cb = -0.01502
second planform cl = 0.72874 cm= -0.21493 cb = -0.18341
1st planform CL = 0.1713 CDP = 0.0042 CM = 0.1150 CB = -0.0151
2nd planform CL = 0.7292 CDP = 0.0038 CM = -0.2149 CB = 0.0000

no root bendi ng nmonment constraint

CL DES = 0.90000 CL COWPUTED = 0.9005 CM = -0.0999
CD | = 0.06925 E = 0.9230
CDPRESS = 0. 00804 CDTOTAL = 0.07729
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first planform

Y CL*C/ CAVE C/ CAVE CL CD
-61. 2000 0.21189 0. 33178 0. 63862 0. 00651
-53. 0000 0. 33566 0. 40510 0. 82857 0. 01765
-44.8000 0. 41311 0.47842 0. 86348 0. 02166
-37.3500 0. 46740 0. 54503 0. 85757 0. 02082
-29. 9000 0. 49499 0.57498 0. 86088 0. 02129
-22.9000 0. 50260 0.57498 0.87411 0. 02317
-15. 9000 0. 50504 0.57498 0. 87835 0. 02377

-5. 9000 0. 50631 0.57498 0. 88056 0. 02419

second pl anform

-159. 9000 0. 33879 0. 52480 0. 64556 0. 00208
-151. 7000 0.53136 0.57711 0. 92072 0.00478
- 143. 5000 0. 64513 0. 62942 1. 02495 0. 00752
- 135. 3000 0. 72403 0.68173 1. 06206 0. 00946
-127. 1000 0. 78509 0. 73404 1. 06954 0. 01006
-118. 9000 0. 83563 0. 78635 1. 06267 0. 00951
-110. 7000 0.87760 0. 83866 1. 04644 0. 00855
-102. 5000 0. 91055 0. 89096 1.02198 0. 00739
- 94. 3000 0.93428 0. 94327 0. 99047 0. 00622
- 86. 1000 0. 94681 0. 99558 0.95101 0. 00530
-77.9000 0. 94347 1.04789 0. 90036 0. 00443
- 69. 5500 0. 90911 1.10116 0. 82559 0. 00354
-61. 2000 0. 82859 1.15442 0.71775 0. 00258
-53. 0000 0. 74419 1.20673 0.61670 0.00189
-44. 8000 0.67721 1. 25904 0.53788 0. 00145
-37. 3500 0.63142 1. 30656 0. 48327 0.00117
-29. 9000 0. 60043 1.37894 0. 43543 0. 00096
-22.9000 0. 58289 1. 46602 0. 39760 0. 00079
-15. 9000 0.57323 1.50210 0. 38162 0. 00074
-5.9000 0.56730 1.50210 0.37767 0. 00073
nmean canber lines to obtain the spanl oad
(subsoni c linear theory)
y= -61.2000 y/(b/2) = -0.3732 chord=  26.9474
sl opes, dz/dx, at control points, fromfront to rear
x/c dz/ dx
0. 0750 0. 1295
0.1750 0.0672
0. 2750 0.0194
0. 3750 - 0. 0200
0. 4750 -0. 0522
0.5750 -0.0775
0. 6750 -0. 0960
0. 7750 -0.1077
0. 8750 -0.1122
0.9750 -0.1081

mean canber shape (interpolated to 41 points)

x/ c zlc delta x delta z (z-zle)lc
0. 0000 -0. 0299 0. 0000 -0. 8067 0. 0000
0. 0250 -0.0332 0.6737 -0.8944 -0. 0040
0. 0500 -0. 0365 1.3474 -0.9831 -0. 0080
0. 0750 -0.0398 2.0211 -1.0717 -0.0121
0. 1000 -0. 0429 2.6947 -1.1558 -0. 0159
0. 1250 -0. 0457 3. 3684 -1. 2310 -0.0195
0. 1500 - 0. 0480 4.0421 -1.2945 -0.0226
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-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
0.

-0.

poi nts,

3456
3857
4166
4399
4563
4660
4689
4651
4548
4383
4160
3884
3556
3181
2760
2297
1794
1254
0679
0074
9440
8781
8100
7400
6682
5950
5205
4452
3696
2942
2196
1458
0728
0000

3232

- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
0.

chord=

0252
0275
0294
0310
0323
0334
0343
0349
0353
0354
0353
0351
0346
0339
0331
0322
0310
0298
0284
0269
0253
0236
0218
0200
0181
0161
0141
0120
0100
0079
0059
0039
0020
0000

32. 9022

fromfront to rear

canber shape (interpolated to 41 points)

0. 1750 -0. 0499 4.7158
0. 2000 -0. 0514 5. 3895
0. 2250 -0. 0526 6. 0632
0. 2500 -0.0534 6. 7368
0. 2750 -0. 0540 7.4105
0. 3000 -0. 0544 8.0842
0. 3250 -0. 0545 8. 7579
0. 3500 -0. 0544 9. 4316
0. 3750 -0. 0540 10. 1053
0. 4000 -0.0534 10. 7790
0. 4250 -0. 0525 11. 4526
0. 4500 -0. 0515 12. 1263
0. 4750 -0. 0503 12. 8000
0. 5000 -0. 0489 13. 4737
0. 5250 -0.0474 14. 1474
0. 5500 - 0. 0456 14. 8211
0. 5750 -0. 0438 15. 4948
0. 6000 -0. 0418 16. 1684
0. 6250 -0. 0396 16. 8421
0. 6500 -0.0374 17. 5158
0. 6750 -0. 0350 18. 1895
0. 7000 -0. 0326 18. 8632
0. 7250 -0.0301 19. 5369
0. 7500 -0. 0275 20. 2105
0. 7750 -0. 0248 20. 8842
0. 8000 -0.0221 21.5579
0. 8250 -0.0193 22.2316
0. 8500 -0.0165 22.9053
0. 8750 -0.0137 23.5790
0. 9000 -0.0109 24. 2527
0. 9250 -0.0081 24. 9263
0. 9500 -0. 0054 25. 6000
0. 9750 -0. 0027 26.2737
1. 0000 0. 0000 26. 9474
y= -53.0000 y/ (bl 2)
sl opes, dz/dx, at contro
x/ c dz/ dx
0. 0750 0.0783
0. 1750 -0.0034
0. 2750 -0.0572
0. 3750 -0.0982
0. 4750 -0.1306
0. 5750 -0. 1557
0. 6750 -0.1740
0. 7750 -0.1854
0. 8750 -0.1898
0. 9750 -0. 1845
nmean
x/ c zlc delta x
0. 0000 -0.1036 0. 0000
0. 0250 -0. 1056 0. 8226
0. 0500 -0.1076 1. 6451
0. 0750 -0.1097 2.4677
0. 1000 -0.1115 3.2902
0. 1250 -0.1128 4.1128
0. 1500 -0.1136 4.9353
0.1750 -0.1138 5. 7579
0. 2000 -0.1135 6. 5804
0. 2250 -0.1128 7.4030
0. 2500 -0.1117 8.2256
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del
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.

ta z
4093
4745
5414
6080
6674
7122
7381
7444
7339
7102
6761

(z-zle)lc

0. 0000

-0.
- 0.
- 0.
-0.
- 0.
- 0.
-0.
- 0.
- 0.
-0.

0046
0092
0138
0182
0222
0255
0283
0306
0325
0340
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. 2750 -0.1104 9. 0481 - 3. 6333 -0. 0353
. 3000 -0.1089 9. 8707 -3.5819 -0. 0363
. 3250 -0. 1070 10. 6932 -3.5220 -0.0371
. 3500 -0. 1050 11. 5158 -3.4534 -0. 0376
. 3750 -0.1026 12. 3383 -3.3766 -0.0379
. 4000 -0. 1001 13. 1609 -3.2920 -0. 0379
. 4250 -0.0973 13.9834 -3.2003 -0. 0377
. 4500 -0.0943 14. 8060 -3.1020 -0.0373
. 4750 -0.0911 15. 6285 -2.9975 -0. 0367
. 5000 -0.0878 16. 4511 -2.8872 -0. 0359
. 5250 -0.0842 17.2737 -2.7715 - 0. 0350
. 5500 - 0. 0806 18. 0962 - 2. 6505 -0. 0339
. 5750 -0.0767 18.9188 -2.5247 -0. 0327
. 6000 -0.0728 19. 7413 -2.3945 -0.0313
. 6250 -0. 0687 20. 5639 -2.2601 -0. 0298
. 6500 - 0. 0645 21. 3864 -2.1219 -0. 0282
. 6750 -0.0602 22. 2090 -1.9804 - 0. 0265
. 7000 - 0. 0558 23. 0315 -1.8358 -0. 0247
. 7250 -0. 0513 23. 8541 -1.6886 -0. 0228
. 7500 -0. 0468 24.6766 -1.5391 -0. 0209
. 7750 -0.0422 25. 4992 -1.3875 -0. 0189
. 8000 -0. 0375 26. 3218 -1.2341 -0.0168
. 8250 -0.0328 27.1443 -1.0792 - 0. 0147
. 8500 -0. 0281 27. 9669 -0.9233 -0. 0125
. 8750 -0. 0233 28. 7894 -0.7671 -0.0104
. 9000 -0.0186 29.6120 -0.6114 - 0. 0082
. 9250 -0.0139 30. 4345 -0. 4569 -0. 0061
. 9500 -0. 0092 31. 2571 -0. 3038 -0. 0041
. 9750 -0. 0046 32.0796 -0.1517 - 0. 0020
. 0000 0. 0000 32.9022 0. 0000 0. 0000

[ aieleloloNoloolololooloolololoNoloololojloNojololoNoNeNe)

Note this output is repeated for each span station. Most other stations are omitted

y=  -5.9000 y/(b/2) = -0.0360 chord= 122.0000

sl opes, dz/dx, at control points, fromfront to rear

x/ c dz/ dx
0. 0750 -0. 0501
0.1750 -0. 0505
0. 2750 - 0. 0495
0. 3750 - 0. 0500
0. 4750 -0. 0537
0. 5750 -0.0623
0. 6750 -0.0814
0. 7750 -0. 0975
0. 8750 -0.1077
0. 9750 -0.1097

mean canber shape (interpolated to 41 points)

x/ c zlc delta x delta z (z-zle)lc
0. 0000 -0. 0697 0. 0000 -8.5090 0. 0000
0. 0250 -0. 0685 3. 0500 -8. 3562 - 0. 0005
0. 0500 -0.0672 6. 1000 -8.2034 -0. 0010
0. 0750 -0. 0660 9. 1500 - 8. 0506 -0. 0015
0. 1000 -0. 0647 12. 2000 -7.8975 -0. 0020
0. 1250 -0. 0635 15. 2500 -7.7440 -0. 0024
0. 1500 -0.0622 18. 3000 -7.5900 -0. 0029
0.1750 -0. 0609 21. 3500 -7.4358 -0.0034
0. 2000 -0. 0597 24. 4000 -7.2818 -0. 0039
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[ alielelolololoolololoolololololololoololoNoloololololoNoNe o]

. 2250
. 2500
. 2750
. 3000
. 3250
. 3500
. 3750
. 4000
. 4250
. 4500
. 4750
. 5000
. 5250
. 5500
. 5750
. 6000
. 6250
. 6500
. 6750
. 7000
. 7250
. 7500
. 7750
. 8000
. 8250
. 8500
. 8750
. 9000
. 9250
. 9500
. 9750
. 0000

-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
0.

twi st table

23
24
25
26
27
28
STOP

y

. 20000
. 00000
. 80000
. 35000
. 90000
. 90000
. 90000
. 90000
. 89999
. 70001
. 50000
. 30002
. 10001
. 90002
. 70002
. 50002
. 30003
. 10003
. 90003
. 55002
. 20000
. 00000
. 80000
. 35000
. 90000
. 90000
. 90000
. 90000

0584
0572
0559
0547
0535
0522
0510
0497
0485
0472
0458
0445
0431
0416
0401
0385
0368
0349
0330
0309
0287
0264
0240
0215
0189
0163
0137
0110
0082
0055
0027
0000

y/
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
-0.
- 0.
-0.
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118.
122.

(bl 2)
37317
32317
27317
22774
18232
13963
09695
03598
97500
92500
87500
82500
77500
72500
67500
62500
57500
52500
47500
42409
37317
32317
27317
22774
18232
13963
09695
03598

. 4500
. 5000
. 5500
. 6000
. 6500
. 7000
. 7500
. 8000
. 8500
. 9000
. 9500
. 0000
. 0500
. 1000
. 1500
. 2000
. 2500
. 3000
. 3500
. 4000
. 4500
. 5000
. 5500
. 6000
. 6500
. 7000
. 7500
. 8000
. 8500
. 9000

9500
0000

PR R =
WWWWWARNWRNMAOIOINOOONMOAMTIONOONO R

-7.
- 6.
- 6.
- 6.
- 6.
- 6.
- 6.
- 6.
-5.
- 5.
-5.
-5.
- 5.
-5.
-4.
-4.
-4.
-4.
-4.
-3.
-3.
- 3.
- 2.
- 2.
- 2.
-1.
-1.
-1.
-1.
-0.
- 0.

tw st

. 71469
. 91587
. 36720
. 25835
. 47910
. 60813
. 49868
. 91663
. 45816
. 44655
. 38027
. 36750
. 75520
. 51973
. 46040
. 34168
. 13154
. 67249
. 88238
. 36595
. 52797
. 51491
. 49845
. 79378
. 77474
. 11226
. 52109
. 98970

1286
9763
8249
6742
5237
3728
2210
0676
9121
7537
5919
4262
2558
0791
8940
6978
4878
2627
0221
7669
4982
2174
9253
6231
3115
9920
6662
3359
0031
6690
3345

. 0000

- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
. 0000

0044
0049
0054
0059
0064
0069
0074
0079
0084
0088
0092
0096
0100
0102
0105
0106
0106
0105
0103
0100
0095
0089
0083
0076
0067
0059
0049
0040
0030
0020
0010
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Sample output:

Program LI DRAG

enter nane of input data file

b2l dg. i np

LI DRAG - LI FT | NDUCED DRAG ANALYSI S

I NPUT SPANLOAD

N Y/ (Bl 2)
1 0. 00000
2 0. 01805
3 0. 06388
4 0.11943
5 0.17664
6 0. 23385
7 0. 30271
8 0. 37158
9 0.42713
10 0. 48269
11 0. 53925
12 0. 59581
13 0. 65137
14 0. 70693
15 0. 76248
16 0. 81804
17 0. 86735
18 0. 91667
19 0.97222
20 1. 00000
Span e = 0.94708

Tuesday, January 21, 1997
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CCLCA
. 58435
. 58435
. 57919
. 56800
. 55739
. 54709
. 52459
. 48623
. 44590
. 40097
. 36490
. 34718
. 33280
. 31865
. 30225
. 27971
. 24229
. 18494
. 09480
. 00000

CL

0. 399
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D.5 Program FRICTION

FRICTION provides an estimate of laminar and turbulent skin friction suitable for use in aircraft
preliminary design. It is an entirely new program, but has its roots in a program by Ron Hen-
drickson at Grumman. It runs on any computer. The input requires geometric information and ei-
ther the Mach and altitude combination, or the Mach and Reynolds number at which the results
are desired. The skin friction is found using the Eckert Reference Temperature method for lami-
nar flow and the van Driest Il formulafor turbulent flow. The basic formulas are valid from sub-
sonic to hypersonic speeds, but the implementation makes assumptions that limit the validity to
moderate supersonic speeds (about Mach 3). The key assumption is that the vehicle surface is at
the adiabatic wall temperature (the user can easily modify this assumption). Form factors are
used to estimate the effect of thickness on drag, and a composite formula is used to include the
effect of a partial run of laminar flow. Because the methods aren’t described in detail in the text,

details are provided here.
Laminar flow

The approach used is known as the Eckert Reference Temperature Method, and this particu-
lar version is the one given by F.M. White in Viscous Fluid Flow, McGraw-Hill, New Y ork,
1974, pp. 589-590. In this method the incompressible skin friction formulais used, with the fluid
properties chosen at a specified reference temperature, which includes both Mach number and

wall temperature effects.

First, assumptions are made for the fluid properties.” Prandtl number, Pr = 0.72, Recovery
factor, r = Pri2 specific heat ratio, y = 1.4, and edge temperature, Te = 390 (°R). Then, for a
given edge Mach number, Me' and ratio of wall temperature to adiabatic wall temperature

T/ Tans COMpute:

Remember that

and then compute the reference temperature:

*

T Ur,, E
— [0.5+.039M2 + 0.53%

* These values can be changed easily by modifying the source code.
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The Chapman-Rubesin constant based on the reference temperature and Sutherland’s viscosity
law isthen computed from:
w1/ 2
* 320 14k ITe

C =0—0 O——2—
OO OF /Te+KI/T,

(I

where K = 200°R for air.

Finally, the local friction coefficient (t,,/q) is found from the standard Blasius formula, with

C* added,
o - 664/C"
f Rey
and
Cr =2C¢
which comes from
Foo1XEX
Ce=—=—= [C¢(X)dX
vl X£0f( )

Recall that C- accounts for one side of the plate only, so that if both sides are required for adrag
estimate, then the skin friction coeficient, C,, istwice C because the reference area is based on
onesideonly,i.e, S =12§ .

Note that the results are not sensitive to the value of edge temperature for low Mach numbers,

and therefore, an exact specification of Tg is not required. This method is implemented in sub-

routine lamcf.
Turbulent flow

For turbulent flow the so-called van Driest II Method is employed. This method was selected
based on the recommendation of E.J. Hopkins and M. Inouye, contained in “An Evaluation of
Theories for Predicting Turbulent Skin Friction and Heat Transfer on Flat Plates at Supersonic
and Hypersonic Mach Numbers,” AIAA J., Vol. 9, No. 6, June 1971, pp. 993-1003. The particu-
lar algorithm is taken from NASA TN D-6945, “Charts for Predicting Turbulent Skin Friction
From the Van Driest Method (I1),” also by E.J. Hopkins, and dated October 1972.

Again, assumptions are made for the fluid properties: turbulent flow recovery factor, r = .88,
specific heat ratio, y = 1.4, and edge temperature, Te = 222 (°K). Then, for a given edge Mach
number, M o and ratio of wall temperature to adiabatic wall temperature T,,/T ,,,, the calculation
is started by computing the following constants:
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where

and

which isthe Keyes viscosity law.
Finally,

%le_z x1075/Tw

1 T,
Fe:ﬁ Z\/:D 15\12 C
Hw VFm+22£ %1075/ Te L

O Te L

- B
I:C

The analysis proceeds using barred quantities to denote “incompressible” variables, which arein-

termediate variables not used except to obtain the final results. Given the Reynolds number, Re,,

an iteration is used to obtain the final results. Proceed as follows, finding
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Re, = K, Rey
now solve
242 = =
~“= =log(Rey Cf)
VCF
for Cr.
Use asan initial guess
C_Jg _ 074
ﬁe‘xzn _

Then, Newton’s method is applied to the problem:
_ . . f
f(Ce)=00 CFt=CL -—
(E) =00 G =gk -1
which becomes for this equation:
_ {.242 - /Tt log(Re, C&)}

Cet =G+ .
{.121+\/C_:¢ /InlO}

Oncethisiteration is completed, and C- isknown,

OO

mrrr

m

|
'|'||_|_I

CF:

C
Note that this value applies to one side of a plate only, so it must be doubled if the friction on
both sidesis desired to account for the proper reference areas. Here again, the results are not sen-
sitive to the value of edge temperature for low Mach numbers, and the default value should be

adequate for most cases. This formulaisimplemented in routine tur bcf.
Composite formula

When the flow is laminar and then transitions to turbulent, an estimate of the skin friction is
available from a composite of the laminar and turbulent skin friction formulas using Schlicting’'s
formula (see T. Cebeci and P. Bradshaw, Momentum Transfer in Boundary Layers, McGraw-

Hill, New Y ork, 1977, pp. 187). Given the transition position, x /L and Re, , compute

Re. = @%ﬁReL

and compute the laminar skin friction based on Re, and the turbulent skin friction twice, based
on both Reynolds numbers and then find the value that includes both laminar and turbulent flow

from:
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Cr = Crryrs (REL) - EﬁL ﬁCFTURB (Rec) = Crav (ReC)]

Several formulas are available, are al roughly equivalent, and have been evaluated extensively

for incompressible flow. They are only approximate for compressible flow.

Formfactors

To include the effects of thickness, it has been found that the skin friction formulas should be

adjusted through the use of form factors. Two different factors are used in this code. For wing-

FF=10 +1.8&%+ 50%%4

wheret/c is the thicknessratio of of particular component. For bodies,

FF=10 +1.5§@[‘5 +50?ﬁ

where d/l istheratio of diameter to length. Thisisthe reciprocal of the fineness ratio.

like shapes,

Program Operation:

Running the program, you will be prompted for the name of an input data set, the maximum
length is 15 characters. The output is sent to the screen, but can be sent to afile by changing the
value of IWRIT to something other than 6 in the main program. The sample data case on the disk
isF15.FRICTION.

INPUT

Cad Fieddd Columns Variable Description

1 1 1-60 Title Card

2 1-10 SREF Full Scale reference Area

11-20 SCALE  1/SCALE,i.e. /10 scaleisinput as 10.
21-30 FNCOMP number of component cards to be read in (15 max).

31-41 FINMD  input mode: = 0.0, input Mach and altitude
= 1.0, input Mach and Reynolds No.
per unit length

3 1 1-16 COMP(i) Component Name

21-30 SWET(l) Wetted Area(i.e., top and bottom sides of the wing,
and both left and right sides, thetotal areathat is
exposed to the air)

A W N P
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3 31-40 REFL Reference Length
41-50 TC(1) t/c for planar surf. or d/I (1/F) for body of revolution

5 51-60 FICODE Component type clue
=0.: Planar surface
=1.: Body of revolution

6 61-70 FTRANS Transition location
= 0. : means boundary layer isall turbulent
= 1. : n n n n n |am| nar.
values between 0 and 1 approximate the value of
the friction of the laminar/turbulent boundary layer
at the specified length fraction of the component.

Note: card 3 is repeated NCOMP times
Cad Field Columns Variable Description

4 1 1-10 XME Mach number

2 11-20 XINPUT if FINMD = 0.0, thisisthe Altitude (in 1000 feet)
if FINMD = 1.0, thisis the Reynolds no. per unit length
in millions

Note: Card 4 is repeated for each value of Mach and altitude desired. The program stops when
either the end of the datais reached or aMach number of zerois read.

Output: The input is echoed to allow for easy check of data and to keep all information together.
Then the drag calaculation for each M,h or M,Re/L is made. First, the reference areas, lengths,
thicknesses, form factors and the transition position are output. These values are fixed for each
combination of Mach and Reynolds number. Next, for each case the Reynolds number of each
component and the basic skin friction are found. Then the skin friction times the wetted area and
the skin friction times the wetted area and form factor are found. Finaly, the latter is divided by
the reference area and the contribution to the total drag in terms of a drag coefficient for the par-
ticular component, CDCOMP, is then found. These columns are summed, and the bottom value
under the CDCOMP column is the total skin friction and form drag coefficient. After al the con-
ditions are computed, a summary of resultsis presented as atable at the end of the output.

Sample input for program FRICTION:

F - 15 Al RCRAFT

608. 1. 7. 0.0

FUSELAGE 550. 00 54. 65 . 05500 1.0 0.0
CANCPY 75. 00 15.0 . 12000 1.0 0.0
NACELLE 600. 00 35.0 . 04000 1.0 0.0
GLV/ SPONSON 305. 00 35.5 117 1.0 0.0
QUTB' D W NG 698. 00 12. 7 . 05000 0.0 0.0
HORI Z. TAIL 222.00 8.3 . 05000 0.0 0.0
TWN V. T 250. 00 6.7 . 0450 0.0 0.0

0. 200 35. 000
1.200 35. 000
2. 000 35. 000
0. 000 0. 000
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Sample output from program friction:

Ent er
f15frict.inp

nane of data set:

FRICTION - Skin Friction and Form Drag Program
W H. Mason, Department of Aerospace and Ccean Engi neering
Virginia Tech, Blacksburg, VA 24060 emai | : mason@oe. vt. edu
versi on: Sept enber 13, 1996
CASE TI TLE: F - 15 Al RCRAFT
SREF = 608.00000 MODEL SCALE = 1.000 NO OF COWONENTS = 7
i nput node = 0 (node=0: input Mh; nmode=1: input M Re/l)
COVPONENT TI TLE SWET (FT2) REFL(FT) TC | CODE FRM FCTR FTRANS
FUSELAGE 550. 0000 54.650 0.055 1 1.0205 0.0000
CANCPY 75. 0000 15.000 0.120 1 1.0744 0. 0000
NACELLE 600. 0000 35.000 0.040 1 1.0124  0.0000
GLV/ SPONSON 305.0000 35.500 O0.117 1 1.0712 0. 0000
QUTB' D W NG 698. 0000 12.700 0.050 O 1.0903 0. 0000
HORI Z. TAIL 222. 0000 8.300 0.050 O 1.0903 0. 0000
TWN V. T 250. 0000 6.700 0.045 O 1.0812 0. 0000
TOTAL SVET = 2700. 0000
REYNOLDS NO./FT =0.480E+06 Altitude = 35000.00 XME = 0.200
COVPONENT RN CF CF*SWET  CF*SWET*FF  CDCOWP
FUSELAGE 0. 262E+08 0.00251 1.38212 1.41047 0. 00232
CANOPY 0. 720E+07 0. 00309 0.23164 0. 24889 0. 00041
NACELLE 0. 168E+08 0.00269 1.61561 1.63573 0. 00269
GLV/ SPONSON 0. 170E+08 0.00269 0.81944 0.87782 0. 00144
QUTB' D W NG 0. 609E+07 0.00318 2.21681 2.41701 0. 00398
HORI Z. TAIL 0. 398E+07 0.00342 0.75829 0. 82678 0. 00136
TWN V. T. 0. 321E+07 0. 00355 0. 88656 0.95855 0.00158
SUM = 7.91048 8.37525 0.01378
FRI CTI ON DRAG CDF = 0.01301 FORM DRAG. CDFORM = 0. 00076
REYNOLDS NO./FT =0.288E+07 Altitude = 35000.00 XME = 1.200
COVPONENT RN CF CF*SWET  CF*SWET*FF  CDCOWP
FUSELAGE 0. 157E+09 0. 00175 0.96201 0.98175 0.00161
CANCPY 0. 432E+08 0.00211 0.15826 0.17004  0.00028
NACELLE 0. 101E+09 0.00186 1.11769 1.13160 0.00186
GLV/ SPONSON 0. 102E+09 0.00186 0.56700 0. 60740 0.00100
QUTB' D W NG 0. 366E+08 0.00216 1.51055 1.64698 0. 00271
HORI Z. TAIL 0. 239E+08 0.00231 0.51314 0. 55949 0. 00092
TWN V. T. 0. 193E+08 0.00239 0.59777 0. 64631 0. 00106
SUM = 5. 42643 5. 74356 0. 00945
FRI CTI ON DRAG CDF = 0. 00893 FORM DRAG. CDFCRM = 0. 00052
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REYNOLDS NO./FT =0.480E+07 Altitude = 35000.00 XME = 2.000

COVPONENT RN CF CF*SWET  CF*SWET*FF  CDCOVP
FUSELAGE 0. 262E+09 0.00140 0.76912 0. 78490 0. 00129
CANCPY 0. 720E+08 0.00169 0.12643 0. 13585 0. 00022
NACELLE 0. 168E+09 0.00149 0.89337 0. 90449 0. 00149
GLV/ SPONSON 0.170E+09 0.00149 0.45321 0. 48550 0. 00080
QUTB' D W NG 0. 609E+08 0.00173 1.20667 1. 31564 0. 00216
HORI Z. TAIL 0. 398E+08 0. 00185 0.40980 0. 44681 0. 00073
TWN V. T. 0.321E+08 0.00191 0.47731 0. 51607 0. 00085

SUM = 4. 33591 4.58926 0. 00755
FRI CTI ON DRAG CDF = 0. 00713 FORM DRAG. CDFCRM = 0. 00042
SUMVARY

J XVE Altitude RE/ FT CDF CDFORM  CDF+CDFORM
1 0.200 0. 350E+05 0. 480E+06 0. 01301 0. 00076 0. 01378
2 1.200 0. 350E+05 0. 288E+07 0. 00893 0. 00052 0. 00945
3 2.000 0. 350E+05 0. 480E+07 0. 00713 0. 00042 0. 00755

END OF CASE

STOP
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D.6VLMpc

This manual describes the input for the pc version of John Lamar’s vortex |attice program.
This program isidentical to the program given in reference 2. An advanced version described in
reference 4 is also available. The input data sets differ slightly between the two versions.

The codeiscalled VLM pcv2.f on the disk, and has been modified for WATFOR. This
means that the output field length is limited to eighty columns. In WATFOR you may also need
to invoke the NOCHECK option to prevent the program from halting because of undefined vari-
ables. The code is provided with two OPEN statements near the beginning of the main program:

OPEN(5,file=infile, status=old)
OPEN(6,file=outfil, status=new)

such that the input data is defined on the file infile, and the output is placed in file outfil. The
user is prompted for the names of these files at the start of execution. Users should customize the
code to fit their preferences. The disk also contains a sampleinput file, YF23.IN, and a sample
output file, YF23.0UT.

The theory is described in references 1, 2 and 3, and the user’s manual provided hereis basi-
cally the instructions from references 1 and 2, with minor corrections and clarifications. Refer-
ence 4 describes the advanced version, VLM4.997.

References:

1. Margason, R.J., and Lamar, J.E., “Vortex-Lattice FORTRAN Program for Estimating Subson-
ic Aerodynamic Characteristics of Complex Planforms,” NASA TN D-6142, Feb., 1971.

2. Lamar, J.E., and Gloss, B. B. “ Subsonic Aerodynamic Characteristics of Interacting Lifting
Surfaces with Separated Flow around Sharp Edges Predicted by a 'V ortex-L attice Method,”
NASA TN D-7921, Sept., 1975.

3. Lamar, J.E., and Frink, N.T., “Experimental and Analytic Study of the Longitudinal Aerody-
namic Characteristics of Analytically and Empirically Designed Strake-Wing Configurations
at Subcritical Speeds, “ NASA TP-1803, June 1981.

4. Lamar, J.E., and Herbert, H.E., “Production Version of the Extended NASA-Langley Vortex
Lattice FORTRAN Computer Code,” - Vol. | - User's Guide, NASA TM 83303, April 1982.

VLMpc User’sGuide- (from references, 2, and 4)

This manual contains the output details for the pc version of the NASA-Langley Vortex
L attice Computer Program described in reference 2. The NASA - Langley Vortex Lattice
FORTRAN Program (VLMpc) is designed to estimate the subsonic aerodynamic characteristics
of up to two complex planforms. The concepts embodied in this program are mostly detailed in
references 1 and 2.

MODELING THE CONFIGURATION

The configuration can be modeled with up to two planforms, all of which must extend to the
plane of symmetry (Y = 0.0). Thefuselage isrepresented by its planar projection; experience to
date indicates that this produces acceptable global forces and moments for most wing-body-tail
configurations.

Winglets can be modeled, but the dihedral angle must be less than 90.0 degrees and greater
than -90.0 degrees. Both upper (positive dihedral) and lower (negative dihedral) winglets can be
accounted for in this code. The program uses as its solution surface the chord plane which may
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be inclined due to dihedral. Moreover, the only out of "X-Y plane" displacement specifically
allowed for isdihedral. Local camber and twist is assumed to be small and can be represented
by its slope projection to the local solution surface. The wind and body axes are assumed to be

coincidental in the code.
RUNNING THE PROGRAM
INPUT DATA SETUP

Theinput datato VLM is organized into two distinct groups - group 1 defines the reference
planform(s), and group 2 defines the details for the particular solution. An example input fol-
lows the description of the input and output. The individual details of the itemsin the deck layout
are given in the following sections.

GROUP 1 DATA

This group of data defines the planform(s) projected into the X-Y plane, with all the
coordinates being given for the left half of the configuration (negativey values!). The axis
systemisshown in Figure 1. TheY = 0 intercept coincides with the plane of symmetry and is
positive to the right of this plane. The X = 0 intercept is taken to occur along the symmetry
plane of the configuration; X is positive pointing into the wind.

Important tips for modeling configurations:

Good results require that a few common rules of thumb be used in selecting the planform
break points. The number of line segments should be minimized. Breakpoints should line up
streamwise on front and rear portions of each planform, and should line up between plan-
forms. Streamwi se tips should be used, and small spanwise distances should be avoided by
making edges streamwise if they are actually very highly swept.

A X
Note: X opposite standard
aerodynamic convention

Y
—>

| / Planform 1

" Pplanform 2
6 7
Figure 1. Definition of axis system for VLMpc.
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It isimportant to note that each planform can only go out to a maximum y value once, and
then return to the centerline. The program assumes that each planform is actuually awing.

Most numerical input for the group 1 data uses an 8F10.6 format . The input is as follows:

0.
1

(Cols. 1-80) Title Card

(Cols. 1-10) PLAN - Number of planforms for this configuration; PLAN can assume
values of 1.0, or 2.0.

(Cols.11-20) TOTAL - Number of sets of group 2 data specified for this configuration.

3. (Cols.21-30) CREF - Reference chord of the configuration. This chord isused only to

nondimensionalize the pitching-moment terms and must be greater than zero.

(Cols.31-40) SREF - Reference area; thisis used only to nondimensionalize the comput-
ed output data such as lift and pitching moment and must always be greater than zero.

(Col. 41-50) CG - Center of gravity location with respect to the origin of the coordinate
system. All moment computations are referenced to this location.

The data required to define the planform(s) is provided in the next set of group 1 cards as
follows (the number of line segmentsis equal to the number of points minus one):

1.

(Cols.1-10) AAN - Number of line segments used to define the left half of the planform
(does not include the innermost streamwise). A maximum of 24 line segments may be
used per planform, and each planform must extend to the plane of symmetry. ANN isthe
number of defining point minus one.

(Cols.11-20) XS - X location of the pivot; use 0.0 for afixed planform.

3. (Cols.21-30) YS-Y location of the pivot; use 0.0 for afixed planform.
4. (Cols.31-40) RTCDHT - Vertical distance of the particular planform being read in with

respect to the reference planform root chord height; use 0. for the reference planform.

Therest of this set of data describes the breakpoints used to define the AAN line segments on
this planform. The format is 4F9.4. There are (AAN+1) breakpoints and all data subsequently
described are required on all except the last card of this set; the last card uses only the first two
variablesin the following list:

1.

(Cols.1-9) XREG(I) - X location of the ith breakpoint. The first breakpoint islocated at
the most inboard location of the leading edge for the left-hand side of this planform. The
other breakpoints are numbered around the planform perimeter in increasing order for
each intersection of linesin a counterclockwise direction.

(Cols.10-18) YREG(I) - Y location of the ith breakpoint. Once the absolute value of Y
starts to decrease, it cannot be increased.

(Cols.19-27) DIH(1) - Dihedral angle (degrees) in the Y-Z plane of the line from
breakpoint of i to i+1, positive upward. Note that along a streamwise line, the dihedral
angleis not defined, so use 0.0. for these lines. Note the sign of the dihedral angleisthe
same along the leading and trailing edges.

(Cols.28-36) AMCD - The move code; this number indicates whether the line sis on the
movable panel of avariable-sweep wing. Use 1.0 for afixed line (defaultsto 1.0 if not
set), or 2.0 for amovableline.
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GROUP 2 DATA

There are four sections of group 2 data. Each section may be required or optional, depending
on the previous input, and each may have one or more input cards (lines of input). Each section
is described individually. Care must be taken to make sure the datais in the proper column.

Section one data (always required).
[1 Card - Format (8F5.2, F10.4,F5.1,F10.4,F5.1)]
(Cols.1-5) CONFIG - An arbitrary configuration designation of up to 4 digits.

2. (Cols.6-10) SCW - The number of chordwise horseshoe vortices to be used at a
spanwise station for each planform. The maximum value for thisvariableis 20. If
varying values of chordwise horseshoe vortices are desired due to either multiple
planforms or large discontinuities in chord across the span, the user can input a value of
0. that will cause the program to expect user-supplied data at this point in the input
stream. The data are in the form of atable that contains the number of chordwise
horseshoe vortices from the tip to root, and is called TBLSCW(I). This SCW=0. option
can only be used for planforms without dihedral and for coplanar configurations.

3.  (Cols.11-15) VIC - The nomina number of spanwise stations at which chordwise
horseshoe vortices will be located. This variable must not cause more than 50 spanwise
stations to be used by the program in describing the left half of the configuration. In
addition, the product of the stations spanwise and SCW cannot exceed 200. If SCW is
0., then the sum of the valuesin TBLSCW(I) cannot exceed 200. The use of variable
VIC isdiscussed inreferences 1 and 2. VIC should always be greater than, or equal to,
10. so that the near-field drag or vortex flow forces on cambered configurations can be
properly computed.

4. (Cols.16-20) MACH - Mach number; use a value other than 0.0 only if the Prandtl-
Glauert compressibility correction factor isto be applied. The value used should be
less than that of the critical Mach number.

5.  (Cols.21-25) CLDES - Desired lift coefficient, CL,d. The number specified hereis
used to obtain the span load distribution at a particular lift coefficient. If the drag polar
isrequired over aCL range from-0.1t0 1.0, use CLDES = 11.

6. (Cols.26-30) PTEST - C; indicator; if the damping-in-roll parameter is desired, use 1.0
for this quantity. Except Ror the Delta C%_and C, ., al other aerodynamic datawill be

omitted. UseaO. if C;_isnot required. The deffhition is the standard one, asin Etkin,
with units of radians pgr second:

__99
G, = O pb O

*Hu.b

7. (Cols.31-35) QTEST -CLq and Cmq indicator; if these stability derivatives are desired,
usea 1.0 for this quantity. Except for DeltaCp, CLq, and Cmq, all other aerodynamic

datawill be omitted. It should be noted that both PTEST and QTEST cannot be set
equal to 1. smultaneously for a particular configuration. UseO. if CLq and CmjI are not

required. The definition is the standard one, asin Etkin:
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8. (Cols. 36-40) TWIST(1) - Twist code for the first planform. If this planform has no
twist and/or camber, use avalue of 0.; otherwise, specify avalue of 1.

9. (Cols41-50) SA(1) - Variable sweep angle for the first planform. Specify the leading
edge sweep-angle (in degrees) for the first movable line adjacent to the fixed portion of
the planform. For afixed planform, this quantity may be omitted.

10. (Cols.51-55) TWIST(2) - same, for the second planform.
11. (Cols.56-65) SA(2) - same, for the second planform.

12. (Cols.66-70) ATPCOD - Set to 0., it will cause only linear aerodynamic results to be
printed out. Set to 1., thiswill cause the program to print out the contributions to the
lift, drag and moment from the separated flow around the leading/side edges.

Section two data is required when ATPCOD=1." This section sets up the limits of integration
used in the computations of the wing leading-edge and side-edge suction values. Normally these
limits would be the wing root and the wing tip. However, other values could be used. Note: if
section four datais used, this data may come after section four data - experiment if you try to use
this combination.

[1 Card - Format (4F10.6)]
Card 1:
1. (Cols.1-10) YINNER(1) - RepresentstheY inner for the first planform.
2.  (Cols.11-20) YOUTER(1) - RepresentstheY outer for the first planform.
3. (Cols.21-30) YINNER(2) - RepresentstheY inner for the second planform.
4  (Cols. 31-40), YOUTER(2) - Representsthe Y outer for the second planform.
Section three data is required when SCW=0. This section determines the number of span

stations for each planform, and the number of chordwise control points along each span station.
This option israrely used.

[Multiple card sets per planform - Format (F5.1,n(/16F5.1))]
Card 1:

(Cols.1-5) STA - Number of spanwise stations of horseshoe vortices on the |eft half
of the planform. This variable sets the number of TBLSCW valuesread in for that
planform.

* Watch out about the order of input if both twist and vortex lift are used. Some students have
reported problems with this. Actualy, thisis a somewhat rare calculation. Both twist and
vortex lift should be run separately to the user’ s satisfaction before they are run together.
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Cards 2-n:

(Cols. 1-5,6-10,etc) TBLSCW(I) - Number of horseshoe vortices at each spanwise
station beginning at the station nearest the tip of the planform and proceeding
toward the station nearest the root.

These sets of STA and TBLSCW(I) cards are repeated for each planform. The sum of all the
STA values cannot exceed 100.

Section four data is required for any planform having a nonzero value for TWIST(Il). This
section determines the mean camber line slopes or angles of attack across the planform. Be care-
ful here. Experience has shown that students find the proper input of this datato be very tricky.

[Multiple cards per planform - Format (8F10.6,n(8F10.6))]

(Cols.1-10,11-20,etc.) ALP - Local streamwise angles of attack, eg. camber or flap
deflection, in radians. These are the values at the control point for each horseshoe vortex
on the planform when the innermost streamwise edge of the reference planform has an
angle of attack of 0. degrees. The volume of this data will usually require several input
cards. For thefirst value on thefirst card, use the local angle of attack for the horseshoe
vortex nearest the first planform leading edge at the tip; for the second value, use the
angle of attack for the horseshoe vortex immediately behind in the chordwise direction.
Continue in the same manner for the rest of the horseshoe vortices at the tip. Begin a new
card for the next inboard station and input the data in the same chordwise manner.
Repeat for all successive inboard spanwise stations on that planform. For each planform
with twist/camber, start the data on anew card and specify the data from the tip and
proceed chordwise and then inboard, as detailed above.

OUTPUT DATA

The printed results of this computer program appear in two parts: geometry data and
aerodynamic data.

GEOMETRY DATA
The geometry data are described in the order that they are found on the printout.

Thefirst group of the data describes the basic configuration: it states the numbers of lines
used to describe each planform, the root chord height, pivot position, and then lists the
breakpoints, sweep and dihedral angles, and move codes. These data are basically alisting of
input data except that the sweep angle is computed from the input.

The second group of data describes the particular configuration for which the aerodynamic
data are being computed. Included are the configuration designation, sweep position, alisting of
the breakpoints of the planform (X,Y, and Z), the sweep and dihedral angles, and the move
codes. The data are listed primarily for variable-sweep wings to provide a definition of the
planform where the outer panel sweep is different from that of the reference planform. The num-
ber of horseshoe vortices are then described. In this code a maximum of 200 vortices can be
used.

The third group of data presents a detailed description of the horseshoe vortices used to
represent the configuration. These data are listed in two sets of five columns each describing one
elemental panel of the configuration (see Figure 2) in the same order that the twist and/or camber
angles of attack are to be provided.
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Figure 2. Nomenclature used to describe the geometry of an elemntal panel.

The following items of data are presented for each elemental panel.

For set one:

1. X C/4- X location of quarter-chord at the horseshoe vortex midspan.

2. X 3C/4 - X location of three-quarter-chord at the horseshoe vortex midspan. Thisisthe
X location of the control point.

3. Y -Y location of the horseshoe vortex midspan.

4. Z - Zlocation of the horseshoe vortex midspan.

5. S- Semiwidth of horseshoe vortex.

Set two:

1. X C/4- X location of quarter-chord at the horseshoe vortex midspan. (same as set one)

2. C/4 SWEEP ANGLE - Sweep angle of the quarter-chord of the elemental panel and
horseshoe vortex.

3. DIHEDRAL ANGLE - Dihedral angle of elemental panel.

4. LOCAL ALPHA IN RADIANS - Local angle of attack in radians at control point (X @

3C/4,Y ,2).

Friday, November 17, 1995



report typos and errorsto W.H. Mason Appendix D: Programs D-47

DELTA CPAT DESIRED CL - AC, or Net Cj, normal to the surface at dihedral for
each elemental panel when thetotal liftisC, d Thisislocated across the panel as an

average. It corresponds to the incremental lift associated with the bound vortex strength
of the particular panel:

AC, xAc=AL;, where AL =pUg,l;

The fourth group of data presents the following geometric results:

7.
8.

REF.CHORD - Reference chord of the configuration.
C AVERAGE - Average chord, cav, true configuration area divided by true span.

TRUE AREA - True area computed from the configuration listed in second group of
geometry data.

REFERENCE AREA - User input reference area.
B/2 - Maximum semispan of al planforms listed in second group of geometry data.

REF. AR - Reference aspect ratio computed from the reference planform area and true
span.

TRUE AR - True aspect ratio computed from the true planform area and true span.
MACH NUMBER - Mach number.

AERODYNAMIC DATA

If PTEST = 1. or QTEST = 1. on the configuration card, then either C|p or C qand Cpy, are

computed and printed, followed by program termination. Otherwise, the aerodynamic data are
described by at least two groups of results. Thefirst is always present, but the second depends
on what is requested on the configuration card. The following items of the first group of data are
given in the order that they are found on the printout. Note that CL ALPHA, CL(TWIST),
CM/CL, CMO, CDI/CL**2 are based on the specified reference dimensions. Many of the items
that follow are for the complete configuration.

1. DESIRED CL - Desired lift coefficient, CL, d, specified in Input Data for
complete configuration.

2. COMPUTED ALPHA - Angle of attack at which the desired lift is devel oped:
CL, d/(CL ALPHA) + ALPHA at CL=0.

3. CL(WB) - That portion of desired lift coefficient developed by the planform with
the maximum span when multiple planforms are specified. When one planform is
specified, thisis the desired lift coefficient. (If two planforms have the same
span, and this value is equal to the maximum, the planform used here is the latter
oneread in).

4. CDI AT CL(WB) - Induced drag coefficient for lift coefficient in the previous
item. When two or more planforms are specified, thisis the induced drag
coefficient of only the planform with the maximum span. Thisresult is based on
the far-field solution.

5.  CDI/(CL(WB)**2) - Induced drag parameter computed from the two previous
items.
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10.

11.

12.

1/(PI* AR REF) - Induced drag parameter for an elliptic load distribution based on
reference aspect ratio.

CL ALPHA - Lift-curve slope per radian, and per degree.
CL(TWIST) - Lift coefficient due to twist and/or camber at zero angle of attack
(CL,tc).

ALPHA AT CL=0 - Angle of attack at zero lift in degrees, nonzero only when
twist and/or camber is specified.

Y CP - Spanwise distance in fraction of semispan from root chord to center of
pressure on the left wing panel.

CM/CL - Longitudinal stability parameter based on a moment center about the
reference point. Thisis the negative of the static margin:

0
CM/ CLy arer = %T
and thevalue of C,,, can befound from Cy,,, = %& CLH
Mo Mo C, Hoa Ot

CMO - Pitching-moment coefficient at CL=0.

For each spanwise station, the following data are presented; from the left tip towards the

root:

1.

2Y /B - Location of midpoint of each spanwise station in fraction of wing
semispan.

The next two columns of data describe the additional (or angle of attack) wing loading at alift
coefficient of 1. (based on the total lift achieved and the true configuration area). The third
column is the chord ratio result, and the other columns detail specific kinds of span loadings and
local centers of pressure for the configuration.

2.

3
4,
5

SL COEF - span-load coefficient, ¢c/C cay.
CL RATIO - Ratio of local lift to total lift, /C, .

C RATIO - Ratio of local chord to average chord, c/cyy.

LOAD DUE TO TWIST - Distribution of span-load coefficient due to twist and
camber at 0° angle of attack for the configuration.

ADD. LOAD AT CL= - Distribution of additional span-load coefficient re-
quired to produce zero lift when combined with lift due to twist and camber.
This distribution is computed at C ;.

BASIC LOAD AT CL=0 - Basic span-load-coefficient distribution at zero lift
coefficient. These data are the difference of the previous two columns of data.

SPAN LOAD AT DESIRED CL - Distribution of the combination of the basic
span-load and additional span-load coefficients at the desired C, .

AT CL DES- X LOCATION OF LOCAL CENT PR - The X location of the
local center of pressure for the resulting span load at C| , 4 afunction of 2Y/b.
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The other options available as group two aerodynamic data are accessed based on the values of
CLDES and ATPCOD. For instance, with CLDES=11., and ATPCOD=0.0, the program will
produce adrag polar, CDI at CL(WB) versus CL(WB), based on the linear aerodynamicsin the
middle of the first part of group one aerodynamic data. This, and other combinations, are given
in the table below, along with their purposes:

Next, the induced drag, leading-edge thrust, and suction coefficient characteristics at each
spanwise station are computed from a near-field solution for the total loading at CL,d and
presented.

2y/b - the spanwise |ocation for these results

L.E. SWEEP ANGLE - Leading-edge sweep angle in degrees.
CDII C/2B - Nondimensional section induced-drag-coefficient term.
CT C/2B - Nondimensional section leading-edge thrust-coefficient term.

Eal R AR

5.  CSC/2B - Nondimensional section leading-edge suction in coefficient term.
Next, the total coefficients are given:
CDII/CL**2 -  Total drag coefficient over (CL,d)**2.
CT - Total leading-edge thrust coefficient.
CS- Total leading-edge suction coefficient.

Additional printout is produced for vortex flows. In particular, Kp and Kv values, and
respective centroids in both chordwise and spanwise directions, and the associated limits of
integration for the leading- edge and side-edge values of Kv. (The item entitled "Sum of the
positive side edge contributions" which appears here on the printout is indicative of the
contribution to the side-edge forces for that particular planform which were oppositely-signed to
those that contributed in a manner to increase Kv,se. The value of Kv,se does contain these posi-
tive contributions provided the sweep angleis positive. They should not be, and therefore are
not added in for the planform with a swept forward leading edge). Furthermore, aerodynamic
performance values for each planform and for the entire configuration will be listed over an
angle of attack range by the use of the Polhamus Suction Analogy. The headings are explained
below: See the references for detailed explanations of these terms.

KP Kp

KVLE Kv,le

KV SE Kv,se

ALPHA a

CN CN,tot

CLP CL,p

CLVLE CL,vle

CLVSE Kv,se |sina| |[sina| cosa

CMP pitching-moment coefficient dueto CL,p
CMVLE pitching-moment coefficient due to CL,vle
CMVSE pitching-moment coefficient due to CL ,vse
CM total pitching moment

CD CL tot x tana

CL**2/(PI*AR)  (CLtot)? /(Pi* (Aspect Ratio))

Friday, November 17, 1995



D-50 Applied Computational Aerodynamics

SAMPLE INPUT, - as developed by Bob Narducci to investigate the Y F-23.

YF- 23 Fl aps Down

2. 1. 26. 8917 950. 0 0.0
6.0 0. 0. 0

37. 80 0.0 0.0 1.

22.73 -4.35 0. 1.

14. 69 -4.35 0. 1

00.11 -21.75 0. 1
-03. 24 -21.75 0. 1
-14. 96 -7.86 0. 1
-14.96 0.
8. 0. 0. 0
-14. 96 0. 0. 1.
-14. 96 -7.86 43. 1.
-22.00 -16. 90 0. 1.
-24.51 -16. 90 43. 1.
-29.50 -10.71 43. 1.
-27.02 -7.86 0. 1.
-28. 36 -6.86 0. 1.
-25. 68 -3.85 0. 1.
-29.20 0.
23. 6. 13. .30 .53 0. 0. 0. 0. 1. 0. 0
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 1745 . 1745 . 1745 . 1745 . 1745 . 1745
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000
. 0000 . 0000 . 0000 . 0000 . 0000 . 0000

SAMPLE OUTPUT: The output is lengthy, but included here to help students check their codes.
Thisiswhat shows up on the screen:

enter nane of data set: yf23.in
enter nanme of output file: yf23out. nanual

all output is routed to disk file

conputing may take quite sone tine

STCP
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The output file yf23out.manual is:

vortex lattice aerodynani c conputation program
nasa-lrc no. a2794 by j.e. lamar and b.b. gloss

nodi fied for watfor77 with 72 col um out put
YF-23 Fl aps Down
geonetry data

first reference planformhas 6 curves

center of gravity = 0. 00000
root chord height = 0. 00000
vari abl e sweep pivot position x(s) = 0. 00000 y(s) = 0. 00000

break points for the reference planform

poi nt X y sweep di hedr al nove
r ef r ef angl e angl e code
1 37.80000 0. 00000 73. 89906 0. 00000 1
2 22. 73000 - 4. 35000 90. 00000 0. 00000 1
3 14. 69000 - 4. 35000 39. 96069 0. 00000 1
4 0.11000 -21.75000 90. 00000 0. 00000 1
5 -3.24000 -21.75000 -40.15675 0. 00000 1
6 -14.96000 -7.86000 0. 00000 0. 00000 1
7 -14.96000 0. 00000

second reference planformhas 8 curves

center of gravity = 0. 00000
root chord height = 0. 00000
vari abl e sweep pivot position x(s) = 0.00000 y(s) = 0. 00000
break points for the reference planform
poi nt X y sweep di hedr al nove
ref ref angl e angl e code
1 -14. 96000 0. 00000 0. 00000 0. 00000 1
2 -14. 96000 -7.86000 37.91007 43. 00000 1
3 -22.00000 -16.90000 90. 00000 0. 00000 1
4  -24.51000 -16.90000 -38.87364 43. 00000 1
5 -29.50000 -10.71000 41.02898 43. 00000 1
6 -27.02000 -7.86000 -53.26718 0. 00000 1
7 - 28. 36000 - 6. 86000 41. 68077 0. 00000 1
8 - 25. 68000 -3.85000 -42.43623 0. 00000 1
9 -29. 20000 0. 00000
1
configuration no. 23.
curve 1 is swept 73.89906 degrees on planform 1
curve 1 is swept 0. 00000 degrees on planform 2
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poi nt

37.
24,
22,
14.
12.

-3.
-14.
-14.

RPOOWO~NOURA,WNE
(o]

o

QUOWO~NOUITAWNE

[N

168 horseshoe vortices used on the |eft

static |ongitudinal

panel
no.

~NOoO P WNE

-14.
-14.
-14.
-22.
- 24,
- 29.
- 27.
- 28.
- 25.
-29.

80000
46218
73000
69000
58679
. 36076
. 17397
. 11000
24000
96000
96000

96000
96000
96000
00000
51000
50000
02000
36000
68000
20000

break points for

0. 00000
- 3. 85000
-4. 35000
-4, 35000
- 6. 86000
-10. 71000
-16. 90000
-21. 75000
-21. 75000
-7.86000

0. 00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

COLLLLLLLeo

this configuration

sweep
angl e

73.
73.
90.
39.
39.
39.
39.
90.
- 40.
0.

89906
89906
00000
96069
96069
96069
96069
00000
15676
00000

second pl anf orm breakpoi nts

0. 00000
-4, 35000
-7.86000
-16. 90000
-16. 90000
-10. 71000
-7.86000
- 6. 86000
- 3. 85000

0. 00000

pl anf orm

1
2

CooCOoON®®POOO

. 00000
. 00000
00000
42994
42994
65767
00000
. 00000
. 00000
00000

t ot al

90
78

0.

0.
37.
90.
- 38.
41.
- 53.
41.
-42.

00000
00000
91007
00000
87364
02898
26718
68077
43624

spanw se

15
13

di hedr al
angl e

ocooo0000000

00000
00000
00000
00000
00000
00000
00000
00000
00000

. 00000

. 00000
. 00000
43.
. 00000
43.
43.
. 00000
. 00000
. 00000

00000

00000
00000

6. horseshoe vortices in each chordw se row

X
cl/4

0.61276
-0. 18004
-0.97284
-1.76564
-2.55845
- 3. 35125

1. 89745

aerodynani ¢ data

configuration no.

X
3c/4

0. 21636
-0.57644
-1.36924
-2.16204
-2.95485
-3. 74765

1.26658

Friday, November 17, 1995

y

-20.91346
-20. 91346
-20. 91346
-20. 91346
-20. 91346
-20. 91346
-19. 24039

23.

z

. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

QOO OO0OO0O0O

aerodynam c coefficients are conmputed

. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654

QOO OO0OO0O0O

nove
code

RPRRPRRRRPRRRR

RPRRPRRRPERR

hal f of the configuration
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8 0. 63571 0. 00484 -19. 24039 0. 00000 0. 83654
9 - 0. 62603 -1. 25690 -19. 24039 0. 00000 0. 83654
10 -1.88776 -2.51863 -19. 24039 0. 00000 0. 83654
11 - 3. 14950 - 3. 78037 -19. 24039 0. 00000 0. 83654
12 -4.41124 -5.04211 -19. 24039 0. 00000 0. 83654
13 3.11717 2. 26369 -17. 65192 0. 00000 0. 75192
14 1.41021 0. 55673 -17.65192 0. 00000 0. 75192
15 -0. 29675 -1. 15023 -17. 65192 0. 00000 0. 75192
16 -2.00371 -2.85719 -17. 65192 0. 00000 0. 75192
17 -3.71067 -4.56415 -17. 65192 0. 00000 0. 75192
18 -5.41763 -6.27110 -17. 65192 0. 00000 0. 75192
19 4.33688 3. 26079 -16. 06346 0. 00000 0. 83654
20 2.18470 1.10861 -16. 06346 0. 00000 0. 83654
21 0. 03253 -1. 04356 -16. 06346 0. 00000 0. 83654
22 -2.11965 -3. 19574 -16. 06346 0. 00000 0. 83654
23 -4.27183 -5.34792 -16. 06346 0. 00000 0. 83654
24 - 6. 42401 -7.50010 -16. 06346 0. 00000 0. 83654
25 5. 62157 4.31101 -14. 39038 0. 00000 0. 83654
26 3. 00046 1. 68990 -14. 39038 0. 00000 0. 83654
27 0. 37934 -0. 93122 -14. 39038 0. 00000 0. 83654
28 -2.24177 - 3. 55233 -14. 39038 0. 00000 0. 83654
29 -4.86289 -6.17345 -14. 39038 0. 00000 0. 83654
30 -7.48401 - 8. 79456 -14. 39038 0. 00000 0. 83654
31 6. 90626 5.36123 -12. 71731 0. 00000 0. 83654
32 3. 81621 2.27118 -12. 71731 0. 00000 0. 83654
33 0. 72616 - 0. 81887 -12. 71731 0. 00000 0. 83654
34 -2.36390 - 3. 90892 -12. 71731 0. 00000 0. 83654
35 -5. 45395 - 6. 99897 -12. 71731 0. 00000 0. 83654
36 - 8. 54400 -10. 08903 -12. 71731 0. 00000 0. 83654
37 7.99810 6. 25380 -11. 29539 0. 00000 0. 58538
38 4.50950 2.76521 -11. 29539 0. 00000 0. 58538
39 1. 02091 -0. 72339 -11. 29539 0. 00000 0. 58538
40 -2.46768 -4.21198 -11. 29539 0. 00000 0. 58538
41 -5.95628 -7.70058 -11. 29539 0. 00000 0. 58538
42 - 9. 44487 -11. 18917 -11. 29539 0. 00000 0. 58538
43 9. 08994 7.14637 -9. 87346 0. 00000 0. 83654
44 5.20280 3. 25923 -9. 87346 0. 00000 0. 83654
45 1. 31566 -0.62790 -9. 87346 0. 00000 0. 83654
46 -2.57147 -4.51504 -9. 87346 0. 00000 0. 83654
47 - 6. 45861 - 8.40218 -9. 87346 0. 00000 0. 83654
48 -10. 34575 -12. 28931 -9. 87346 0. 00000 0. 83654
49 10. 18414 8. 04087 - 8. 44846 0. 00000 0. 58846
50 5. 89760 3. 75432 - 8. 44846 0. 00000 0. 58846
51 1. 61105 - 0. 53222 - 8. 44846 0. 00000 0. 58846
52 -2.67549 -4.81876 - 8. 44846 0. 00000 0. 58846
53 -6.96203 -9.10530 - 8. 44846 0. 00000 0. 58846
54 -11. 24857 -13. 39184 - 8. 44846 0. 00000 0. 58846
55 11. 03750 8. 77685 -7.36000 0. 00000 0. 50000
56 6.51620 4. 25554 -7.36000 0. 00000 0. 50000
57 1.99489 - 0. 26576 -7.36000 0. 00000 0. 50000
58 -2.52641 -4.78706 -7.36000 0. 00000 0. 50000
59 -7.04772 - 9. 30837 -7.36000 0. 00000 0. 50000
60 -11. 56902 -13. 82967 -7.36000 0. 00000 0. 50000
61 12. 11076 9. 75678 -6. 02346 0. 00000 0. 83654
62 7.40281 5. 04883 - 6. 02346 0. 00000 0. 83654
63 2.69485 0. 34087 - 6. 02346 0. 00000 0. 83654
64 -2.01311 -4.36709 - 6. 02346 0. 00000 0. 83654
65 -6.72107 -9. 07505 -6. 02346 0. 00000 0. 83654

Friday, November 17, 1995
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66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

-11.
13.
8.
3.
-1.
- 6.
-11.
21.
15.
9.
2.
-3.
-10.
25.
18.
11.
4,
-2.
-9.
31.
23.
15.
7.

- 0.
- 8.

42903
11855
23532
35210
53113
41435
29758
98959
56357
13756
71154
71447
14049
59691
54354
49016
43679
61659
66997
98795
82309
65823
49337
67149
83636

-13
10
5

0

-3.
- 8.
-13.
18.
12.
5.

- 0.
- 6.
-13.

22

15.
7.
0.

- 6.

-13.

27.

19.

11.
3.

-4,

-12

. 78301
. 67694
. 79371
. 91049
97274
85597
73919
77658
35056
92455
50147
92748
35350
. 07023
01685
96347
91010
14328
19666
90552
74066
57580
41094
75393
. 91879

- 6.
-4,
-4,
-4,
-4,
-4,
-4,
-4,
-4,
-4,
-4,
-4,
-4,
- 3.
- 3.
-3.
-3.
-3.
- 3.
-1.
-1.
-1.
-1.
-1.
-1.

02346
76846
76846
76846
76846
76846
76846
10000
10000
10000
10000
10000
10000
01346
01346
01346
01346
01346
01346
08846
08846
08846
08846
08846
08846

[eeololooooojolololojlooololoolololooloNeNe]

second pl anform horseshoe vortex descriptions

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
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-21.
-22.
-22.
-23.
- 23.
- 24,
- 20.
-21.
-22.
-23.
- 24,
- 25.
-19.
-21.
-22.
-23.
- 24,
- 26.
-19.
- 20.
-22.
-23.
- 25.
- 26.
-18.
- 20.
-21.
-23.
- 25.
- 27.

66854
24848
82842
40836
98830
56824
79644
69960
60276
50591
40907
31223
92434
15072
37709
60347
82984
05622
05225
60184
15143
70102
25062
80021
15451
03682
91913
80145
68376
56607

-21.
-22.
-23.
-23.
- 24,
- 24,
-21.
-22.
-23.
-23.
- 24,
- 25.
- 20.
-21.
-22.
- 24,
- 25.
- 26.
-19.
-21.
-22.
- 24,
- 26.
- 27.
-19.
- 20.
-22.
- 24,
- 26.
- 28.

95851
53845
11839
69833
27827
85822
24802
15118
05434
95749
86065
76381
53753
76390
99028
21665
44303
66940
82704
37664
92623
47582
02541
57500
09567
97798
86029
74260
62491
50722

- 16.
- 16.
-16.
-16.
-16.
- 16.
- 15.
- 15.
- 15.
- 15.
-15.
- 15.
-13.
-13.
-13.
-13.
-13.
-13.
-12.
-12.
-12.
-12
-12.
-12.
-11.
-11.
-11.
-11.
-11
-11.

28819
28819
28819
28819
28819
28819
06458
06458
06458
06458
06458
06458
84097
84097
84097
84097
84097
84097
61736
61736
61736

. 61736

61736
61736
35778
35778
35778
35778

. 35778

35778

-7.
-7.
-7.
-7.
-7.
-7.
- 6.
- 6.
- 6.
- 6.
- 6.
- 6.
-5.
-5.
-5.
-5.
- 5.
-5.
-4,
-4,
-4,
-4,
-4,
-4,
-3.
-3.
- 3.
- 3.
- 3.
-3.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

85942
85942
85942
85942
85942
85942
71838
71838
71838
71838
71838
71838
57735
57735
57735
57735
57735
57735
43631
43631
43631
43631
43631
43631
26173
26173
26173
26173
26173
26173

PRPRRPPRPPRPPRPOOO0OO0OO0OO0C000000000000O0

eleolololoolojoooojololoololololoNololololololoNoloNoNe]

. 83654
. 41846
. 41846
. 41846
. 41846
. 41846
. 41846
. 25000
. 25000
. 25000
. 25000
. 25000
. 25000
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 08846
. 08846
. 08846
. 08846
. 08846
. 08846

. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 83654
. 88572
. 88572
. 88572
. 88572
. 88572
. 88572
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121 -17.21404 -18.23609 -10.09819 -2.08715 0. 83654
122 -19.25814  -20.28019 -10.09819 -2.08715 0. 83654
123 -21.30224  -22.32430 -10.09819 -2.08715 0. 83654
124  -23.34634 -24.36839 -10.09819 -2.08715 0. 83654
125  -25.39045 -26.41250 -10.09819 -2.08715 0. 83654
126  -27.43455  -28.45660 -10.09819 -2.08715 0. 83654
127 -16.09888 -17.11008 -8.67319 -0. 75832 1.11190
128 -18.12127  -19.13247 -8.67319 -0. 75832 1.11190
129  -20.14366  -21.15486 -8.67319 -0. 75832 1.11190
130 -22.16605 -23.17725 -8.67319 -0. 75832 1.11190
131 -24.18844  -25.19963 -8.67319 -0. 75832 1.11190
132  -26.21083 -27.22202 -8.67319 -0. 75832 1.11190
133  -15.49042 -16.55125 -7.36000 0. 00000 0. 50000
134 -17.61208 -18.67292 -7. 36000 0. 00000 0. 50000
135 -19.73375  -20.79458 -7.36000 0. 00000 0. 50000
136 -21.85542 -22.91625 -7.36000 0. 00000 0. 50000
137 -23.97708 -25.03792 -7.36000 0. 00000 0. 50000
138 -26.09875 -27.15958 -7.36000 0. 00000 0. 50000
139 -15.48730 -16.54190 -6. 02346 0. 00000 0. 83654
140 -17.59650 -18.65109 -6. 02346 0. 00000 0. 83654
141  -19.70569 -20.76029 -6. 02346 0. 00000 0. 83654
142  -21.81489 -22.86949 -6. 02346 0. 00000 0. 83654
143  -23.92408 -24.97868 -6. 02346 0. 00000 0. 83654
144  -26.03328 -27.08788 -6. 02346 0. 00000 0. 83654
145  -15.44074 -16.40222 -4.76846 0. 00000 0. 41846
146  -17.36370 -18.32518 -4.76846 0. 00000 0.41846
147  -19.28666  -20.24814 -4.76846 0. 00000 0.41846
148 -21.20962 -22.17110 -4.76846 0. 00000 0. 41846
149  -23.13258 -24.09406 -4.76846 0. 00000 0.41846
150 -25.05555 -26.01703 -4.76846 0. 00000 0. 41846
151  -15.41594  -16.32782 -4.10000 0. 00000 0. 25000
152 -17.23971  -18.15159 -4.10000 0. 00000 0. 25000
153 -19.06347 -19.97536 -4.10000 0. 00000 0. 25000
154  -20.88724  -21.79912 -4.10000 0. 00000 0. 25000
155 -22.71100 -23.62289 -4.10000 0. 00000 0. 25000
156  -24.53477  -25.44665 -4.10000 0. 00000 0. 25000
157 -15.43854 -16.39561 -3. 01346 0. 00000 0. 83654
158 -17.35267 -18.30974 -3.01346 0. 00000 0. 83654
159 -19.26681 -20.22388 -3. 01346 0. 00000 0. 83654
160 -21.18095 -22.13802 -3. 01346 0. 00000 0. 83654
161  -23.09509 -24.05216 -3. 01346 0. 00000 0. 83654
162 -25.00923 -25.96630 -3. 01346 0. 00000 0. 83654
163 -15.51187 -16.61560 -1. 08846 0. 00000 1. 08846
164 -17.71934  -18.82308 -1.08846 0. 00000 1. 08846
165 -19.92681  -21.03055 -1.08846 0. 00000 1. 08846
166  -22.13429  -23.23802 -1.08846 0. 00000 1. 08846
167 -24.34176  -25. 44550 -1. 08846 0. 00000 1. 08846
168  -26.54923  -27.65297 -1. 08846 0. 00000 1. 08846
panel X cl4 di hedr al | ocal delta
no. sweep angl e al pha cp at
angl e in rad cl=

1 0.61276 37.51921 0. 00000 0. 00000 1. 93466

2 -0. 18004 25. 99276 0. 00000 0. 00000 0.80132

3 -0.97284 11. 71110 0. 00000 0. 00000 0. 44417

4 -1. 76564 -4.17472 0. 00000 0. 00000 0. 26877

5 -2.55845  -19.45708 0. 00000 0. 00000 0.16716
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
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- 3.
1
0.

- 0.

-1.

-3.

-4,
3.
1.

- 0.

-2.

-3.

-5.
4,
2.
0.

-2.

-4,

- 6.
5.
3.
0.

-2.

-4,

-7.
6.
3.
0.

-2.

-5.

- 8.
b
4,
1.

-2.

-5.

-9.
9.
5.
1.

-2.

- 6.

-10.

10.
5.
1.

-2.

- 6.

-11.

11
6.
1.

-2.

-7.

-11.

12.
7
2.

35125
89745
63571
62603
88776
14950
41124
11717
41021
29675
00371
71067
41763
33688
18470
03253
11965
27183
42401
62157
00046
37934
24177
86289
48401
90626
81621
72616
36390
45395
54400

. 99810

50950
02091
46768
95628
44487
08994
20280
31566
57147
45861
34575
18414
89760
61105
67549
96203
24857

. 03750

51620
99489
52641
04772
56902
11076

. 40281

69485

-32

37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
37.
25.
11.
-4,
-19.
-32.
38.
33.
27.
21.
13.
5.
38.
33.
27.

. 35670
51921
99275
71110
17472
45708
35670
51921
99276
71110
17472
45708
35670
51921
99276
71110
17472
45708
35670
51921
99275
71110
17472
45708
35670
51921
99275
71110
17472
45708
35670
51921
99275
71110
17472
45708
35670
51922
99276
71110
17472
45708
35669
51921
99276
71110
17472
45708
35670
76506
55879
64136
00937
73368
97943
76506
55879
64136

cleolojojoololololoolololoolololojlolololololololololoolololojlololololoolojloolooloJolojolololojololololNoNoNoNe)

. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

ceolojojoololololoojololojolololojlololololololololololololoojloolololoolojlololooloolojololololololololoNoNoNe]

. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

ceolojojooolololoolololol Jololololoh Jeololololo) Jeollolololol Jeolojlololol Jololololo) Jolololojo} JeojllololoNoN o]

. 09160
. 76990
. 76368
. 45451
. 28471
. 17716
. 09637
. 61448
. 70163
. 42928
. 27496
. 17320
. 09524
. 47893
. 65076
. 40415
. 26327
. 16857
. 09444
. 35651
. 60063
. 37829
. 25096
. 16475
. 09603
. 25084
. 55670
. 35540
. 24065
. 16334
. 10177
. 17259
. 52388
. 33913
. 23444
. 16514
. 11344
. 10114
. 49372
. 32473
. 22932
. 16777
. 13011
. 03049
. 46250
. 31155
. 22487
. 17004
. 15708
. 99032
. 44531
. 30956
. 22725
. 17350
. 18265
. 95236
. 43009
. 31413
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64 -2.01311 21. 00937 0. 00000 0. 00000 0.23344
65 -6. 72107 13. 73368 0. 00000 0. 00000 0.17482
66  -11.42903 5. 97943 0. 00000 0. 00000 0. 20034
67 13. 11855 38. 76506 0. 00000 0. 00000 0. 88945
68 8. 23532 33. 55879 0. 00000 0. 00000 0. 42661
69 3. 35210 27. 64136 0. 00000 0. 00000 0. 33185
70 -1.53113 21. 00937 0. 00000 0. 00000 0. 23456
71 -6.41435 13. 73368 0. 00000 0. 00000 0. 15684
72  -11.29758 5. 97943 0. 00000 0. 00000 0. 21695
73 21. 98959 73. 23754 0. 00000 0. 00000 0. 21302
74 15. 56357 69. 96743 0. 00000 0. 00000 0. 38221
75 9. 13756 65. 21040 0. 00000 0. 00000 0. 38601
76 2.71154 57. 79776 0. 00000 0. 00000 0. 29039
77 -3.71447 45, 29755 0. 00000 0. 00000 0. 25414
78  -10.14049 23.41484 0. 00000 0. 00000 0.19888
79 25.59691 73. 23754 0. 00000 0. 00000 0. 28844
80 18. 54354 69. 96743 0. 00000 0. 00000 0.19152
81 11. 49016 65. 21040 0. 00000 0. 00000 0. 36631
82 4.43679 57. 79776 0. 00000 0. 00000 0. 30348
83 -2.61659 45. 29755 0. 00000 0. 00000 0. 23120
84 -9. 66997 23. 41484 0. 00000 0. 00000 0. 20109
85 31. 98795 73. 23754 0. 00000 0. 00000 0.21732
86 23. 82309 69. 96743 0. 00000 0. 00000 0.16858
87 15. 65823 65. 21040 0. 00000 0. 00000 0. 25630
88 7.49337 57. 79776 0. 00000 0. 00000 0. 30933
89 -0. 67149 45. 29755 0. 00000 0. 00000 0.23234
90 - 8. 83636 23. 41482 0. 00000 0. 00000 0.19074
second pl anf orm horseshoe vortex descriptions
91 -21.66854 35. 47837 43. 00000 0.17450 2.07234
92  -22.24848 24. 15973 43. 00000 0.17450 0. 86344
93  -22.82842 10. 44929 43. 00000 0.17450 0. 50181
94  -23.40836 -4.55831 43. 00000 0.17450 0. 31432
95 -23.98830 -18.97688 43. 00000 0.17450 0.19781
96 -24.56824  -31.30072 43. 00000 0.17450 0.10867
97  -20.79644 35. 47836 43. 00000 0.17450 1.86622
98 -21.69960 24. 15975 43. 00000 0.17450 0. 79905
99  -22.60276 10. 44927 43. 00000 0.17450 0. 48369
100 -23.50591 -4.55835 43. 00000 0.17450 0. 31020
101  -24.40907 -18.97688 43. 00000 0.17450 0. 19537
102  -25.31223 -31.30072 43. 00000 0.17450 0.10614
103  -19.92434 35. 47837 43. 00000 0.17450 1.62276
104  -21.15072 24. 15975 43. 00000 0.17450 0. 69665
105 -22.37709 10. 44928 43. 00000 0.17450 0. 42654
106  -23.60347 -4.55832 43. 00000 0.17450 0. 27531
107 -24.82984  -18.97687 43. 00000 0.17450 0.17295
108 -26.05622 -31.30070 43. 00000 0.17450 0. 09307
109  -19.05225 35. 47837 43. 00000 0.17450 1. 39650
110 -20.60184 24. 15974 43. 00000 0.17450 0. 60027
111 -22.15143 10. 44929 43. 00000 0.17450 0. 36950
112 -23.70102 -4.55834 43. 00000 0.17450 0. 23890
113 -25.25062 -18.97689 43. 00000 0.17450 0. 14921
114  -26.80021  -31.30070 43. 00000 0.17450 0. 07915
115  -18.15451 35. 47837 43. 00000 0.17450 1.17860
116  -20. 03682 24. 15975 43. 00000 0.17450 0. 50846
117  -21.91913 10. 44929 43. 00000 0.17450 0. 31541
118 -23.80145 -4.55835 43. 00000 0.17450 0. 20462
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119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

-25. 68376
-27. 56607
-17. 21404
-19. 25814
-21. 30224
-23. 34634
- 25. 39045
-27.43455
-16. 09888
-18. 12127
-20. 14366
-22.16605
-24.18844
-26. 21083
-15. 49042
-17.61208
-19. 73375
-21. 85542
-23.97708
-26. 09875
-15. 48730
-17. 59650
-19. 70569
-21. 81489
-23.92408
-26.03328
-15. 44074
-17. 36370
-19. 28666
-21. 20962
-23.13258
- 25. 05555
-15. 41594
-17.23971
-19. 06347
-20. 88724
-22.71100
-24.53477
-15. 43854
-17. 35267
-19. 26681
-21. 18095
-23. 09509
-25.00923
-15. 51187
-17.71934
-19. 92681
-22.13429
-24.34176
- 26. 54923

ref. chord
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26. 89170

b/ 2
21. 75000

-18
-31

38.
38.
39.
39.
40.
40.
38.
38.
39.
39.
40.
40.
- 3.
- 15.
- 26.
- 35.
-43.
-49.
2.
10.
18.
25.
32.
37.
2.
10.
18.
25.
32.
37.
2.
10.
18.
25.
32.
37.
-2.
-10.
-18.
- 26.
-32.
- 38.
-2.

-10
-18
- 26
-32
-38

. 97689
. 30071
04567
58307
11254
63417
14806
65429
04567
58307
11254
63417
14806
65429
19570
59796
67953
97340
50610
53985
12462
50852
46350
74715
23863
92108
12462
50851
46349
74714
23862
92108
12462
50852
46350
74714
23864
92108
18164
78430
92465
34637
92787
65982
18164
. 78430
. 92465
. 34637
. 92787
. 65981

C average

31

. 36179

ref. ar

1

. 99184

43.
43.
43.
43.
43.
43.
43.
43.
43.
43.
43.
43.
43.
43.
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

[eeolololooNoololoololooololooloNoloojololololololololololoNoNeNe)

true area
1364. 23767

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

true ar
1.38704

eeololololoolojololololooololololololoojlolololojlolololoolololoolojololololololojlolololoNoNoNo)

. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 17450
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

eeololololoolojololololooolololololololojlolololojlolololoolololoolojloololololololololoNol oo

950. 00000

. 12671
. 06503
. 01268
. 44608
. 28734
. 19345
. 12395
. 06535
. 83667
. 39566
. 27313
. 19673
. 13605
. 07985
. 56637
. 42340
. 31785
. 23703
. 16547
. 09394
. 38372
. 33354
. 27610
. 21449
. 15167
. 08438
. 34990
. 29853
. 25906
. 21134
. 15849
. 09723
. 35024
. 28116
. 24782
. 20712
. 16006
. 10421
. 32319
. 24905
. 22019
. 18542
. 14319
. 09029
. 29260
. 22016
. 19116
. 15602
. 11287
. 06313

ref erence area

mach nunber
0. 30000
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conpl ete configuration
[ift i nduced drag(far field sol ution)
cl conput ed al pha cl (wb) cdi at cl (wb) cdi/ (cl (wb)**2)

0. 5300 7.6834 0. 3851 0. 0238 0. 1608

conpl ete configuration characteristics
cl al pha cl(twist) alpha y cp cm cl cno
per rad per deg at cl =0
3.11731 0.05441 0.11197 -2.05798 -0.42053 0.06834 -0.07080

addi ti onal | oading

with cl based on s(true) -at cl des-
| oad add. basic span x | oc
dueto | oad | oad | oad of

stat 2y/b sl cl c twist at cl at cl at cl |ocal
coef ratio ratio = = desir cent of

0.112 0 press
1-0.962 0.310 2.045 0.152 0.003 0.024 -0.021 0.094 -0.162
2 -0.885 0.471 1.950 0.241 0.006 0.037 -0.031 O0.143 0. 575
3 -0.812 0.588 1.802 0.327 0.008 0.046 -0.038 0.179 1.273
4 -0.739 0.687 1.669 0.412 0.010 0.054 -0.044 0.210 1.949
5-0.662 0.775 1.545 0.501 0.012 0.060 -0.048 0.238 2. 630
6 -0.585 0.850 1.438 0.591 0.016 0.066 -0.051 O0.263 3. 257
7 -0.519 0.909 1.362 0.667 0.019 0.071 -0.052 0.284 3.709
8 -0.454 0.963 1.295 0.744 0.023 0.075 -0.052 0.303 4.081
9 -0.388 1.011 1.233 0.820 0.028 0.079 -0.051 0.322 4.316
10 -0.338 1.046 1.209 0.865 0.031 0.082 -0.050 0.336 4.526
11 -0.277 1.075 1.193 0.901 0.033 0.084 -0.051 0.346 5. 045
12 -0.219 1.092 1.168 0.934 0.034 0.085 -0.052 0.351 5. 530
13 -0.189 1.100 0.895 1.229 0.033 0.086 -0.053 0.353 6. 950
14 -0.139 1.109 0.822 1.349 0.033 0.086 -0.053 0.356 8.812
15 -0.050 1.117 0.715 1.562 0.033 0.087 -0.054 0.358 11.245

contribution of the second planformto span | oad distribution

16 -0.749 0.116 1.047 0.111 0.041 0.009 0.032 0.075 -22.261
17 -0.693 0.164 0.948 0.173 0.061 0.013 0.048 0.108 -21.759
18 -0.636 0.189 0.806 0.235 0.073 0.015 0.059 0.129 -21.242
19 -0.580 0.200 0.676 0.296 0.082 0.016 0.066 0.140 -20.719
20 -0.522 0.200 0.555 0.360 0.086 0.016 0.070 O0.144 -20.183
21 -0.464 0.187 0.479 0.391 0.084 0.015 0.070 0.139 -19.541
22 -0.399 0.164 0.423 0.387 0.076 0.013 0.063 0.124 -18.709
23 -0.338 0.174 0.429 0.406 0.071 0.014 0.058 0.122 -18.903
24 -0.277 0.148 0.366 0.404 0.054 0.012 0.043 0.097 -19.224
25 -0.219 0.133 0.363 0.368 0.045 0.010 0.035 0.084 -19.037
26 -0.189 0.128 0.366 0.349 0.041 0.010 0.031 0.079 -18.872
27 -0.139 0.124 0.339 0.366 0.038 0.010 0.028 0.074 -19.025
28 -0.050 0.126 0.297 0.422 0.036 0.010 0.027 0.073 -19.428
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i nduced drag, | eadi ng edge thrust , suction coefficient characteristics
conputed at the desired cl froma near field solution

section coefficients

l.e. sweep
station 2yl b angl e cdii c/2b ct c/2b cs ¢/ 2b
1 -0.96154  39. 96069 0. 00412 0. 00085 0. 00111
2 -0.88462  39.96069 0. 00182 0. 00507 0. 00661
3 -0.81158  39.96069 0. 00042 0. 00821 0. 01071
4 -0.73855 39.96069 0. 00101 0. 00912 0. 01190
5 -0.66163  39.96069 0. 00187 0. 00962 0. 01255
6 -0.58470  39.96069 0. 00286 0. 00985 0.01285
7 -0.51933  39.96069 0. 00392 0. 00978 0. 01276
8 -0.45395 39.96069 0. 00499 0. 00967 0.01261
9 -0.38844  39.96069 0. 00581 0. 00975 0. 01272
10 -0.33839  39.96069 0. 00675 0. 00940 0. 01226
11 -0.27694  39. 96069 0. 00795 0. 00872 0.01138
12 -0.21924  39. 96069 0. 00884 0. 00813 0. 01389
13 -0.18851  73.89906 0. 00974 0. 00733 0. 02002
14 -0.13855  73.89906 0. 01161 0. 00557 0. 02009
15 -0. 05004  73.89906 0.02071 -0.00342 -0.01233

contribution of the second planformto the chord or drag force

16 -0.74888  37.91007 0. 00645 0. 00292 0. 00370
17 -0.69262  37.91007 0. 00477 0. 00715 0. 00906
18 -0. 63637  37.91007 0. 00430 0. 00984 0. 01247
19 -0.58011  37.91007 0. 00588 0. 00953 0. 01208
20 -0.52220 37.91007 0. 00755 0. 00832 0. 01054
21 -0.46428  37.91007 0. 00901 0. 00640 0. 00812
22 -0.39877  37.91007 0. 00956 0. 00324 0. 00400
23 - 0. 33839 0. 00000 0. 00665 0. 00124 0. 00128
24 -0.27694 0. 00000 0. 00449 0. 00034 0. 00034
25 -0. 21924 0. 00000 0. 00408 0. 00003 0. 00003
26 -0. 18851 0. 00000 0.00389 -0.00001 -0.00001
27 -0. 13855 0. 00000 0. 00361 0. 00002 0. 00002
28 - 0. 05004 0. 00000 0. 00331 0. 00022 0. 00022
total coefficients
cdii/cl**2= 0.15439 ct=  0.04177 cs= 0.05673
1
end of file encountered after configuration 23.
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E.1FOILGEN

This program is used for airfoil geometry generation. For airfoils with analytically defined ordi-
nates, this program produces airfoil definition data sets in the format required for PANELv2.
This includes NACA 4-digit, 4-digit modified and 5-digit airfoils. In addition, the NACA 6 and
6A camber lines are available. The user can combine any combination of thickness and camber
lines available within these shapes. This provides a wide range of airfoil definitions. The pro-
gram runsinteractively, and a sample terminal session is provided here to illustrate its use.

From terminal session:

NACA Airfoil Odinate Generation
WH. Mason, March 15, 1992

Thi ckness Distribution Options:

1 - NACA 4 Digit Series
2 - NACA Modified 4 Digit Series

Select 1 or 2 :2

| nput Max Thickness, T/C =.18
X/ C Position of Max Thickness =.4
| nput | eadi ng edge paraneter:

Choose values from0O to 9 -
(6 is the 4 Series value) 7

Leadi ng Edge Radius, rle/C = 0.04859

Trailing Edge Angle is 31.60 degrees
[this is the TOTAL included angl €]

Canber Distribution Options:
1 - NACA 4 Digit Series
2 - NACA 5 Digit Series
3 - NACA 6 & 6A Series
Select 1,2 or 3: 3
Design Lift Coefficient = .2
Input X/ C for constant |oading, A= .8
6A-series canber line ? (Y/N:y

Choose output option :

1 - Point by point
2 - Distribution

Select 1 or 2:2

Sel ect type of distribution:
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1 - Even Spacing
2 - Full Cosine

(Concentrated at both LE & TE)
3 - Half Cosine

(Concentrated at LE)

Choose 1, 2, or 3 :1

Nunber of points in distribution,
(131 maxi mum =21

| XIC YT/C DYT/X YOJC DYCC XUC% YUY XL/C% YL C(%
1 0.0000 0.0000 99.9999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0500 0.0529 0.3774 0.0036 0.0543 4.7133 5.6407 5.2867 -4.9195
3 0.1000 0.0665 0.2020 0.0060 0.0412 9.7259 7.2420 10.2741 -6.0498
4 0.1500 0.0747 0.1343 0.0078 0.0331 14.7529 8.2487 15.2471 -6.6872
5 0.2000 0.0804 0.0969 0.0093 0.0269 19.7837 8.9702 20.2163 -7.1099
6 0.2500 0.0846 0.0706 0.0105 0.0217 24.8161 9.5086 25.1839 -7.4057
7 0.3000 0.0875 0.0478 0.0115 0.0172 29.8495 9.9018 30.1505 -7.6046
8 0.3500 0.0894 0.0249 0.0122 0.0130 34.8839 10.1599 35.1161 -7.7119
9 0.4000 0.0900 0.0000 0.0128 0.0090 39.9189 10.2786 40.0811 -7.7207

10 0.4500 0.0893 -0.0261 0.0131 0.0051 44.9543 10.2487 45.0457 -7.6202

11 0.5000 0.0874 -0.0518 0.0133 0.0012 49.9894 10.0698 50.0106 -7.4096

12 0.5500 0.0842 -0.0769 0.0133 -0.0028 55.0236 9.7439 54.9764 -7.0915

13 0.6000 0.0797 -0.1017 0.0130 -0.0071 60.0564 9.2725 59.9436 -6.6692

14 0.6500 0.0740 -0.1259 0.0125 -0.0118 65.0871 8.6561 64.9129 -6.1465

15 0.7000 0.0671 -0.1498 0.0118 -0.0172 70.1156 7.8941 69.8844 -5.5287

16 0.7500 0.0591 -0.1731 0.0108 -0.0241 75.1424 6.9835 74.8576 -4.8231

17 0.8000 0.0498 -0.1960 0.0093 -0.0361 80.1796 5.9136 79.8204 -4.0441

18 0.8500 0.0395 -0.2184 0.0072 -0.0469 85.1847 4.6629 84.8153 -3.2200

19 0.9000 0.0280 -0.2404 0.0047 -0.0480 90.1343 3.2641 89.8657 -2.3264

20 0.9500 0.0154 -0.2619 0.0023 -0.0480 95.0740 1.7693 94.9260 -1.3120

21 1.0000 0.0018 -0.2830 0.0000 0.0000 100.0000 0.1800 100.0000 -0.1800

| XIC YI/C DYT/X YOUC DYCC XUC%W YUY XL/C%W YL C(%

send output to a file? (Y/N
y

enter file nane:
testout.txt

enter file title:
NACA 18%t hick, xt=.4, 1=7, 6A series cam CLI = .2

Anot her case?
n

STOP
The disk file generated from the session shown above is:

NACA 18% thick, xt=.4, |1=7, 6A series cam CLI = .2
21. 000000 21.000000

Upper Surface

0. 000000 0. 000000

0.047133 0. 056407

0.097259 0.072420
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. 147529 0. 082487
. 197837 0.089702
. 248161 0. 095086
. 298495 0.099018
. 348839 0.101599
. 399189 0.102786
. 449543 0.102487
.499894 0.100698
. 550236 0.097439
. 600564 0.092725
. 650871 0.086561
. 701156 0.078941
. 751424 0. 069835
. 801796 0.059136
. 851847 0. 046629
. 901343 0.032641
. 950740 0.017693
000000 0.001800

ower Surface

. 000000 0.000000
. 052867 -0.049195
. 102741 -0. 060498
. 152471 -0.066872
. 202163 -0.071099
. 251839 -0.074057
. 301505 -0.076046
. 351161 -0.077119
. 400811 -0.077207
. 450457 -0.076202
. 500106 -0.074096
. 549764 -0.070915
. 599436 -0.066692
. 649129 -0.061465
. 698844 -0.055287
. 748576 -0.048231
. 798204 -0.040441
. 848153 -0. 032200
. 898657 -0.023264
. 949260 -0.013120
. 000000 -0.001800

mielelololololololoololoojololololoNoNol n JeololoNololololololoNolojloloNoNoNe]
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E.2LADSON

Thisis the NASA program that provides a reasonable approximation to the NACA 6 and 6A se-
ries airfoils. It was written by Charles Ladson and Cuyler Brooks (Ref E.2-1). Originaly it ran
on the NASA CDC computer. It has been ported to run on a personal computer (Macintosh).
Only minor modifications were made to produce a program to generate a set of ordinates in the
form required as standard input by the programs described in App. D.

The program is only an approximation to the ordinates because there is no smple algebraic for-
mula available to describe the thickness distribution. | spoke briefly to Charles Ladson some
years ago, and he said that he thought it would be impossible to generate a more accurate pro-
gram. When he was doing this work he investigated the availability of more detailed notes on
these airfoils and discovered that all the records have been destroyed. The only information
available is that contained in the actual NACA reports. However, this program is much more ac-
curate than attempts to simulate the 6 and 6A series thickness envelope by using a modified
NACA 4-digit airfoil formula. The program was developed to handles thicknesses from 6 to 15
percent.

Figure E.2-1 compares the program predictions with the official ordinates - which are given in
Ref E.2-2, for 64-series airfails. If the thickness distribution could be obtained by scaling a refer-
ence airfoil, each curve would be a straight flat line. Note especially that below thickness of
around six percent the program deviates significantly from the tabulated values.

One other possible problem is the value at the trailing edge. Originally further processing was re-
quired to find the value. The program was modified to linearly extrapolate the values near the
trailing edge to get the final values. This was the approach recommended by Ladson. This is
done in the new routine added to generate the file of points, stdout. The user should check this
approximation if the results appear to be in error at the trailing edge.

References

E.2-1. Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for NACA 6- and 6A-Series Airfoils,” NASA TM X-3069, Sept., 1974.

E.2-2. Patterson, E.W., and Braslow, A.L., “Ordinates and Theoretical Pressure Distribution
Datafor NACA 6- and 6A- Series Airfoil Sections with Thicknesses from 2 to 21 and
from 2 to 15 Percent Chord Respectively,” NASA R-84, 1961.
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0328 —————— —o— VYit, at x/c=0.1000 %Tabulated) i
0.326 [ QU —8 - y/t, at x/c =0.1000 (Pgm value) |]
y/t 0324 [ AN -
0322 [ o g—0 fﬁre ]
0820 Lo B5 e e -
5 10 15
Max t/c, %
a x/c=0.10
Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values.
0292 ————+—— —o— V/t, a x/c = 0.0750 %Tabulated) i
8 —a - Y/, a x/c=0.0750 (Pgm value)
0.288 a .
yit I
0.284
020 L~ v v b b
5 10 15
Max t/c, %
b. x/c = 0.075
0245 ——F———— —oe— Y/t, a x/c = 0.0500 %Tabulated) i
8 —a - Y/, a x/c =0.0500 (Pgm value)
0.240 & .
y/t -
0.235 ~
i 0— —8———=06— g 8 —8
020 L o v b b
0 5 10 15
Max t/c, %
c. x/c =0.050
0174 —————— —o— Y/, at x/c=0.0250 (Tabulated)
8 —a - Y/, a x/c =0.0250 (Pgm value)
| 0.172
t i
y 0.170
0.168 L
0
Max t/c, %
d. x/c = 0.025
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—o— Y/t, a x/c = 0.0125 (Tabulated)

0128 —a - Y/t a x/c=0.0125 (Pgm value)
y/t I G— N |
0.124 /_8-/ 8
o 8
0120 Lo v v v v v v v by
0 5 Max t/c, % 10 15
e x/c=0.0125

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values. (continued)

Oloo_l_l_l_m==l_=a—l L L LA "L AL L B R R R R

V! t0.095 - /9/ i

o —e— Y/t at x/c = 0.0075 (Tabulated)
A —a8 - y/t, a x/c=0.0075 (Pgm value) |

0090 Lo v v v 0 L T
0 > Max t/c, % 10 15
f. x/c = 0.0075
0.090 —o— VYI/t, at x/c = 0.0050 (Tabulated)

e —8 - y/t, at x/c=0.0050 (Pgm value) []

y/t . -

0070 Lo v v v v v b

0 5 Max t/c, % 10 15

g. x/c = 0.0050
Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values. (concluded)

Input Description

The user first creates a data file as described below. Then, the program runs interactively. It que-
ries the user for the name of the input data file. After the airfoil ordinates are found, the user is
asked for the name of the output file containing the ordinates in standard format. The file names
can be up to twenty characters long. Because the program was developed in the era of cards, it is
critically important that the input be placed in the specified column.

Tuesday, January 21, 1997



E-8 Applied Computational Aerodynamics

Card Field Variable  Description
1 2-80 TITLE Casetitle card. Any values can be used, from columns 2 to 80

2. Airfoil and camber line series designations as follows:

NACA airfoil thickness family: card designation column
63-series 63 9,10

64-series 64 9,10

65-series 65 9,10

66-series 66 9,10

67-series 67 9,10

63A-series 63A 89,10

64A-series 64A 89,10

65A-series 65A 89,10

NACA Camber line card designation column
NACA 6-series 63 19,20

64 19,20

65 19,20

66 19,20

NACA 6A-series 63A 18,19,20

64A 18,19,20

65A 18,19,20

Airfoil Parameter card (Note cards 3 to 6 are in floating point mode. Numbers are entered with a
decimal point.

3. 1-10 TOC Thickness to chord ratio of airfoil, i.e., 0.120
11-20 LER Published leading-edge radius may be entered if
desired (not used in program)
21-30 CHD model chord used for listing ordinates in dimensional units
31-40 CLI Design lift coefficient (i.e., 0.20)
set to 0.0 for asymmetrical airfoil
41-50 A mean line chordwise loading (use 0.8 for 6A-series airfoils)

51-60 CMBNMR number of mean lines to be summed, up to a max of nine
(if only one, leave blank or insert 1.0)

and as required:

Card Field Variable  Description

4. 1-10 CLI design lift for second mean line
11-20 A loading for second mean line
21-30  CLI design lift for third mean line
31-40 A loading for third mean line
41-50  CLI design lift for fourth mean line
51-60 A loading for fourth mean line
61-70  CLI design lift for fifth mean line
71-80 A loading for fifth mean line
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Card Fidld Variable Description

5. 1-10 CLI design lift for sixth mean line
11-20 A loading for sixth mean line
21-30  CLI design lift for seventh mean line
31-40 A loading for seventh mean line
41-50  CLI design lift for eighth mean line
51-60 A loading for eighth mean line
61-70  CLI design lift for ninth mean line
71-80 A loading for ninth mean line
6. 1-10 CLI design lift for tenth mean line
11-20 A loading for tenth mean line
Sample input:
NACA 65(1)213 A=0.5, CL=0. 2
65 65
0.130 0. 00 1.0 0.2 0.5 1.0
Output

The program files a'so contain the sample output of the program. Because the program was writ-
ten many years ago, it uses 133 column output, and doesn’t fit on anormal page. The output file
corresponds to the input data set given above and also available in the program files. This case
should be verified before further use of the program.

Eighty values of the upper and lower surface are contained in the disk file. The following is the
file generated from the sample input listed above. All numbers are output in 2F10.6 format.
NACA 65(1) 213 A=0.5, CL=0. 2

80. 000000 80. 000000
UPPER SURFACE

0. 000000 0.000000
0. 000294 0. 004049
0. 000862 0.005724
0.001472 0.007026
0. 002106 0.008120
0.002756 0.009078
0. 003416 0.009940
0. 004095 0.010729
0. 004801 0.011465
0. 005750 0.012363
0.006706 0.013187
0. 007668 0.013957
0.008635 0.014674
0. 009605 0.015351
0.010578 0.015999
0.013509 0.017790
0.018419 0.020432
0.023349 0.022801
0. 028292 0.024990
0.033243 0.027041
0. 038202 0.028978
0. 043167 0.030816
0.048138 0.032564
0. 053113 0.034230
0. 058093 0.035824
0. 063077 0.037355
0. 068064 0.038829
0.073053 0.040252
0.078045 0.041628
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0. 083040 0.042963
0. 088036 0.044256
0. 093035 0.045510
0. 098035 0.046725
0.108042 0.049051
0.118054 0.051242
0. 138096 0. 055281
0.158154 0.058909
0.178228 0.062180
0.198314 0.065122
0.218410 0.067761
0.238517 0.070119
0. 258632 0.072209
0.278755 0.074040
0.298885 0.075621
0. 319022 0.076953
0. 339166 0.078041
0.359316 0.078893
0. 379473 0. 079505
0. 399636 0.079849
0.419807 0.079905
0.439987 0.079653
0.460179 0.079093
0.480389 0.078208
0. 500661 0.076988
0. 520914 0.075401
0.541078 0.073489
0.561197 0.071293
0.581282 0.068840
0. 601339 0.066166
0. 621370 0.063297
0. 641379 0.060250
0.661367 0.057038
0. 681337 0.053682
0.701290 0.050202
0.721229 0.046629
0. 741156 0.042982
0.761071 0.039263
0. 780978 0.035493
0. 800877 0.031693
0.820771 0.027893
0. 840662 0.024115
0. 860553 0. 020383
0. 880445 0.016732
0.900341 0.013196
0. 920244 0.009825
0. 940156 0.006682
0. 960082 0.003866
0. 980027 0.001528
0. 990009 0.000616
1. 000000 -0.000015

LOVNER SURFACE

0. 000000 0.000000
0. 001206 -0.003782
0. 002138 -0.005234
0. 003028 -0.006330
0. 003894 -0.007228
0.004744 -0.008000
0. 005584 -0.008681
0. 006405 -0.009295
0. 007199 -0.009859
0. 008250 -0.010536
0.009294 -0.011145
0.010332 -0.011704
0.011365 -0.012216
0. 012395 -0.012692
0.013422 -0.013143
0. 016491 -0.014363
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. 021581
026651
031708
036757
041798
046833
051862
056887
061907
066923
071936
076947
081955
086960
091964
096965
101964
111958
121946
141904
161846
181772
201686
221590
241483
261368
281245
301115
320978
340834
360684
380527
400364
420192
440012
459821
479611
499339
519085
538922
558802
578717
598660
618629
638620
658632
678662
698709
718770
738843
758928
779021
799122
819228
839337
859446
879554
899658
919755
939843
959916
. 979971
. 989990
. 000000

.
C 00000000 000000000000 00000000000000000000000000000000000000

PO OO 000000000000 000000000000000000000000000000000000000000000000

[ R T
[eNeoNoloNo)
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. 016110

017640
019033
020325
021536
022676
023751
024766
025730
026652
027533
028381
029197
029988
030750
031487
032198
033552
034818
037129
039182
041014
042644
044089
045366
046480
047440
048251
048913
049428
049806
050043
050111
049996
049680
049171
048463
047570
046504
045258
043842
042267
040559
038730
036789
034743
032603
030384
028110
025795
023432
021039
018629
016226
013846
011507

. 009237
. 007062
. 005023
. 003175
. 001603
. 000444
. 000089
. 000015
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E.5BUMP

This subroutine illustrates a means of making smooth changes to airfoil shapes. It isincluded
in PANELV2. It is designed to place a “bump” on the airfoil contour. The shape change
starts gradually with zero curvature at point Xy, . The bump is setup to be asymmetric about
the bump midpoint, X,, and to blend back into the baseline shape with zero curvature at
point Xp;. However, if an asymmetric bump is used, the curvature will be discontinuous at
the bump maximum. The following plot defines the nomenclature, as well as plotting the
output of the sample main program presented below.

1.00
0.80
0.60
y . 040 B BN
mod / \
0.20 —
0.00 _——
-0.20

dtc = 0.50 |

Xbl b2 b3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x/c

The related slope and curvature are given in the next graph.

—e— d(ymod)/dx —_— d2(ymod)/dy2
£ >
f X 4 40
’[ 4 20 P
f basnasansnd () ymod
2
ﬂi&l f JE[ 1 20 dx
-3 /[ - -40
-4 - -60
] =
5 -80
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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The equation of the bump is:

dz—y”%d = —M@A%E@xd(xd ~1)(5x§ - 5xq +1)

dxg
where
_ (x=xq)
Xd_Z(XZ—Xl) X1<X<X2
or

2(x3 = X%2)

Thisfunction is often called a“cubic bump” athough it is clearly a sixth order polynomial.
The user should examine the subroutine to understand the transformation between the local

variable x; and the global variable x; .
Listing of subroutine bump.f:

subrouti ne bunp(xbl, xb2, xb3, dt c, xnax, xi n, ynod, ynodp, ynodpp)

c
c so-cal | ed cubic bump function
c
c used to make nods to aero surfaces
c
c WH. Mason, Decenber 1989
c
c xb1 - start of bunp (dinmensional)
c xb2 - location of maxi mum bunp hei ght (di mensional)
c xb3 - end of bump (dinensional)
c
c dtc - magni t ude of bunp
c Xmax - reference length of geonetry
c
c Xin - input location to get bunp val ue
c ynod - bunp hei ght
c ynmodp - first derivative of bunmp wt xin
c ynodpp - second derivative of bunp wt xin
X = Xi n/ xmax
x1 = xbl/ xmax
X2 = xb2/ xmax
x3 = xb3/ xmax
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xd
dxddx

if ( x.g

0.0
0.0

xd = (x - x1)/2.0/(x2 - x1)

dxddx = 1./2./(x2 - x1)
endi f

if ( x .gt. x2 .and. x .le. x3) then

x1 .and. x .le. x2) then

xd = (x + x3 - 2.0*x2)/2.0/(x3 - x2)

dxddx = 1./2./(x3 - x2)

endi f
ynod = -64. *dtc*xd**3*(xd - 1.0)**3
ynodp = -64. *dt c*3. 0*dxddx* xd**2*
1 (xd - 1.0)**2*(2.0*xd - 1.0)
ynodpp = -64. *dt c*6. 0*dxddx**2*xd* (xd -
1 (5.0*xd**2 - 5.0*xd + 1.0)
return
end

1.0)*

Thisis asample main program that can be used to check subroutine bump.

c
c exanpl e of use of bunp function
c this is one way to nodify an airfoi
c w. h. mason, Feb. 12, 1994
c set input paraneters

xbl =0.1

xb2 =0.4

xb3 = 0.6

dtc = 0.50

Xmax =1.0

wite(6, 90) xbil, xb2, xb3,dtc
90 format (/3x, "' bunp exanple'//

1 3x,"'xbl = "',f7.4,3x,"'xb2 =

2 "xb3 =" ,f7.4/3x,'dtc =

3 [4x,"i",7x,"x/c',7x," " delta y', 4x,
4 "d(dy)/dx' 3x,"'d2(dy)/dy2")

do 10 i = 1,101

Xc = 0.01*(i-1)

'L fT7.4, 3x,
L fT.4)

call bunp(xbl, xb2, xb3, dt ¢, xmax, xc, ynod, ynodp, ynodpp)

10 wite(6,100) i, xc,ynod, ynodp, ynodpp

100 format (i 5, 4f 12. 5)

stop
end
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sample output from the sample main program and subroutine bump.f

bunp exanpl e
xbl = 0.1000 xb2 = 0.4000 xb3 = 0.6000
dtc = 0.5000
i x/c delta y d(dy)/ dx d2(dy)/dy2
1 0. 00000 0. 00000 0. 00000 0. 00000
2 0. 01000 0. 00000 0. 00000 0. 00000
3 0. 02000 0. 00000 0. 00000 0. 00000
4 0. 03000 0. 00000 0. 00000 0. 00000
5 0. 04000 0. 00000 0. 00000 0. 00000
6 0. 05000 0. 00000 0. 00000 0. 00000
7 0. 06000 0. 00000 0. 00000 0. 00000
8 0. 07000 0. 00000 0. 00000 0. 00000
9 0. 08000 0. 00000 0. 00000 0. 00000
10 0. 09000 0. 00000 0. 00000 0. 00000
11 0. 10000 0. 00000 0. 00000 0. 00000
12 0.11000 0. 00014 0. 04154 8. 02448
13 0.12000 0. 00107 0. 15505 14. 41646
14 0. 13000 0. 00343 0. 32490 19. 31666
15 0. 14000 0. 00771 0. 53686 22. 86090
16 0. 15000 0. 01426 0. 77803 25. 18004
17 0. 16000 0. 02333 1.03680 26. 40000
18 0.17000 0. 03502 1.30277 26. 64177
19 0. 18000 0. 04938 1.56676 26. 02140
20 0. 19000 0. 06633 1. 82070 24. 65000
21 0. 20000 0. 08573 2.05761 22.63374
22 0. 21000 0.10740 2.27156 20. 07387
23 0. 22000 0.13107 2. 45760 17. 06667
24 0. 23000 0. 15645 2.61171 13. 70350
25 0. 24000 0.18319 2.73077 10. 07078
26 0. 25000 0.21094 2.81250 6. 25000
27 0. 26000 0. 23931 2. 85540 2.31770
28 0. 27000 0.26791 2.85872 -1. 65453
29 0. 28000 0. 29635 2.82240 -5. 60000
30 0. 29000 0. 32423 2.74702 -9. 45699
31 0. 30000 0. 35117 2.63374  -13.16873
32 0. 31000 0. 37679 2.48430 -16.68333
33 0. 32000 0. 40074 2.30089 -19.95391
34 0. 33000 0. 42270 2.08618 -22.93848
35 0. 34000 0. 44237 1.84320 -25.60000
36 0. 35000 0. 45948 1.57536  -27.90638
37 0. 36000 0. 47380 1.28635 -29.83045
38 0. 37000 0. 48515 0.98010 - 31.35000
39 0. 38000 0. 49336 0. 66075 -32.44773
40 0. 39000 0. 49834 0.33259 -33.11131
41 0. 40000 0. 50000 0. 00000  -33.33333
42 0. 41000 0. 49626 -0.74625 -73.87733
43 0. 42000 0. 48515 -1.47015 -70.53750
44 0. 43000 0. 46700 -2.14989 -65.06483
45 0. 44000 0. 44237 -2.76480 -57.60000
46 0. 45000 0.41199 -3.29590 -48.33986
47 0. 46000 0. 37679 -3.72645 -37.53750
48 0. 47000 0. 33784 -4.04253 -25.50236
49 0. 48000 0. 29635 -4.23360 -12.60004
50 0. 49000 0. 25361 -4,29304 0. 74764
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51 0. 50000 0.21094 -4.21875 14. 06247
52 0. 51000 0. 16967 -4.01368 26. 81011
53 0. 52000 0. 13107 - 3. 68640 38. 39995
54 0. 53000 0. 09630 - 3. 25169 48. 18510
55 0. 54000 0. 06633 -2.73105 55. 46249
56 0. 55000 0. 04187 -2.15332 59. 47264
57 0. 56000 0. 02333 -1. 55520 59. 39999
58 0. 57000 0. 01068 - 0. 98183 54. 37266
59 0. 58000 0. 00343 -0.48735 43. 46253
60 0. 59000 0. 00046 - 0. 13547 25. 68523
61 0. 60000 0. 00000 0. 00000 0. 00000
62 0. 61000 0. 00000 0. 00000 0. 00000
63 0. 62000 0. 00000 0. 00000 0. 00000
64 0. 63000 0. 00000 0. 00000 0. 00000
65 0. 64000 0. 00000 0. 00000 0. 00000
66 0. 65000 0. 00000 0. 00000 0. 00000
67 0. 66000 0. 00000 0. 00000 0. 00000
68 0. 67000 0. 00000 0. 00000 0. 00000
69 0. 68000 0. 00000 0. 00000 0. 00000
70 0. 69000 0. 00000 0. 00000 0. 00000
71 0. 70000 0. 00000 0. 00000 0. 00000

(rest of the output deleted)
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E.6 POSTp

This program reads the data set generated by PANEL v2, and generates a data file containing the
tables needed to make a boundary layer analysis. Although these tables are designed to be used
by the boundary layer program CBL V2, it does not make the complete data set for CBLv2 The
user has to construct the initial data input. The program is provided to automate the most tedious
aspects of the input preparation.

The program reads the PANEL v2 output data file. Recall that the solution is given continu-
oudly starting at the lower surface trailing edge, moving forward around the leading edge, and
then moving aft on the upper surface to the trailing edge. Using this data the arc length is calcu-
lated and the stagnation point found. If the stagnation point does not occur at an input point, the
stagnation point value of the arc length is estimated, and a point is added. The user is then asked
to name the output file. The output file is generated as a table of arc length and pressure coeffi-
cient values for the lower surface, followed by atable of arc length and pressure coefficient val-
ues for the upper surface.

As an example, and to verify the code, we give a sample input, the screen output and a listing
of the disk data file. Note that the disk file contains an additional column, set to zero. Thisisthe
value of the surface heat flux for use in the boundary layer calculation. We assume that the wall
is adiabatic, and the heat flux is zero. The arc length is normalized by the chord length, assumed
to be unity. The output format of the tablesis 3F10.6.

Sample input:
NACA 2412 with 5 deg flap at .75
Al pha CL cnc4 cDb
5. 0000 1.2116 -0.1172 -0.0015
98. 0000000
X C Y/ C Cp U UE

1. 0000000 -0. 0218722 0. 4457454 -0. 7444828
0. 9989193 -0. 0218588 0. 3699587 -0.7937514
0. 9956822 -0.0218183 0. 3248610 -0. 8216684
0. 9903033 -0.0217497 0. 2959175 - 0. 8390962
0. 9828073 -0. 0216514 0.2764678 -0. 8506070
0.9732280 -0. 0215215 0. 2633044 - 0. 8583097
0.9616088 -0. 0213579 0. 2546606 - 0. 8633304
0. 9480022 -0. 0211583 0. 2494899 -0. 8663198
0. 9324694 - 0. 0209209 0. 2471926 -0. 8676447
0. 9150801 -0. 0206440 0. 2474237 -0.8675116
0. 8959120 -0. 0203265 0. 2500552 -0. 8659936
0. 8750503 -0.0199681 0. 2552201 - 0. 8630063
0. 8525876 -0. 0195686 0. 2634676 - 0. 8582147
0. 8286229 -0. 0191286 0.2764418 -0. 8506222
0.8032618 -0.0186488 0. 3003036 -0. 8364786
0.7766151 -0.0181297 0.3571291 -0.8017923
0. 7487994 -0.0176765 0. 3026126 -0. 8350973
0. 7199356 -0.0196039 0. 2852925 - 0. 8454037
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0. 6901487 -0. 0215702 0.2705841 - 0. 8540585
0. 6595672 - 0. 0235606 0. 2596269 - 0. 8604494
0. 6283228 - 0. 0255578 0. 2511996 - 0. 8653325
0. 5965492 -0. 0275420 0.2446724 - 0. 8690959
0. 5643821 - 0. 0294907 0. 2397471 -0.8719248
0. 5319584 -0. 0313784 0. 2363357 -0.8738789
0. 4994153 -0. 0331776 0. 2345359 -0. 8749080
0. 4668901 - 0. 0348579 0. 2347106 -0.8748082
0. 4345195 -0. 0363877 0.2381573 -0. 8728360
0.4024391 -0. 0377340 0.2431501 -0. 8699712
0. 3710229 - 0. 0389221 0. 2475556 -0. 8674355
0. 3401839 -0. 0399931 0. 2525682 -0. 8645414
0. 3100253 -0. 0409071 0. 2589526 -0. 8608411
0. 2806665 -0. 0416239 0. 2673756 - 0. 8559348
0. 2522234 -0. 0421045 0.2785123 - 0. 8494043
0.2248088 -0. 0423124 0. 2930953 -0. 8407763
0. 1985313 -0. 0422143 0. 3119721 - 0. 8294745
0. 1734958 -0.0417806 0. 3361298 -0.8147823
0. 1498030 - 0. 0409861 0. 3667493 -0. 7957705
0. 1275494 -0. 0398104 0. 4052571 -0.7711958
0. 1068267 - 0. 0382380 0. 4533792 -0.7393381
0. 0877222 -0. 0362578 0.5131727 -0.6977301
0. 0703175 -0. 0338633 0. 5869251 - 0. 6427090
0. 0546887 -0. 0310520 0. 6766533 -0.5686358
0. 0409059 -0. 0278245 0. 7823370 - 0. 4665437
0. 0290324 -0. 0241841 0. 8964363 -0.3218132
0. 0191246 -0. 0201360 0.9877394 -0.1107275
0. 0112310 -0. 0156868 0. 9593768 0.2015521
0. 0053924 -0.0108432 0. 5824928 0. 6461480
0. 0016409 -0. 0056122 - 0. 4040008 1. 1849054
0. 0000000 0. 0000000 -1.7449023 1. 6567746
0. 0005002 0. 0058259 -2.6745226 1. 9169044
0. 0031628 0. 0116941 -2.9049768 1.9761014
0. 0079837 0. 0175852 -2.7717383 1. 9420964
0. 0149496 0. 0234709 - 2. 5445025 1. 8826849
0. 0240374 0. 0293150 -2.3239744 1.8231770
0. 0352145 0. 0350744 -2.1347101 1.7705113
0. 0484385 0. 0407000 -1.9771560 1. 7254437
0. 0636571 0. 0461390 -1. 8458352 1. 6869603
0. 0808082 0. 0513357 -1.7348001 1. 6537231
0. 0998199 0. 0562337 -1.6390182 1. 6245055
0.1206108 0. 0607775 -1.5545312 1.5982901
0. 1430902 0. 0649138 -1. 4783340 1.5742725
0. 1671584 0. 0685932 -1.4081639 1. 5518260
0.1927072 0.0717714 -1. 3423257 1. 5304658
0.2196209 0. 0744106 -1. 2795517 1.5098184
0. 2477766 0. 0764795 -1.2188853 1. 4895923
0. 2770449 0. 0779549 -1. 1595500 1. 4695407
0. 3072913 0. 0788213 -1.1008238 1. 4494219
0. 3383766 0.0790714 -1.0417638 1. 4289030
0. 3701580 0. 0787058 -0. 9795462 1. 4069635
0. 4024706 0. 0777333 -0.9185968 1. 3851342
0. 4349543 0. 0762537 - 0. 8643457 1. 3654104
0. 4677068 0. 0743547 -0. 8154098 1. 3473715
0. 5005847 0. 0720664 -0. 7705135 1. 3306065
0. 5334447 0.0694218 -0.7292154 1. 3149964
0. 5661440 0. 0664560 -0.6915128 1. 3005817
0. 5985411 0. 0632060 -0. 6577775 1.2875471
0. 6304962 0. 0597102 -0.6291239 1.2763714
0. 6618723 0. 0560078 -0. 6085705 1.2682943
0. 6925348 0. 0521391 -0.6073793 1. 2678246
0. 7223530 0. 0481446 -0.6721267 1.2931074
0. 7512006 0. 0439604 -0.5213552 1. 2334323
0. 7789551 0. 0374099 -0. 4203068 1.1917663
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. 8054997
. 8307229
. 8545192
. 8767895
. 8974414
. 9163895
. 9335560
. 9488706
. 9622707
. 9737022
. 9831185
. 9904819
. 9957626

. 9989396

[elNeojoNoloololoNooNoNoloNe]

Output to screen:

. 0309641
. 0246744
. 0185923
. 0127683
. 0072517
. 0020905
0. 0026691
0. 0069838
0.0108130
0. 0141200
0. 0168725
0. 0190429
0. 0206093

0. 0215556

PGM POSTP - POST PROCESS DATA FROM PGM PANELv2

ECHO CF | NPUT DATA:

Enter nane of file to be read

cnc4
-0.11720

post p. t est
I nput dat a:
NACA 2412 with 5 deg flap at
Al pha CL
5.00000 1.21160
98. 0000000
X C
1 1. 0000000
2 0.9989193
3 0.9956822
4  0.9903033
5 0.9828073
6 0.9732280
7 0.9616088
8  0.9480022
9 0.9324694
10  0.9150801
11  0.8959120
12 0.8750503
13  0.8525876
14  0.8286229
15 0.8032618
16 0.7766151
17  0.7487994
18  0.7199356
19 0.6901487
20  0.6595672
21 0.6283228
22 0.5965492
23  0.5643821
24  0.5319584
25  0.4994153
26 0.4668901
27  0.4345195
28  0.4024391
29  0.3710229
30 0.3401839
31  0.3100253
32 0.2806665
33 0.2522234
34  0.2248088
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.75

- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.

CD
-0. 00150

Y/ C
0218722
0218588
0218183
0217497
0216514
0215215
0213579
0211583
0209209
0206440
0203265
0199681
0195686
0191286
0186488
0181297
0176765
0196039
0215702
0235606
0255578
0275420
0294907
0313784
0331776
0348579
0363877
0377340
0389221
0399931
0409071
0416239
0421045
0423124

OCO0000000000000000000000000000O0000

. 3440065
. 2788006
. 2196457
. 1642191
.1111093
. 0593664
. 0082251
. 0429915
. 0950488
. 1489126
. 2061138
. 2693959
. 3448462

. 4457439

Cp
. 4457454
. 3699587
. 3248610
. 2959175
. 2764678
. 2633044
. 2546606
. 2494899
. 2471926

2474237
2500552

. 2552201
. 2634676
. 2764418
. 3003036
. 3571291
. 3026126
. 2852925

2705841
2596269

. 2511996
. 2446724
. 2397471
. 2363357
. 2345359
. 2347106
. 2381573

2431501
2475556

. 2525682
. 2589526
. 2673756
. 2785123
. 2930953

[eleololojooNol _} N Sl

- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.

. 1593130
. 1308407
. 1043757
. 0789899
. 0540917
. 0292553
. 0041041
. 9782681
. 9512892
. 9225440
. 8910029
. 8547539
. 8094157

. 7444838

U UE
7444828
7937514
8216684
8390962
8506070
8583097
8633304
8663198
8676447
8675116
8659936
8630063
8582147
8506222
8364786
8017923
8350973
8454037
8540585
8604494
8653325
8690959
8719248
8738789
8749080
8748082
8728360
8699712
8674355
8645414
8608411
8559348
8494043
8407763
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35 0.1985313 - 0. 0422143 0.3119721 - 0. 8294745
36 0. 1734958 -0.0417806 0. 3361298 -0.8147823
37 0. 1498030 - 0. 0409861 0. 3667493 -0.7957705
38 0. 1275494 - 0. 0398104 0. 4052571 -0.7711958
39 0. 1068267 -0.0382380 0. 4533792 -0.7393381
40 0. 0877222 -0. 0362578 0.5131727 -0.6977301
41 0. 0703175 - 0. 0338633 0. 5869251 -0. 6427090
42 0. 0546887 -0.0310520 0. 6766533 -0.5686358
43 0. 0409059 -0.0278245 0. 7823370 - 0. 4665437
44 0. 0290324 -0. 0241841 0. 8964363 -0.3218132
45 0. 0191246 -0.0201360 0.9877394 -0.1107275
46 0. 0112310 -0.0156868 0. 9593768 0. 2015521
47 0. 0053924 -0.0108432 0. 5824928 0. 6461480
48 0. 0016409 -0. 0056122 - 0. 4040008 1. 1849054
49 0. 0000000 0. 0000000 -1.7449023 1.6567746
50 0. 0005002 0. 0058259 -2.6745226 1.9169044
51 0. 0031628 0. 0116941 -2.9049768 1. 9761014
52 0. 0079837 0. 0175852 -2.7717383 1. 9420964
53 0. 0149496 0. 0234709 - 2. 5445025 1.8826849
54 0. 0240374 0. 0293150 -2.3239744 1.8231770
55 0. 0352145 0. 0350744 -2.1347101 1.7705113
56 0. 0484385 0. 0407000 -1.9771560 1. 7254437
57 0. 0636571 0. 0461390 -1.8458352 1. 6869603
58 0. 0808082 0. 0513357 -1.7348001 1.6537231
59 0. 0998199 0. 0562337 -1.6390182 1. 6245055
60 0. 1206108 0. 0607775 -1.5545312 1.5982901
61 0. 1430902 0. 0649138 -1. 4783340 1.5742725
62 0.1671584 0. 0685932 -1.4081639 1. 5518260
63 0. 1927072 0.0717714 -1. 3423257 1. 5304658
64 0. 2196209 0. 0744106 -1.2795517 1.5098184
65 0. 2477766 0. 0764795 -1.2188853 1. 4895923
66 0. 2770449 0. 0779549 -1.1595500 1. 4695407
67 0. 3072913 0. 0788213 -1.1008238 1.4494219
68 0. 3383766 0. 0790714 -1.0417638 1. 4289030
69 0. 3701580 0.0787058 -0.9795462 1. 4069635
70 0. 4024706 0. 0777333 -0.9185968 1.3851342
71 0. 4349543 0. 0762537 - 0. 8643457 1.3654104
72 0. 4677068 0. 0743547 - 0. 8154098 1. 3473715
73 0. 5005847 0. 0720664 -0.7705135 1. 3306065
74 0. 5334447 0. 0694218 -0.7292154 1. 3149964
75 0. 5661440 0. 0664560 -0.6915128 1. 3005817
76 0. 5985411 0. 0632060 -0. 6577775 1.2875471
77 0. 6304962 0. 0597102 -0.6291239 1.2763714
78 0.6618723 0. 0560078 -0. 6085705 1.2682943
79 0. 6925348 0. 0521391 -0.6073793 1.2678246
80 0. 7223530 0. 0481446 -0. 6721267 1.2931074
81 0. 7512006 0. 0439604 -0.5213552 1. 2334323
82 0. 7789551 0. 0374099 -0. 4203068 1.1917663
83 0. 8054997 0. 0309641 - 0. 3440065 1.1593130
84 0. 8307229 0. 0246744 -0. 2788006 1.1308407
85 0. 8545192 0. 0185923 -0.2196457 1.1043757
86 0. 8767895 0. 0127683 -0.1642191 1.0789899
87 0. 8974414 0. 0072517 -0.1111093 1. 0540917
88 0. 9163895 0. 0020905 - 0. 0593664 1. 0292553
89 0. 9335560 -0. 0026691 - 0. 0082251 1.0041041
90 0. 9488706 -0.0069838 0. 0429915 0.9782681
91 0. 9622707 -0. 0108130 0. 0950488 0. 9512892
92 0. 9737022 -0. 0141200 0.1489126 0. 9225440
93 0.9831185 -0.0168725 0.2061138 0. 8910029
94 0. 9904819 -0. 0190429 0. 2693959 0. 8547539
95 0. 9957626 - 0. 0206093 0. 3448462 0. 8094157
96 0. 9989396 -0. 0215556 0. 4457439 0.7444838

STAGNATI ON PT. SEARCH
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J Xl C Y/ C SARC UE/ Ul NF CcP
40 0. 087722 -0.036258 0.913194 -0.697730 0.513173
41 0.070317 -0.033863 0.930764 -0.642709 0. 586925
42 0. 054689 -0.031052 0. 946645 -0.568636 0. 676653
43 0. 040906 -0.027825 0. 960803 -0.466544 0. 782337
44 0.029032 -0.024184 0.973225 -0.321813 0. 896436
45 0. 019125 -0.020136 0.983934 -0.110727 0.987739
46 0. 011231 -0.015687 0. 993005 0.201552 0. 959377
47 0. 005392 -0.010843 1. 000607 0. 646148 0. 582493
48 0. 001641 -0.005612 1.007069 1.184905 -0.404001
49 0. 000000 0. 000000 1.012945 1. 656775 -1.744902
50 0. 000500 0. 005826 1. 018822 1.916904 -2.674523

STAG PT: XSP= 0. 016326 YSP=-0.018558  SSP=0.987150 JS=45 JLE=49

El
| STAGP

0. 0032163 E2 = 0.0058546
1

QUTPUT OF POSTp RESULTS

send output to a file? (Y/N)

y
enter file nane:
post p. out

ALPHA = 5. 00000

MACH NO. = 0. 10000

CL = 1.21160

CMA4 = -0.11720

CD = -0. 00150

No. of upper surface values in x/c, Cp table = 52

No. of |ower surface values in x/c, Cp table = 46

| ower surface

J X/ C Y/ C S/C U U NF CP

1 0.016326 -0.018558 0. 000000 0. 000000 1. 000000
2 0.019125 -0.020136 0.003216 -0.110727 0.987739
3 0.029032 -0.024184 0.013925 -0.321813 0. 896436
4 0.040906 -0.027825 0.026347 -0.466544 0. 782337
5 0. 054689 -0.031052 0. 040505 -0.568636 0. 676653
6 0.070317 -0.033863 0.056386 -0.642709 0. 586925
7 0.087722 -0.036258 0.073956 -0.697730 0.513173
8 0.106827 -0.038238 0.093164 -0.739338 0. 453379
9 0.127549 -0.039810 0.113946 -0.771196 0. 405257
10 0. 149803 -0.040986 0.136232 -0.795771 0. 366749
11 0.173496 -0.041781 0.159938 -0.814782 0. 336130
12 0.198531 -0.042214 0. 184977 -0.829475 0.311972
13 0.224809 -0.042312 0.211255 -0.840776 0. 293095
14 0. 252223 -0.042105 0.238671 -0.849404 0. 278512
15 0. 280667 -0.041624 0.267118 -0.855935 0. 267376
16 0.310025 -0.040907 0.296486 -0.860841 0. 258953
17 0.340184 -0.039993 0.326658 -0.864541 0. 252568
18 0.371023 -0.038922 0.357516 -0.867436 0. 247556
19 0.402439 -0.037734 0.388954 -0.869971 0. 243150
20 0. 434519 -0.036388 0.421063 -0.872836 0. 238157
21 0.466890 -0.034858 0. 453470 -0.874808 0. 234711
22 0.499415 -0.033178 0. 486039 -0.874908 0. 234536
23 0.531958 -0.031378 0.518631 -0.873879 0. 236336
24 0.564382 -0.029491 0.551110 -0.871925 0. 239747
25 0.596549 -0.027542 0.583336 -0.869096 0. 244672
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26  0.628323 -0.025558 0.615171 -0.865332 0.251200
27 0.659567 -0.023561 0.646480 -0.860449 0.259627
28 0.690149 -0.021570 0.677126 -0.854059 0.270584
29  0.719936 -0.019604 0.706978 -0.845404 0.285293
30 0.748799 -0.017677 0.735910 -0.835097 0.302613
31 0.776615 -0.018130 0.763733 -0.801792 0.357129
32 0.803262 -0.018649 0.790385 -0.836479 0.300304
33 0.828623 -0.019129 0.815751 -0.850622 0.276442
34 0.852588 -0.019569 0.839719 -0.858215 0.263468
35 0.875050 -0.019968 0.862186 -0.863006 0.255220
36 0.895912 -0.020327 0.883050 -0.865994 0.250055
37 0.915080 -0.020644 0.902221 -0.867512 0.247424
38 0.932469 -0.020921 0.919613 -0.867645 0.247193
39 0.948002 -0.021158 0.935147 -0.866320 0.249490
40 0.961609 -0.021358 0.948755 -0.863330 0.254661
41  0.973228 -0.021521 0.960376 -0.858310 0.263304
42 0.982807 -0.021651 0.969956 -0.850607 0.276468
43  0.990303 -0.021750 0.977452 -0.839096 0.295918
44  0.995682 -0.021818 0.982832 -0.821668 0.324861
45  0.998919 -0.021859 0.986069 -0.793751 0.369959
46  1.000000 -0.021872 0.987150 -0.744483 0.445745
upper surface
J Xl C Y/ C S/IC U U NF cP
1 0.016326 -0.018558 0.000000 0.000000 1.000000
2 0.011231 -0.015687 0.005855 0.201552  0.959377
3 0.005392 -0.010843 0.013457 0.646148 0.582493
4 0.001641 -0.005612 0.019919 1.184905 -0.404001
5 0.000000 0.000000 0.025795 1.656775 -1.744902
6 0.000500 0.005826 0.031672 1.916904 -2.674523
7 0.003163 0.011694 0.038141 1.976101 -2.904977
8 0.007984 0.017585 0.045770 1.942096 -2.771738
9 0.014950 0.023471  0.054900 1.882685 -2.544502
10 0.024037 0.029315 0.065711 1.823177 -2.323974
11  0.035214 0.035074 0.078289 1.770511 -2.134710
12 0.048439 0.040700 0.092662 1.725444 -1.977156
13 0.063657 0.046139 0.108826 1.686960 -1.845835
14  0.080808 0.051336 0.126748 1.653723 -1.734800
15 0.099820 0.056234 0.146382 1.624506 -1.639018
16 0.120611 0.060778 0.167665 1.598290 -1.554531
17  0.143090 0.064914 0.190523 1.574273 -1.478334
18 0.167158 0.068593 0.214871 1.551826 -1.408164
19 0.192707 0.071771 0.240618 1.530466 -1.342326
20 0.219621 0.074411 0.267661 1.509818 -1.279552
21 0.247777 0.076480 0.295894  1.489592 -1.218885
22 0.277045 0.077955 0.325200 1.469541 -1.159550
23  0.307291 0.078821 0.355459 1.449422 -1.100824
24  0.338377 0.079071 0.386546 1.428903 -1.041764
25 0.370158 0.078706 0.418330 1.406963 -0.979546
26 0.402471 0.077733  0.450657 1.385134 -0.918597
27 0.434954 0.076254  0.483175 1.365410 -0.864346
28 0.467707 0.074355 0.515983 1.347371 -0.815410
29 0.500585 0.072066 0.548940 1.330606 -0.770513
30 0.533445 0.069422 0.581907 1.314996 -0.729215
31 0.566144 0.066456 0.614740 1.300582 -0.691513
32 0.598541 0.063206 0.647300 1.287547 -0.657777
33 0.630496 0.059710 0.679446 1.276371 -0.629124
34 0.661872 0.056008 0.711040 1.268294 -0.608571
35 0.692535 0.052139 0.741946 1.267825 -0.607379
36 0.722353 0.048145 0.772030 1.293107 -0.672127
37 0.751201 0.043960 0.801185 1.233432 -0.521355
38 0.778955 0.037410 0.829706 1.191766 -0.420307
39 0.805500 0.030964 0.857022 1.159313 -0.344007
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STOP

[eNeoloNooloololoNoNoNeNe)

. 830723
. 854519
. 876790
. 897441
. 916390
. 933556 -
. 948871 -
. 962271 -
.973702 -
. 983118 -
. 990482 -
. 995763 -
. 998940 -

Output disk datafile:

NACA 2412 with 5 deg fl

5. 00000

| owner
s/c
. 000000
. 003216
013925
026347
040505
056386
073956
093164
113946
136232
159938
184977
211255
238671
267118
296486
326658
357516
388954
421063
453470
486039
518631
551110
583336
615171
646480
677126
706978
735910
763733
790385
815751
839719
862186
883050
902221
919613
935147
. 948755
. 960376
. 969956

OO0 0000000000000 000000000000000000000000000

Su

0000000000000 000000000000000000000000000R

0. 10000
rface

Cp
. 000000
. 987739
896436
782337
676653
586925
513173
453379
405257
366749
336130
311972
293095
278512
267376
258953
252568
247556
243150
238157
234711
234536
236336
239747
244672
251200
259627
270584
285293
302613
357129
300304
276442
263468
255220
250055
247424
247193
249490
. 254661
. 263304
. 276468

Tuesday, January 21, 1997

OO0 0000000000000 000000000000000000000000000

. 024674
. 018592
. 012768
. 007252
. 002090
. 002669
. 006984
. 010813
. 014120
. 016872
. 019043
. 020609
. 021556

ap at .75
1.21160

dT/ dy

. 000000
. 000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

. 000000
. 000000
. 000000

PRRPRRPRRPRPRPOO0OO0OOOO

. 883018
. 907579
. 930598
. 951975
. 971613
. 989427
. 005338
. 019274
. 031175
. 040985
. 048661
. 054170
. 057485

-0.11720

CooooocoRrkRrRRERE

.130841 -0
.104376 -0
078990 -0
054092 -0
029255 -0
004104 -0
978268 0
951289 0
922544 0
891003 0
854754 0
. 809416 0
. 744484 0

-0. 00150

. 278801
. 219646
. 164219
. 111109
. 059366
. 008225
. 042992
. 095049
. 148913
. 206114
. 269396
. 344846
. 445744
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. 977452
. 982832
. 986069
. 987150

[eNoloNe]

upper
s/c

. 000000
. 005855
. 013457
019919
025795
031672
038141
045770
054900
065711
078289
092662
108826
126748
146382
167665
190523
214871
240618
267661
295894
325200
355459
386546
418330
450657
483175
515983
548940
581907
614740
647300
679446
711040
741946
772030
801185
829706
857022
883018
907579
930598
951975
971613
989427
005338
019274
031175
040985
048661
. 054170
. 057485

PRPPPPPPOOOO0O0O000000000000000000000000000000000000000O0

0.
0.
0.
0.

295918
324861
369959
445745

surface

oNeNoN

T T T T T T S T T T T T S S T T T T S T T T S T S S S T S S S S S T S S S S T

Cp
. 000000
. 959377
. 582493
. 404001
. 744902
. 674523
. 904977
. 771738
. 544502
. 323974
. 134710
. 977156
. 845835
. 734800
. 639018
. 554531
. 478334
. 408164
. 342326
. 279552
. 218885
. 159550
.100824
. 041764
. 979546
. 918597
. 864346
. 815410
. 770513
. 729215
. 691513
. 657777
. 629124
. 608571
. 607379
. 672127
. 521355
. 420307
. 344007
. 278801
. 219646
. 164219
. 111109
. 059366
. 008225
. 042992
. 095049
. 148913

206114
269396

. 344846
. 445744
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[eNoloNe]

OO0 0000000000000 0000000000000000000000000000000000000

. 000000
. 000000
. 000000
. 000000

dT/ dy

. 000000
. 000000
. 000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

. 000000
. 000000
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E.7STDATM

This subroutine computes the 1976 standard atmosphere. It is used in program FRICTION. It
covers an atitude range from sea level to 86 kilometers (282,152 ft.). The results are found in ei-
ther English or metric units depending on the value of one of the input flags. The 1976 and 1962
standard atmospheres are identical for the first 51 kilometers above sea level.

Method of Computation
Given the geometric altitude Z, (in dimensions of either meters or feet), convert to kilom-
eters. The geopotential altitude H is then found from:

z
1+2
"o
where rg = 6356.766 kilometers (the radius of the Earth in kilometers) and Z= C; Z;,, where Cq
= 0.001 if Z, isin meters, and C; = 0.0003048 if Z;,, isin feet. The 1962 standard atmosphere

used a much more complicated and slightly more accurate relationship.

H=

The inverse relation is given by

o .
Once the geopotential altitude is found, the temperature is computed. The standard day tem-
perature profile is defined by seven layers, where within each layer the temperature is found by
the linear relation (T is given in degrees Kelvin):

T=Ty +Lpm(H-Hp)

and Ty Lm and Hy, &€ the values at the base of the particular layer. The following table de-
fines these constants, as well as the ratio of pressure to sealevel pressure, which is also needed.

i Hy, (KmM) Ty (°K) Ly (PKIKmM) P/Ps Z(ft))
1 0. 288.15 -6.5 1.0 0
2 11. 216.65 0.0 2.2336x10°1 36,152.
3 20. 216.65 +1.0 5.4032x1072 65,824
4 32. 228.65 +2.8 8.5666x10"> 105,518
5 47. 270.65 0.0 1.0945x10°3 155,348
6 51. 270.65 2.8 6.6063x10% 168,676
7 71. 214.65 2.0 3.9046x10°° 235571
- 82. - - - 282 152

Tuesday, January 21, 1997



report typos and errorsto W.H. Mason Appendix E: Utility Programs E-27

Once the temperature is determined, the pressure is computed using the hydrostatics equation
and the perfect gas law. The resulting formulas are:

K
PR @T_bﬁﬂ L # 0
R R UT
-K(H-Hp)
P_Rh € T Lh,=0
R Ry
where K = QL'YI_O =34.163195 in consistent units. The remaining fundamental property is the
R

density, which isfound using the equation of state as:

P _P/Py
ps T/ Ty .

Additional parameters of interest in aerodynamics are:

|

i) The coefficient of viscosity, found from Sutherland’s Law:

i) The speed of sound

where S= 110.4°K and [3 depends on the system of units and is defined below.

iii) The Reynolds number per unit length and Mach:

iv) The actual temperature, pressure and density:

—
I
@

'U
I
oV

|

5

OJ [
Y F
i 1
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S
p_pS'ngD

and v) the dynamic pressure normalized by the Mach number:

q _y
“Yp_7p
M2 2 .

The sea level properties and other required constants are defined in the following table.

Metric English
Ty 288.15 °K 518.67° R
Py 1.01325x10° N/m? 2116.22 b/ft?
Py 1.2250 Kg/m® 0.0023769 slugs/fts
ay 340.294 m/sec 1116.45 ft/sec
Ny 1.7894x10™ K g/m/sec 0.37373x10°° dugs/ft/sec
B 1.458x108 Kg/misec/K Y2 3.0450963x10°8 Sugs/ft/sec/K /2

Theratio of specific heats, y, is defined to be 1.40.
User instructions: the comments in the subroutine define the input and output argument list. If
the maximum altitude is exceeded, the program returns a non zero value of the validity flag.
subroutine stdatm(z,t,p,r,a, mu,ts,rr, pp,rmagm kd, kk)
kkxkkxkkxkx 1976 STANDARD ATMOSPHERE SUBROUTI NE *** % * %k % % %
Mason's BASI C program converted to FORTRAN - Sept. 1, 1989

kd - =0 - metric units
<> 0 - English units

kk - 0 - good return
1 - error: altitude out of table,
do not use out put

Z - input altitude, in feet or nmeters (depending on kd)
out put :
units: netric Engl i sh
t - tenp. deg K deg R
p - pressure N nt2 [ b/ft"2
r - density Kg/ m*3 slugs/ft"3
a - speed of sound nl sec ft/sec
mu - viscosity Kg/ m sec slug/ft/sec

ts - t/t at sea | evel
rr - rho/rho at sea | evel
pp - p/p at sea | evel

OO0OO0OO0O0O0O000O00O00O00000O000000O000O000O000O0O0OO0

rm- Reynol ds nunber per Re/ M m Re/ M ft
Mach per unit of Iength
gm - dynam c pressure/ Mach”2 N nt2 [ b/ft"2
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c
real k, h, mu, m

KK = 0
K = 34.163195
Cl = 3.048E-04
IF (KD .eq. 0) go to 1240
TL = 518. 67
PL = 2116. 22
RL = . 0023769
AL = 1116. 45
M. = 3.7373E-07
BT = 3.0450963E- 08
G0 TO 1260
1240 TL = 288. 15
PL = 101325
RL = 1.225
Cl = .001
AL = 340.294
M. = 1. 7894E-05
BT = 1. 458E- 06

1260 H=CL * Z/ (1 + ClL * Z /| 6356.766)
IF (H.gt. 11.0) go to 1290
T =288.15- 6.5 * H
PP = (288.15/ T) ** ( - K/ 6.5)

GO TO 1420
1290 IF (H .gt. 20.0) go to 1310
T = 216.65
PP = .22336 * EXP ( - K* (H- 11) / 216.65)
GO TO 1420

1310 IF (H .gt. 32.0) go to 1330
T = 216.65 + (H - 20)
PP = .054032 * (216.65 / T) ** K
GO TO 1420

1330 IF (H .gt. 47.0) go to 1350
T =228.65 + 2.8 * (H- 32
PP = . 0085666 * (228.65 / T) ** (K / 2.8)

GO TO 1420
1350 IF( H.gt. 51.0) go to 1370
T = 270. 65
PP = .0010945 * EXP ( - K* (H- 47) /| 270.65)
GO TO 1420

1370 IF (H.gt. 71.) go to 1390
T =270.65 - 2.8 * (H - 51)
PP = .00066063 * (270.65/ T) ** ( - K/ 2.8)

GO TO 1420
1390 IF (H .gt. 84.852) THEN
kk =1
wite(6,200) H
return
END | F
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1420

200

= 214.65 - 2 * (H- 71)
3.9046E-05 * (214.65 / T) ** ( - K/ 2)

o -

P

PP/ (T / 288.15)

BT * T**1.5 / (T + 110.4)
T / 288.15

AL * SQRT (TS)

TL * TS

RL * RR

PL * PP

R* A/ M

TP

ggﬂm—ﬁbaé%

format (' Qut of Table in StdAtm too high !''//
4x,'H =',f12.3,' > 84.852 knm/)

return
end

The following sample program and output can be used to validate your subroutine:

c

10

mai n programto check stdatm

| oop is done twice to get output
suitable to include in text(80 col)

w. h. mason, Feb. 27, 1994

real nu

kd =1
write(6, 90)

do 10 i =1,21

z = 5000. *(i-1)

call stdatm(z,t,p,r,a,nu, ts,rr,pp, rmqgm kd, kk)

if (kk .ne. 0) then
wite(6,120)
stop
endi f

wite(6,100) z,t,p,r,a,m
conti nue

wite(6,110)
do20i = 1,21
z 5000. * (i - 1)

call stdatm(z,t,p,r,a,mu, ts,rr,pp, rmqgm kd, kk)

if (kk .ne. 0) then
write(6, 160)
stop
endi f
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wite(6,120) z,ts,rr
20 conti nue

90 format (/3x,
3X,
2X,

/ 3X,

GNP

100 format(3x,f9.1,f8.2,f8.2,e12.4,1f8.2,el2.4)
110 format (/ 3x,
3X,
2X,
/ 3X,

1
2
4

2x, "

(

al t

a
(ft)
fls)

pp, rmagm

T
M'Ill

P

(deg R (psf)
(slugs/ft/sec)')

1976 Standard At nmosphere'//

Rho' ,

(s/ftA3)"

'1976 Standard At nosphere'//

al t

' P/ Psl

(ft)’

T/ Tsl R Rsl',
Re/ M f t a/ 2",
,34x, ' (Ib/ftn"2)")

120 format (3x,f9.1,3f7.4,el0. 3,f10. 4)

160 format (/4x,"

st op
end

Sample output:

error

1976 Standard At nosphere

alt

(ft)
0

5000.
10000.
15000.
20000.
25000.
30000.
35000.
40000.
45000.
50000.
55000.
60000.
65000.
70000.
75000.
80000.
85000.
90000.
95000.

100000.

[eNeoleoololoNoololololololoolololoNoNeNe]

(

T
deg

518.
500.
483.
465.
447,
429.
411.
394.
389.
389.
389.
389.
389.
389.
392.
394.
397.
400.
403.
405.
408.

R)

67
84
03
22
42
62
84
06
97
97
97
97
97
97
25
97
69
42
14
85
57

p
(psf
2116. 2
1760.
1455.
1194.
973.
786.
629.
499.
393.
309.
243.
191.
151.
118.
93.
73.
58.
46.
36.
29.
23.

)

88
60
79
28
34
67
35
13
45
61
80
03
93
73
99
51
35
78
23
27

1976 Standard At nobsphere

al t

(ft)
0

5000.
10000.
15000.
20000.
25000.
30000.

[eNolololoNoNe]
cooooopk

T/ Tsl

. 0000
9656
9313
8969
8626
8283
. 7940
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[cNololoNoNaoN

R/ Rsl

. 0000
. 8617
. 7386
. 6295
. 5332
. 4486
. 3747

[cNololoNoNoN

in return code fromstdatm- pgmstops'/)

Rho a Mu
(s/ft"3) (f/s) (slugs/ft/sec)
0.2377E-02 1116.45 0.3737E-06
0. 2048E-02 1097.10 0.3637E-06
0. 1756E-02 1077.40 0. 3534E-06
0. 1496E-02 1057.36 0. 3430E-06
0. 1267E-02 1036.93 0. 3324E-06
0. 1066E-02 1016.10 0.3217E-06
0. 8907E-03 994.85 0.3107E-06
0. 7382E-03 973.14 0.2995E-06
0.5873E-03 968.08 0.2969E-06
0. 4623E-03 968.08 0.2969E-06
0. 3639E-03 968.08 0.2969E-06
0. 2865E-03 968.08 0.2969E- 06
0. 2256E-03 968.08 0.2969E- 06
0.1777E-03 968.08 0.2969E-06
0. 1392E-03 970.90 0.2984E-06
0. 1091E-03 974.26 0. 3001E-06
0.8571E-04 977.62 0.3018E-06
0. 6743E-04 980.95 0.3035E-06
0. 5315E-04 984.28 0.3052E-06
0. 4196E-04 987.59 0.3070E-06
0. 3318E-04 990.90 0.3087E-06
P/ Psl Rel/Mft g/ M2
(I'b/ft72)
. 0000 0. 710E+07 1481. 3538
. 8321 0. 618E+07 1232.6129
. 6878 0.535E+07 1018. 9235
. 5646 0.461E+07 836.3538
. 4599 0. 395E+07 681. 2936
. 3716 0.337E+07 550.4373
. 2975 0. 285E+07 440.7683
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35000.
40000.
45000.
50000.
55000.
60000.
65000.
70000.
75000.
80000.
85000.
90000.
95000.
100000.

STOP
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O0O000O0O0O0O0O0O0O0OO
COOOOOO0O0O00000

7598
7519
7519
7519
7519
7519
7519
7563
7615
7668
7720
7772
7825
7877

ceololololooololooloNeNe]

. 3106
. 2471
. 1945
. 1531
. 1205
. 0949
. 0747
. 0586
. 0459
. 0361
. 0284
. 0224
. 0177
. 0140

eeololololoNoojolololoNeNe]

. 2360
. 1858
. 1462
. 1151
. 0906
. 0714
. 0562
. 0443
. 0350
. 0276
. 0219
. 0174
. 0138
. 0110

©C0000000000000

. 240E+07

191E+07
151E+07
119E+07
934E+06
736E+06

. 579E+06
. 453E+06

354E+06
278E+06

. 218E+06

171E+06

. 135E+06
. 107E+06

349.
275.
216.
170.
134.
105.
83.
65.
51.
40.
32.
25.
20.
16.

5441
1887
6139
5264
2600
7186
2541
6079
7925
9574
4446
7445
4621
2903



