
1. Introduction

“Users should approach all software with prudent caution and
healthy skepticism, for the history of science and engineering,
including the still-young history of software engineering, is
littered with failed promises.” Henry Petroski1

1.1 An Overview: The Role of Computational Aerodynamics

What is computational aerodynamics (CA)? Theoretical aerodynamics has always provided insights

to aerodynamicists through solutions of the governing equations of fluid mechanics. However,

before computers became widely available the application of theoretical aerodynamics to specific

problems was frequently impractical. Nevertheless, theoretical results from simplified model prob-

lems provided important insights which aerodynamicists used as a basis for developing aerodynamic

concepts and understanding experimental results. However, aerodynamic design was carried out ex-

perimentally; primarily in wind tunnels. Starting nearly thirty years ago, and becoming increasingly

important in the last decade, computational aerodynamics has become an important precursor and

supplement to the use of the wind tunnel. Computational aerodynamics applies specific solutions of

the governing equations of fluid mechanics to the design and analysis of vehicle systems. Usually

this means the numerical solution of governing equations rather than numerical evaluation of

analytically derived solutions. As soon as computers became available aerodynamicists started using

them. The first computational aerodynamics computer programs that were reasonably general and

easy to use became widely available in the late ’60s, and started providing valuable design

information for aerodynamics. Typically, they provided three-dimensional solutions for linear aero-

dynamics problems, and two-dimensional solutions of the nonlinear boundary layer equations. As

with any new technology, this capability arose before engineers understood how to integrate it into

the existing design process. Initially proponents claimed that computational aerodynamics would re-

place wind tunnels. It was well into the ’70s before the early promise matured into a realization of

the difficulties that would have to be overcome for computed solutions to replace wind tunnels. The

wind tunnel is still in use, and, NASA has recently announced its intention to build two new wind

tunnels. In the ensuing years computational aerodynamics has become an identifiable new

technology, making important contributions to flight vehicle design. Now, there is a distinct body of

knowledge that provides a foundation for work in the field.
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Computational aerodynamics is one of the most important technologies in the development of

advanced vehicles. Many engineers are actively involved in design and analysis using computational

aerodynamics. Although numerous books have appeared describing the basic theory of

computational fluid dynamics (CFD), guidance on the application of these methods is scarce. How-

ever, most engineers working in computational aerodynamics are applying these methods, and not

developing new algorithms. There is a difference between CFD algorithm development and applica-

tion skills. CFD algorithm developers have their specific interests and organizations. They are trying

to solve fundamental algorithm problems and usually do not use their codes to do aerodynamic de-

sign and analysis. As a result, they generally have a poor understanding of the needs of and demands

on the user*. Users must understand the algorithms and assumptions employed in the methods, and

an education in the effective use of the computational aerodynamics methods in engineering design

and analysis. The ability to approach aerodynamics problems using computational methods, assess

the results, and make engineering decisions requires very different skills and attitudes than those

associated with fundamental algorithm development.

Although you cannot use a computational aerodynamics code blindly and expect to obtain valid

results, skilled engineers can obtain valuable results when computational aerodynamics is used with

some skill, knowledge, ingenuity and judgment. The computer power available to every engineer

today is greater than the total computing power available to the engineers who put men on the moon

in the Apollo program, and even to those who designed the space shuttle. Unfortunately, it is possi-

ble for an engineer using this large computational power to make an error and not catch it. Several

structural failures arising from faulty use of computational structures methodology have been docu-

mented recently.1 Thus, significant responsibility accompanies the use of these immense computa-

tional capabilities.

It is impossible to anticipate the variety of requests that arise for computational aerodynamics

analysis. Although we emphasize aircraft here, computational aerodynamics is also used in the anal-

ysis and design of missiles, cars, rotorcraft, submarines and ships. In addition to external flows, CA

is used for internal flow problems, including inlets, turbomachinery, and nozzles. Although in a glo-

bal, long-term sense, computational aerodynamics should replace the wind tunnel, for now this is not

the case. Indeed, experimental and computational methods form a good complement to allow

aerodynamicists to investigate problems and assess designs. 

Typical major goals of computational aerodynamics include:

• vehicle design, i.e. development of optimum airfoils and wings for external performance,
and inlets, diffusers, and nozzles for internal performance and aero-propulsion integration

• performance: estimation of the drag, lift, and moment characteristics of the vehicle

• definition of loads for structural design (including structural deformation under load)

*  Although many developers lack interest in computing drag accurately, a few notable exceptions exist.2
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• aeroelastic analysis, including flutter and divergence—requiring coupling with structural
analysis and control system design analysis methodology)

• definition of aerodynamic characteristics for evaluation of stability, control, and handling
characteristics (i.e., provide the math model for flight simulation).

The current capability doesn’t allow computational aerodynamics to accurately satisfy all these

goals. Several difficulties prevent the use of computational aerodynamics in the most general

situations, and engineering judgment must be exercised to obtain useful results. Difficulties prevent-

ing complete numerical simulation include both geometric and fluid mechanics complexity (one

simple definition of aerodynamics is 50% flowfield, 50% geometry). The simplest fluid mechanics

idealizations are available to provide information at the conceptual and preliminary design stages.

Advanced computational methods, which are typically difficult to use and don’t yet predict drag

well, are used in a different role. The advanced methods are perhaps best used to investigate the

detailed physics of the flow. The availability of detailed results over the entire surface, and also

everywhere in the flowfield, provides a crucial supplement to wind tunnel testing. Used together,

with wind tunnel data providing key anchor points to access and understand the accuracy of the

computational method, significant advances in aerodynamic design have been demonstrated.  Thus,

advanced computational aerodynamics is truly an area where Hamming's adage,† “the purpose of

computing is insight, not numbers” is true.

1.2 Current Status of Computational Aerodynamics

The capability of computational aerodynamics is continually improving. But, the claims of meth-

odology developers not intimately acquainted with the problems of applying advanced methods

should be viewed with caution. Algorithm developers frequently make overly optimistic claims.

However, significant technology development resources are being directed toward improving the ca-

pability of CFD, and we can expect that in the future we will be relying much more heavily on CFD

results alone to make engineering decisions. For example, the recent three-stage, air-launched,

winged space booster Pegasus™3 was designed using computational methods alone. No wind tunnel

tests were done. The initial launches were successful, and it appeared that the accuracy of the analy-

sis was adequate for this unmanned vehicle. However, after a subsequent launch failure, a dispute

arose over whether the aerodynamics had been accurately predicted, or whether the control system

was to sensitive to imperfections in the aerodynamic model. The problem was in the lateral-

directional characterisitcs, an area often neglected by code developers.

A recent AIAA Progress Series volume edited by Henne4 describes the state of the art in 1990

through many examples of applications (especially note the comments of Ray Hicks, a veteran CFD

user and early advocate of the use of CFD in aerodynamics). For example, “normal” 2D airfoil

analysis and design can now be done reliably using computational methods.

† Hamming authored a numerical methods book many years ago.  The quotation cited is the frontispiece of the book.
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A prospective computational aerodynamics user should understand the limitations. Bradley and

Bhateley5 have reviewed the situation and in 1983 proposed a classification scheme in terms of the

types of flowfield. They divided the flowfield into seven categories, and categorized the capability

to compute each type of flow over a variety of geometries of increasing complexity. Their capability

chart is given in Table 1. The only capability they rated as good was attached flow over simple

shapes.  The capability today is better, but the classification idea is still valid and the capability is

still the same in relation to each category.

Table 1. One point of view regarding computational aerodynamics capability.

Case studies provide another way to assess computational aerodynamics impact. Shevell6 identi-

fied several aerodynamic design problems that arose in flight on various transport aircraft. He exam-

ined these problems to determine if the use of computational aerodynamics would have avoided these

problems. His conclusion was that uninformed computational aerodynamics would likely not have

prevented these problems. They included subtle aspects of attached flow airfoil and wing aerodynam-

ics, the ability to compute deep stall characteristics of T-tail aircraft, the use of nacelle strakes to im-

prove high lift and fuselage strakes to improve high alpha directional stability. The impact of CFD is

being felt however. Rubbert and Goldhammer7 have reviewed the situation at Boeing, and Busch8 has

reviewed the use of CFD in the design of the YF-23. In the case of the YF-23, an Euler analysis was

used quite successfully. Thus, inviscid codes are proving to be of significant value at the project level

in aerodynamic design. 
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However, the conceptual design community has voiced frustration with CFD.9 At the conceptual

design level decisions are made based on rapid evaluation of the performance potential of a variety of

configurations, rather than the detailed study and development of a particular design over a number of

years. At this level advanced CFD methods have not yet proven useful. The problem can be traced to

the inability of the codes to predict drag directly in a conceptual design sense. Part of the problem here

is a miscommunication between the conceptual design aerodynamicists and code developers.

Conceptual designers want to know what level of performance can be expected from a configuration

after the aerodynamic design is done. The aerodynamic design of a single configuration may take

months (or years). Although work is in progress to improve the design situation, current advanced

CFD methodology is essentially an analysis tool. To discriminate between a series of different

candidate configurations using CFD a rapid design capability with accurate estimation of the eventual

drag level achievable must be available. Linear theory methods provide some of this capability, but

nonlinear methodology for complete configurations on the time-scale of a day is not yet available.

Although absolute values of drag are currently considered too difficult to compute using CFD, the

AGARD Panel on CFD and Drag10 suggested that CFD-based drag prediction was very effective when

“embedded in an increment/decrement procedure involving experimental results for complete

configurations, and CFD results for simplified configurations.” Another useful application of CFD in

this context is the assessment of wind tunnel model support effects and wall interference, which was

done for the YF-23.8

1.3 Objectives and Guiding Principles in Using Computational Aerodynamics

The objective of this text is to provide an overview of computational aerodynamics as currently

practiced, and an understanding of the basis for this technology and the terminology. We will em-

phasize the assumptions used in the various methods. We provide both the foundations and

motivation for further study in computational aerodynamics. We will also use the available

computational aerodynamics methods to develop an understanding of applied aerodynamics using

computational methods. Although the objective is an emphasis on applications, the underlying theo-

ry is provided in some detail. Code implementation details are continually changing. However,

much of the fundamental theory is now becoming well defined, and an understanding of the

foundations of the methods is essential.

What is more important, we include many examples showing what steps users must take to

determine if the answers they are obtaining in their applications are reasonable. How will you know

if the answer is right when an engineering decision must be made based on computational aerody-

namics? As discussed above, blind acceptance of computed results will lead to problems. Similarly,

as described by Hancock,11 advances in computational capability have led to increased demands on

experimental aerodynamics. More experimental data must be taken and the conditions must be much

more exacting than the level of aerodynamic testing frequently conducted in the past. Examples of
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the resulting interplay between computational and experimental work were given recently by Neu-

mann.12 In addition, code validation has become a field in its own right. Code assessment for the

range of validity and accuracy is difficult and time consuming. However, the importance of this step

cannot be overemphasized. The issues are described in detail in the paper by Bobbitt,13 and the im-

portance of code validation was reinforced in the 1993 Dryden Lecture,14 which addressed code vali-

dation and defined the NASA Ames approach to the problem. The sidebar below is from a recent ar-

ticle by Petroski.1 Each engineer must test a code before using it to make a decision.

“ Perhaps the most damaging limitation is that software can be misused or used inappropriately
by an inexperienced or overconfident engineer.”

“ No software can be proven with absolute certainty to be totally error-free, and thus its design,
construction and use should be approached as cautiously as that of any major structure, machine
or system on which human lives depend. Although the reputation and track record of software
producers and their packages can be relied on to a reasonable extent, good engineering always
involves checking them out. If the black box cannot be opened, a good deal of confidence in it
and understanding of its operation can be gained by testing.

The proof tests to which software is subjected should involve the simple and ordinary as well
as the complex and bizarre. A lot more might be learned about a finite element package, for ex-
ample, by solving a problem whose solution is known rather than one whose answer is un-
known. In the former case, something might be inferred about the limitations of the black box;
in the latter, the output from the black box might bedazzle rather than enlighten. In the final
analysis it is the proper attention to detail—in the human designer’s mind as well as in the com-
puter software—that makes the most complex and powerful applications work properly.”1

Thus the objective of any computational aerodynamics work must be:

•   Is the answer  right?

•   Assuming the answer is correct, what is computational aerodynamics
revealing about the physics of the flowfield?

In this text current codes are described for each class of methods. This provides the reader with a

basis for understanding what capability to expect, and a starting point in searching for an appropriate

method. Readers should understand that these surveys are subject to rapid change when describing

methods currently considered advanced. 

1.4  Typical Steps to Using Computational Aerodynamics, the Art of the Analyst

Given a flowfield or aircraft to examine, we start with a physical problem, and then represent the

physical situation with a mathematical model. We then obtain a solution for the mathematical

problem and use that solution to deduce something about the physical problem. As noted above, skill
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and experience are required to carry out this sequence of steps. In particular, judgment has to be

used to select the method to be used. Sometimes, within the allotted budget and time, a CFD solu-

tion cannot be used to obtain the desired results. That’s why you have engineers and not engineering

aides performing the analysis.

The process is given by Rubbert and Tinoco,15 and is illustrated in Fig. 1, as requiring the

following steps:

•  Start with the real flow around the aircraft.

•  Create a physical model of the flowfield, perhaps (and traditionally) considering it
as an inviscid transonic flow, a boundary layer flow and a wake.

• Create the simplified mathematical model(s) to be solved.

• Carry out the numerical solution.

• Examine the results.

• Interpret the sequence of physical model, mathematical model, and numerical solu-
tion, together with the computed results to provide the final aerodynamic solution.

Notice here that the numerical solution of a computational problem is a small part of the total

engineering process. Successful  aerodynamicists must master the entire sequence of steps.

Figure 1. Steps in applying computational analysis to aerodynamics (Ref. 14). 
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1.5  Design vs Analysis: Computational Aerodynamics in Vehicle Design

 Classical: repetitive analysis to design

Although computational fluid dynamics has become a major area of research, its use in the early

stages of aircraft configuration development is not generally understood. An incredible variety of

problems arise in advanced design, and this precludes the standard use of any simple, uniform

procedure. Since the conceptual and preliminary design phases determine the basic configuration

architecture, this is the area where improved design methods can make the biggest impact.

New configurations must exploit advanced technology to achieve improved performance over

existing designs. In an ideal situation the new aircraft will incorporate new component concepts that

have been developed extensively in basic R&D programs. One example is the use of advanced

transonic airfoils that in the ’60s and early ’70s were developed in the wind tunnel. Today they are

designed reliably using 2D computational codes such as GRUMFOIL.16   Another example is the

incorporation of the SC317 concept in a highly swept fighter design requiring efficient supersonic

maneuvering.

A key to the successful development of a configuration is the participation of an experienced

team that can project the possibilities for advanced performance without performing the work in

detail.  This experience base must be the result of having worked extensively with advanced vehicle

design and computational methods. Hopefully, with this experience, reliable projections of the

performance that can be obtained using computational design methods can be made with confidence.

Linear theory methods are used in conceptual design on a daily and even hourly basis. The aero-

dynamicist works with the configuration designer to develop a properly balanced design with

optimum trimmed performance. This part of the problem can usually be treated well enough for con-

ceptual design using linear methods. However, the high angle of attack characteristics and

determination of acceptable control power is still a challenge for all levels of computational aerody-

namics codes.18  Currently, the “timescale” for using advanced codes is too long for conceptual de-

sign, approaching the time required for a wind tunnel test. It may require weeks or even months to

obtain reliable solutions over a complete new geometry. Figure 2 presents an analogy between wind

tunnel testing and computational methods.19 The geometry definition required for advanced analysis

is equivalent to the requirements for fabricating a wind tunnel model. This definition can be time

consuming. Thus advanced codes are normally used to assess only a few specific features of a new

vehicle concept. That feature might be a unique configuration idea, where you need to evaluate the

viability of a new concept to reduce risk, and assure the program managers that the vehicle concept

is realistic. Usually there is only time to examine one aspect of the design using advanced codes

during the conceptual design phase.
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Figure 2. Analogy between computational and experimental aerodynamics,
based on a figure by Bengelink.19

The Grumman X-29 forward swept wing airplane provides an illustrative example. The key idea

in the Grumman proposal for a forward swept wing arose due to work on an aft swept wing design

using an extremely high performance airfoil, the Grumman “K” foil. That airfoil was developed in

1974, initially by Don MacKenzie and then by MacKenzie working with Paul Bavitz. They used the

hodograph method (see Chap. 11), and an early transonic viscous code developed by Bavitz20 when

he was on assignment from Grumman to NASA Langley working for Whitcomb. Wind tunnel work

by Glenn Spacht (1977) led to the realization that the full performance of this airfoil could be

realized only if the wing had a highly swept trailing edge, combined with reduced sweep on the
leading edge. An inverse-taper, aft-swept wing or a conventionally tapered forward-swept wing

planform provided the only means of meeting these requirements. Today, that conclusion could have

been reached using 3D computational methods. The airfoil technology development was done using

advanced methods. The rest of the design was done using more conventional (at that time) linear

aerodynamic methods, verified and refined during wind tunnel tests.

Thus, computational aerodynamics was directly responsible for the airfoil design which was the

core technology that led to the development of the X-29. Nevertheless, the wing design was done

with the aid of at least some wind tunnel work. Two other aspects of the design besides the point
performance development required testing. To define the aerodynamic model required to design the

control system,  the aerodynamic characteristics were documented over the complete range of angle

of attack and sideslip for every combination of control surface deflections in an extensive wind

tunnel test program before the first flight* was possible (note that the control system design is now

frequently the reason for programs delays of advanced aircraft—detailed definition of the aerody-

namic characteristics is required). Wind tunnel testing was also required to define the load distribu-

tions for structural design. The critical design loads usually occur at conditions well away from the

design point and involve many loading conditions under separated flow conditions.

* The first flight took place on December 14, 1984, ten years after the airfoil was designed.
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Examples of the interplay between configuration design and computational aerodynamics in the

near future are the use of tailored forebodies developed using computational aerodynamics to

provide specific levels of directional stability at high angle of attack, or components designed to

achieve significant regions of laminar flow. The actual preliminary design phase would then

integrate these components into the configuration without extremely intense computational aerody-

namics work.

The use of computational aerodynamics becomes routine once the configuration geometry is

well defined. Computational aerodynamics is heavily used in conjunction with wind tunnel tests

once the program moves into a demonstration/validation stage. Often the codes are used to design

incremental modifications to the wind tunnel-tested configuration. Many examples of configuration

refinements and modifications using computational aerodynamics have been documented at this

stage. Perhaps the best example is the design of the nacelle-wing installation on the recent Boeing

transports, and especially the new big-engine 737.15

Advanced: Direct design and optimization

More important, but lagging behind the development of computational aerodynamics as an anal-

ysis tool, is the use of the computer to design and optimize the configuration directly. In this role the

computer is used in a fundamentally different way than as the computational equivalent of a wind

tunnel. This is the most efficient use of computational aerodynamics in vehicle design. Many ideas

have been proposed and it is currently an area of active research, but relatively few methods have

actually been completely developed. We will discuss and compare these methods in the following
chapters. Here, again, the most successful applications have been for airfoils. Further discussion and

references can be found in the paper describing “Smart Aerodynamic Optimization,”21 and in the re-

cent work in the area by a pioneer of analysis methods, Anthony Jameson.22,23

1.6  A Brief History of Computing Systems and Computational Aerodynamics

The development of computational aerodynamics is closely linked to the development of

computers, and more recently computing systems and software. Recall that computers were, at least

in part, originally developed for aerodynamics work: the creation of accurate ballistic shell trajectory

tables. The other original reasons to develop computers were for cryptography, and subsequently for

the nuclear weapons program.

Perhaps the most important early computational aerodynamics work conducted in the ’50s and

’60s was the work on “the blunt body problem.” At that time the prediction of the heat transfer and

flight characteristics of ballistic missiles and manned space capsules entering the atmosphere were

the “hot” items in fluid mechanics. Much of this work was done in machine and assembly language.

Compilers were not advanced, frequently containing bugs themselves. Programmers thought that

compilers produced code that executed much more slowly than code written by professional pro-
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grammers in machine or assembly language (the original developers of programmable computers,

Von Neuman and Turing, assumed that machine level instruction was sufficient—they never

considered high level languages to be necessary). Patching bugs in the executable code was

considered possible! These computers were slower and had much less storage than an Apple ][ Com-

puter. Trying to solve problems that exceed the capability of the computer is a standard feature of

computational aerodynamics. Despite rapid advances in computing technology, aerodynamicists

always demand more speed and storage; even with the current Cray C-90.

Vortex lattice methods for aircraft applications were reported in 1963 (in Sweden, and at Boeing

and Grumman in the US). At that time the vast majority of advanced fluid mechanics work was

associated with the space program. Other methods were also under development, with Douglas

being a leader.

I first used a computer in 1966 at McDonnell Aircraft in Saint Louis, Mo. We were doing trajec-

tory analysis for hypersonic vehicles. The aerodynamic characteristics were calculated by hand

using Newtonian flow theory. Cards were used for input, and some cases were run locally in Saint

Louis (we had a “priority” of 5 minutes a night of CPU time, and no one talked about what computer

was used). Long jobs were run on an underutilized company computer in Houston and output was

flown back on the company plane, which made frequent trips to Houston (these were the days of

Project Gemini).

The introduction of the IBM System 360 in the mid ’60s revolutionized access to computers for

non-specialists. This was the first  widely available, easily used computing system. VPI acquired a

System 360 at that time, and an addition was made to Burruss Hall to house the computer center.

Until then the university computer had been housed in a temporary wood building near the present

site of Derring Hall. Initially, the only access to the computer was through submission of a box of

cards. Jobs were run in a batch mode, and FORTRAN II was being supplanted by  FORTRAN IV. It

took hours or even days to get a job back. Students should understand that the computing power

available through this process was much less than they have on today’s PCs. With the introduction

of FORTRAN IV the scientific computing community started using a language that would be stable

for many years. CDC introduced the CDC 6000 series computers at about this time, and the CDC

6600 became the computer of choice for scientific computing. Seymour Cray was one of the key de-

signers of that computer. Later the CDC 7600 was introduced, and the CDC 7600 at NASA Ames,

using the SCOPE operating system, was the best system I ever used. Our access to the CDC 7600

was still by submission of card decks. We used a CDC development environment known as UP-

DATE, that was an approach to what is known today as version control. It worked very well.

By 1970 aerodynamicists were solving linearized inviscid three dimensional incompressible

flow problems routinely, and two dimensional boundary layer methods were available. The most

important problem being tackled in 1970 was the computation of transonic flow. The first solutions
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began to be reported around 1970, and the first practical solution procedure was reported in 1971.

The first half of the ’70s was dominated by the development of solutions for two-dimensional

transonic flow. Three-dimensional transonic small disturbance theory solutions also began to appear.

At a major conference at NASA Langley* in 1975 one speaker drew on the rapid advances in

capability to present a chart which could be used to project that computational aerodynamics would

be fully developed by 1984. 

A joke by the CFD researchers at NASA Ames in the mid-70s reflects the attitude of the
time:

Question: “What do you use wind tunnels for?”

Answer: “They are places with lots of space, where you store your computer output”

Well, this shows that prediction is tricky, especially when it involves the future. (YB)

The early explosive advance in capability did not continue, and progress slowed. Advances
became much more difficult. Why? Computational fluid dynamics (CFD) development became

more rigorous, and:

i) Complexity of three-dimensional flowfields is not just “one more dimension.”

•  algorithms for the Euler equations were difficult to develop

•  computer storage requirements made remarkable demands on computers

•  handling this much information, pre- and post- computation is a job in itself

ii) Separated flow solutions were required.

•  numerical algorithms required further development

•  after the storage requirements began to be overcome, the inevitable limits of 

   turbulence models became apparent

iii) Real life arbitrary geometry presented surprising challenges.

•  grid generation became a discipline in its own right

iv) Software development is the “tar pits” of engineering (see Chap. 3)

•  as more people work on a code the productivity decreases dramatically,

   individuals can no longer single-handedly create a complete new code

The situation today is again fluid. Key new developments in computing revolve around the

dramatic advances in workstation technology, graphical interaction with results, and the computation

of solutions using massively parallel processing technology. After working in an essentially stable

* “Aerodynamic Analysis Requiring Advanced Computers,” March 4-6, 1975. (see NASA SP-347)
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computing environment for twenty years, computational aerodynamicists will be using exciting new

computer hardware and new software products in the near future.

One advance in productivity is the adoption of UNIX as a common operating system on most

current scientific computing systems. Although this can be an emotional subject, computational

aerodynamics users benefit greatly. Code developers and computer systems people typically work

with a single operating system. But, as a user, I have been in the position of having to compute on

many different systems, frequently all in the same day.  As an example, consider an actual case

where proficiency in IBM CMS and TSO, VAX VMS, and Cray COS were required during the

course of a single day’s work effort. Each system had a different text editor! UNIX and vi, the com-

mon text editor, eliminates this problem. 

1.7 Typical Method/Code Development Cycle

Code development is a long process. Initial efforts to develop the algorithm are only a portion of

the effort. Figure 3 shows the typical process. Initial demonstration of a new algorithm is often done

by a single CFD researcher and may take a year or two. Technology development is typically carried

out by several engineers, applying the method using pilot codes tailored to solve a specific problem.

The code itself is continually adjusted to obtain improved results and handle unforeseen situations.

This activity may also last one or two years.

If the method provides a significant improvement compared to existing codes, it may be devel-

oped into a production code. Frequently computer science majors direct this activity. An attempt is

made to anticipate future requirements, and make a very general code. This may also take years. 

Once the production code is finished, the user has a code which typically cannot be changed

without major coordination with support groups. Since five years may have elapsed since the meth-

od was originated, more advanced methods may already be available in the technology development

stage, and the production code may not be used as often as expected. Instead, the latest capability

may be available  in a new pilot code. Thus pilot codes are frequently used in advanced vehicle anal-

ysis and design to get the best possible answers. How this problem is best handled requires the use

of engineering judgment. The continually changing software problem adds another complication to

the practice of computational aerodynamics.

One significant philosophical change emerged in code development over the last decades. Initial-

ly, each code had its own input geometry definition and graphics package to examine the results. Be-

cause this information is common to most codes, these tasks were separated, and the codes began to

be designed so that the geometry/mesh generation became distinct from the flow solver. In addition,

the graphical analysis was separated. Essentially, the results were stored as databases to be examined
with another program. This allowed for more efficient code development. For the flow solver part of

the problem this meant that the code required pre- and post-processing software. This work could be
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done independently of the flow solver. This approach, illustrated in Fig. 4, allows much more flexi-

bility. Generally, it’s much better for the user, although for some simple calculations it’s much sim-

pler if the flow solver handles grid generation and graphical output. This is sometimes possible in

two-dimensional analysis, but rare for three-dimensional analysis, where the amount of data generat-

ed can be overwhelming.

An important consideration is the teamwork approach. Figure 4 showed the split of the code

tasks. The use of a team to develop codes is just as important as the codes themselves. Whitfield has

recently described his own experiences.24 He found that using teams with individuals responsible for

specific parts of the work is the key to good productivity. In particular, geometry definition and grid

generation are areas where considerable skill and dedication are required. In his lab one individual is

responsible for all the grid generation work. This is a graduate student or research engineer level ac-

tivity, and productivity has improved using this approach. Similarly, post processing using computa-

tional flow visualization has been done by dedicating people to do this work exclusively. In this case

undergraduate students are capable of handling the job. Consistent with my own experience, Whit-

field has found that the codes do not produce results, but people produce results using the codes. The

human element is at least important as the software and hardware. Finally, to simplify problems

comparing results from different flow models, Whitfield is now using only Euler or Navier-Stokes

solutions, and has stopped using the simpler flow models shown in Fig. 4.

Figure 3. Code Development Process

1-14 Applied Computational Aerodynamics

Monday, January 20, 1997

Time

Basic Research: Ideas Evaluated
Algorithm Development
Initial Demonstration

Level of Effort

Project Application, 
continuous code support
and extension

Applications Research,
- assessment of potential through
evaluation of method with experiment,
and use in key applications - users modify code
as required

Decision to make a "production code" for
general use - professional code design,  
computer science types involved (maybe in control)

Enabling Technology

Mature Capability

Software Development: Putting It Together

Technology Development



1.8 Overview of the following chapters

This text provides a systematic development of computational methods starting with early “pre-

CFD” methods of computational aerodynamics that are still useful in aerodynamic design and analy-

sis. These methods are used to introduce essential aspects of applied aerodynamics for airfoils and

wings and an introduction to drag calculation methods. The basic ideas of CFD and grid generation

are then discussed, followed by a presentation of viscous effects and transonic flows in aerodynam-

ics. Finally, a discussion of extensions required to treat high speed aerodynamics problems is pre-

sented. In each case the theory is described, fundamental assumptions identified, a numerical imple-

mentation is presented, and examples illustrating the use of the method to understand aerodynamic

design and analysis are given. Having acquired insight into basic applied aerodynamics, a brief tuto-

rial covering the current advanced methods is presented. We conclude with a review of good compu-

tational aerodynamics procedures required to use computational aerodynamics in practice. 

Upon the completion of the text you should be able to assess a problem for analysis using com-

putational aerodynamics, formulate the problem, select a method, and obtain a solution. Then you

should be able to use engineering judgment to decide if you have a valid engineering answer.

1.9  Exercise

Pick an airfoil. Select any airfoil of your choice for which you can find geometry, and the
experimental pressure distributions, and force & moment data. 

1.   Plot the airfoil.
2.   Plot the pressure distribution at one angle of attack.
3.   Plot the force and moment data over a range of angles of attack. Make sure to 

include the drag polar.
4.   Turn in a cover sheet describing airfoil and data source (make sure to    

include the test conditions: Reynolds number, Mach number and transition 
details, i.e., fixed or free transition. If fixed, where is it fixed?)). 
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Caution:  You will use these data to compare with results from a computer program, and
this data set will play a role in several assignments, so pick an airfoil you can use all semes-
ter. See Appendix A for additional information on airfoils, Appendix B for sources of data,
and Appendix C for directions on the presentation of results (all of which aren’t repeated
here).
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2. Getting Ready for Computational Aerodynamics:

Fluid Mechanics Foundations

We need to review the governing

equations of fluid mechanics before

examining the methods of computa-

tional aerodynamics in detail. Devel-

opments in computational methods

have resulted in a slightly different

approach to the fundamental conser-

vation statements compared with pre-

computer classical presentations. The

review also establishes the nomencla-

ture to be used in the rest of the chap-

ters. The presentation presumes that

the reader has previously had a course

in fluid mechanics or aerodynamics. Many excellent discussions of the foundations of fluid me-

chanics for aerodynamics application are available. Karamcheti1  does a good job. Other books

containing good discussions of the material include the books by Bertin and Smith,2 Anderson, 3

and Moran.4 The best formal derivation of the equations is by Grossman.5

2.1  Governing Equations of Fluid Mechanics

The flow is assumed to be a continuum. For virtually all aerodynamics work this is a valid

assumption. One case where this may not be true: rarefied gas dynamics, where the flow has

such low density that the actual molecular motion must be analyzed. This is rarely important,

even in aero-space plane calculations. Aeroassisted Orbital Transfer Vehicles (AOTV’s) are the

only current vehicles requiring non-continuum flowfield analysis.
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The fluid is defined by an equation of state and the thermodynamic and transport properties,

i.e., the ratio of specific heats, γ, viscosity, µ, and the coefficient of heat conduction, k. Govern-

ing equations and boundary conditions control the motion of the fluid. The governing equations

are given by conservation laws:

• mass continuity

• momentum Newton’s 2nd Law, F=ma
• energy 1st Law of Thermodynamics

Coordinate systems are also important in aerodynamics. The general equations of fluid mo-

tion are independent of the coordinate system. However, simplifying assumptions frequently in-

troduce a directional bias into approximate forms of the equations, and require that they be used

with a specific coordinate system orientation relative to the flowfield.

Cartesian coordinates are normally used to describe vehicle geometry. In this chapter we will

work entirely in the Cartesian coordinate system. It is frequently desirable to make calculations

in non-Cartesian coordinate systems that are distorted to fit a particular shape. General non-

orthogonal curvilinear coordinates are discussed in Chapter 9. Even when using Cartesian coor-
dinates, the x, y, and z coordinates are oriented differently depending on whether the flow is two-

or three-dimensional. Figure 2-1 shows the usual two-dimensional coordinate system. The stan-

dard aerodynamics coordinate system in three dimensions is illustrated in Fig. 2-2.

Figure 2-1 Coordinate system for two-dimensional flow.

In general Cartesian coordinates, the independent variables are x, y, z,  and t. We want to

know the velocities,  u, v, w, and the fluid properties;  p, ρ, T.  These six unknowns require six

equations. The six equations used are provided by the following:
 

continuity 1 equation(s)

momentum 3 "

energy 1 "

equation of state 1 " .
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Figure 2-2 Standard coordinate system for three-dimensional flow.

Assumptions frequently reduce the number of equations required. Examples include incom-

pressible, inviscid, irrotational flow, which can be described by a single equation, as shown

below. Prior to the 1980s almost all aerodynamics work used a single partial differential equa-

tion, possibly coupled with another equation. An example of this approach is the calculation of

potential flow for the inviscid portion of the flowfield, and use of the boundary layer equations to

compute the flowfield where an estimate of the viscous effects is required.

2.2  Derivation of Governing Equations

We now need to develop a mathematical model of the fluid motion suitable for use in numer-

ical calculations. We want to find the flowfield velocity, pressure and temperature distributions.

The mathematical model is based on the conservation laws and the fluid properties, as stated

above. Two approaches can be used to obtain the mathematical description defining the govern-

ing equations.

I. Lagrangian: In this method each fluid particle is traced as it moves around the body.
Even in steady flow, the forces encountered by the particle will be a function of its
time history as it moves relative to a coordinate system fixed to the body, as defined
in Figs. 2-1 and 2-2. This method corresponds to the conventional concept of New-
ton’s Second Law.
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II. Eulerian: In this method we look at the entire space around the body as a field, and
determine flow properties at various points in the field while the fluid particles stream
past. Once this viewpoint is adopted,  we consider the distribution of velocity and
pressure throughout the field, and ignore the motion of individual fluid particles.

Virtually all computational aerodynamics methods use the Eulerian approach. The use of this

approach requires careful attention in the application of the conservation concepts, and Newton’s

second law in particular. Since these two approaches describe the same physical phenomena,

they can be mathematically related. Karamcheti1 provides a particularly good explanation of the

ideas underlying approaches to the governing equations in his Chapters 4-7. Newton’s Law gov-

erns the motion of a fixed fluid particle. However, to establish a viable method for computation,

aerodynamicists employ the Eulerian approach, and define a control volume, which maintains a

fixed location relative to the coordinate system. The connection between the rate of change of the

properties of the fixed fluid particle (velocity, density, pressure, etc.) and the rate of change of

fluid properties flowing through a fixed control volume* requires special consideration. The sub-

stantial derivative, discussed below, is employed to define the rate of change of fixed fluid parti-

cle properties as the particle moves through the flowfield relative to the fixed coordinate system. 

An integral approach to the description of the change of properties of a fluid particle relative to

the fixed coordinate system is available through the use of the Reynolds Transport Theorem,

which is described by Owczarek6 and Grossman5 (section 1.2).

The conservation equations can be expressed in either a differential or integral viewpoint.

The differential form is the most frequently used in fluid mechanics analysis and textbooks.

However, many numerical methods use the integral form. Numerically, integrals are more accu-

rately computed than derivatives. The integral form handles discontinuities (shocks) better. The

differential form assumes properties are continuous. We will use aspects of each approach.

* The concept of a “control volume” arose as an engineering requirement for a means to formulate the physical
description to allow calculations to be made. It differs from the viewpoint adopted by physicists. An explanation
of the concept’s origins is contained in the book by Walter G. Vincenti, What Engineers Know, and How They
Know It: Analytical Studies from Aeronautical History, John Hopkins Univ. Press, 1990. The chapter is entitled
“A Theoretical Tool for Design: Control Volume Analysis 1912-1953.”
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2.2.1  Conservation of Mass: the Continuity Equation

In this section we derive the continuity equation from a control volume viewpoint (in 2D),
and then we look at the equivalent integral statement and the use of the Gauss Divergence Theo-
rem to establish the connection. Other derivations are given by Moran4 (sections 2.2, 2.3, 2.4)
Anderson3 (chapters 2 and 6), and Bertin and Smith2 (chapter 2).

The statement of conservation of mass is in words simply:

net outflow of mass decrease of mass
through the surface = within the
surrounding the volume volume.

To translate this statement into a mathematical form, consider the control volume given in
Fig. 2-3. Here, u is the velocity in the x-direction, v is the velocity in the y-direction, and ρ is the
density.

Figure 2-3. Control volume for conservation of mass.* 

The net mass flow rate, or flux,** (out of the volume) is:

  
(2-1)

* Note that convention requires that control volumes be described using dashed lines to illustrate that the bound-
aries are fictitious, and fluid is flowing freely across them. 

** A flux is a quantity which flows across the boundary of a defined surface. Typically we think of mass, momen-
tum and energy fluxes.
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Use a Taylor series expansion of the mass fluxes into the volume around the origin of the
volume. The flux per unit length through the surface is multiplied by the length of the surface to
get:

. (2-2)

Adding these terms up we get:

. (2-3)

Summing up and canceling ∆X∆Y we get:

(2-4)

or in three dimensions:

. (2-5)

This is the differential form of the continuity equation. The more general vector form of the

equation is:

. (2-6

Alternately, consider the arbitrary control volume shown in Fig. 2-4. The conservation of

mass can then be written in an integral form quite simply. The surface integral of the flow out of

the volume simply equals the change of mass given in the volume:

. (2-7)
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Figure 2-4. Arbitrary fluid control volume.

This is true without making any assumption requiring continuous variables and

differentiability. It’s for all flows, viscous or inviscid, compressible or incompressible. 

To relate this expression to the differential form, we make use of the Gauss Divergence

Theorem, which assumes continuous partial derivatives. It is given by:

(2-8)

and the equivalent statement for a scalar is:

. (2-9)

Using this theorem, the differential and integral forms can be shown to be the same. First, re-

write the surface integral in the conservation of mass, Eq. (2-7), as:

(2-10)

using the divergence theorem, Eq. (2-8). The continuity equation integral form thus becomes:

(2-11)

and since v refers to a fixed volume, we can move ∂/∂t inside the integral, 

. (2-12)

For this to be true in general, the integrand must be zero, which is just the differential form! Fur-

ther discussion, and other derivations are available in Moran,4 sections 2.2, 2.3, and 2.4, Ander-

son,3 section 2.6, and Bertin and Smith2, Chapter 2.
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2.2.2  Conservation of Momentum, and the Substantial Derivative

In this section we derive the general equations for the conservation of momentum. This is a

statement of Newton’s 2nd Law: The time rate of change of momentum of a body equals the net

force exerted on it. For a fixed mass this is the famous equation 

. (2-13)

Substantial Derivative

We need to apply Newton’s Law to a moving fluid element (the “body” in the 2nd Law state-

ment given above) from our fixed coordinate system. This introduces some extra complications.

From our fixed coordinate system, look at what D/Dt means. Consider Fig. 2-5 (from Karamche-

ti1). Consider any fluid property, Q(r,t).

Figure 2-5. Moving particle viewed from a fixed coordinate system.

The change in position of the particle between the position r at t, and r+∆r at t+∆t is:

. (2-14)

The space change ∆s is simply equal to V∆t. Thus we can write:

, (2-15)

which is in a form which can be used to find the rate of change of Q:

.
(2-16)
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Note that the rate of change is in two parts, one for a change in time, and one for a change in

space. Thus we write the change of Q as a function of both time and space using the Taylor se-

ries expansion as:

, (2-17)

where the direction of s is understood from Fig. 2-5. Substituting into Eq. (2-16) and taking the

limit, we obtain:

.

(2-18)

This is the important consideration in applying Newton’s Law for a moving particle to a

point fixed in a stationary coordinate system. The second term in Eq. (2-18) has the unknown ve-

locity V multiplying a term containing the unknown Q. This is important.

We now put this result into a specific coordinate system:

. (2-19)

where eV denotes the unit vector in the direction of V. Thus,  and:

. (2-20)

Thus, we write the substantial derivative, Eq. (2-16), using Eqs.(2-18) and (2-20) as:

, (2-21)

which can be applied to either a scalar as: 

(2-22)
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The convective derivative introduces a fundamental nonlinearity into the system
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or to a vector quantity as: 

. (2-23)

In Cartesian coordinates, V = u, v, w, and the substantial derivative becomes:

.
(2-24)

To solve equations containing these nonlinear terms we generally have to either use finesse,

where we avoid solutions requiring Eq. (2-24) by using other facts about the flowfield to avoid

having to deal with Eq.(2-24) directly, or employ numerical methods. There are only a very few

special cases where you can obtain analytic solutions to equations explicitly including the non-

linearity.

Forces

Now we need to find the net forces on the system. What are they?

• body forces

• pressure forces

• shear forces

Each of these forces applies to the control volume shown in Fig. 2-6 given below. The τ is a

general symbol for stresses. In the figure, the first subscript indicates the direction normal to the

surface, and the second subscript defines the direction in which the force acts. Fluids of interest

in aerodynamics are isotropic. To satisfy equilibrium of moments about each axis:

(2-25)
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Figure 2-6. Control volume with surface forces shown.

The connection between pressure and stress is defined more specifically when the properties

of a fluid are prescribed. Figure 2-7 shows the details of the forces, expanded about the origin

using a Taylor Series. The force f is defined to be the body force per unit mass.

            

Figure 2-7. Details of forces acting on a two-dimensional control volume.
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Considering the x-direction as an example, and using the Taylor series expansion shown in

Figure 2-7, the net forces are found in a manner exactly analogous to the approach used in the

derivation of the continuity equation. Thus, the net force in the x-direction is found to be:

. (2-26)

Now we combine the forces, including the z-direction terms. Substitute for the forces into the

original statement, of F = ma, Eq.(2-13), and use the substantial derivative and the definition of

the mass,  m = ρ∆x∆y∆z. Then the x-momentum equation becomes {writing Eq.(2-13) as ma = F,

the usual fluid mechanics convention, and considering the x component, max = Fx},

     .

(2-27)

The ∆x∆y∆z’s cancel out and can be dropped. The final equations can now be written. Com-

pleting the system with the y- and z- equations we obtain,

. (2-28)

These are general conservation of momentum relations, valid for anything!

To make Eq. (2-28) specific, we need to relate the stresses to the motion of the fluid. For

gases and water, stress is a linear function of the rate of strain. Such a fluid is called a Newtonian

fluid, i.e.:

(2-29)

2- 12 Applied Computational Aerodynamics

Thursday, January 16, 1997

τ = µ
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∂τ yz

∂y
+
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ρ
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∂τ zx

∂z
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Du
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= ρ ∆x ∆y∆z fx +

∂
∂x

τ xx( )∆x ∆y∆z +
∂
∂y

τyx( )∆y ∆x∆z +
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∂z

τzx( )∆y ∆x ∆z

ρ ⋅ ∆x ∆y fx +
∂

∂x
τxx( )∆x ∆y+

∂
∂y

τyx( )∆y ∆x



where µ is the coefficient of viscosity. In our work we consider µ to be a function of temperature

only. Note that in air the viscosity coefficient increases with increasing temperature, and in water

the viscosity coefficient decreases with temperature increases.

To complete the specification of the connection between stress and rate of strain, we need to

define precisely the relation between the stresses and the motion of the fluid. This can become

complicated. In general the fluid description requires two coefficients of viscosity. The coeffi-

cient of viscosity arising from the shear stress is well defined. The second coefficient of viscosity

is not. This coefficient depends on the normal stress, and is only important in computing the de-

tailed structure of shock waves. Various assumptions relating the coefficients of viscosity are

made. The set of assumptions which leads to the equations known as the Navier-Stokes equa-

tions are:

• The stress-rate-of-strain relations must be independent of coordinate system.

• When the fluid is at rest and the velocity gradients are zero (the strain rates 

are zero), the stress reduces to the hydrostatic pressure.

• Stoke’s Hypothesis is used to eliminate the issue of mean pressure vs thermo- 

dynamic pressure (this is the assumption between viscosity coefficients).

Details of the theory associated with these requirements can be found in Schlichting7 and Gross-

man.5 Using the conditions given above leads to the following relations:

(2-30)

and

.
(2-31)
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Combining and neglecting the body force (standard in aerodynamics), we get:

. (2-32)

These are the classic Navier-Stokes Equations (written in the standard aerodynamics form,
which neglects the body force). They are i) non-linear {recall that superposition of solutions is
not allowed, remember D/Dt}, ii) highly coupled, and iii) long! As written above it’s easy to

identify F = ma, written in the fluid mechanics form ma = F. 

When the viscous terms are small, and thus ignored, the flow is termed inviscid. 

The resulting equations are known as the Euler Equations.

There are also alternate integral formulations of the equations. Consider the momentum flux

through an arbitrary control volume in a manner similar to the integral statement of the continu-
ity equation pictured in Fig. 2-4 and given in Eq.(2-7). Here, the momentum change, ρV, is pro-
portional to the force. The integral statement is:  

. (2-33)

and this statement can also be converted to the differential form using the Gauss Divergence

Theorem. Note that we use the derivative notation  to denote the change in the fixed “po-

rous” control volume that has fluid moving across the boundaries.

The derivation of the Navier-Stokes Equations is for general unsteady fluid motion. Because

of limitations in our computational capability (for some time to come), these equations are for
laminar flow. When the flow is turbulent, the usual approach is to Reynolds-average the equa-
tions, with the result that additional Reynolds stresses appear in the equations. Clearly, the addi-
tion of new unknowns requires additional equations. This problem is treated through turbulence

modeling and is discussed in Chapter 10, Viscous Effects in Aerodynamics.
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2.2.3  The Energy Equation

The equation for the conservation of energy is required to complete the system of equations.

This is a statement of the 1st Law of Thermodynamics: The sum of the work and heat added to a

system will equal the increase of energy. Following the derivation given by White:8

. (2-34)

For our fixed control volume coordinate system, the rate of change is:

(2-35)
where:

(2-36)

and e is the internal energy per unit mass. The last term is the potential energy, i.e. the body

force. In aerodynamics this term is neglected. Et can also be written in terms of specific energy

as:

(2-37)
where:

. (2-38)

To obtain the energy equation we need to write the RHS of Eq.(2-35) in terms of flow prop-

erties. Consider first the heat added to the system.*  The heat flow into the control volume is
found in the identical manner to the mass flow. Using Fig. 2-8 for reference, obtain the expres-

sion for the net heat flow.

Figure 2-8. x-component of heat flux into and out of the control volume.

* Here we neglect heat addition due to radiation. See Grossman5 for the extension to include this contribution.
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{



The heat fluxes are:

(2-39)

and the net heat flow into the control volume in the x-direction is qxin
 - qxout

, or:

.

Similarly, using the same analysis in the y and z directions we obtain the net heat flux into

the control volume (realizing that the ∆x∆y∆z terms will cancel):

. (2-40)

Now relate the heat flow to the temperature field. Fourier’s Law provides this connection:

(2-41)

where k is the coefficient of thermal conductivity. Eq.(2-41) is then put into Eq.(2-40) to get the

heat conduction in terms of the temperature gradient:

.
(2-42)

Next find the work done on the system. Using the definition of work = force x distance , the
rate of work is:

.
(2-43)

Using the control volume again, we find the work, which is equal to the velocity times the

stress. The work associated with the x-face of the control volume (for two-dimensional flow) is:

. (2-44)

The complete description of the work on the control volume is shown in Figure 2-9.
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Figure 2-9 Work done on a control volume.

Using the x-component of net work as an example again, the work done on the system is

wxin - wxout, or:

. (2-45)

Including the other directions (and dropping the ∆x∆y∆z terms, which cancel out)*:

. (2-46)

Substituting Eqs.(2-37) and (2-38) into (2-35) for Et, Eq.(2-42) for the heat, and Eq.(2-46)

for the work, we obtain:

. (2-47)

* Here we are using White’s notation. Realize there is a difference between W and w. 
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Many, many equivalent forms of the energy equation are found in the literature. Often the equa-

tion is thought of as an equation for the temperature. We now descibe how to obtain one specific

form. Substituting in the relations for the τ’s in terms of µ and the velocity gradients, Eqs. (2-29)

and (2-30), we obtain the following lengthy expression (see Bertin and Smith2 page 41-45). Mak-

ing use of the momentum and continuity equations to “simplify” (?), and finally, introducing the

definition of enthalpy, h = e + p/ρ, we obtain a frequently written form. This is the classical ener-

gy equation, which is given as:

(2-48)

where

. (2-49)

The energy equation can be written in numerous forms, and many different but entirely

equivalent forms are available. In particular, the energy equation is frequently written in terms of

the total enthalpy, H, to good advantage in inviscid and boundary layer flows. A good discussion

of the energy equation is also given by White.8

There is also an integral form of this equation:

. (2-50)

Here again note that we use the derivative notation  to denote the change in the fixed “po-

rous” control volume that has fluid moving across the boundaries.
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2.3  Boundary Conditions

If all flowfields are governed by the same equations, what makes flowfields different? Bound-

ary conditions are the means through which the solution of the governing equations produce dif-

fering results for different situations. In computational aerodynamics the specification of bound-

ary conditions constitutes the major part of any effort. Presuming that the flowfield algorithm se-

lected for a particular problem is already developed and tested, the application of the method

usually requires the user to specify the boundary conditions.

In general, the aerodynamicist must specify the boundary conditions for a number of different

situations. Perhaps the easiest (and most obvious physically) is the condition on the surface. The

statement of the boundary conditions is tightly connected to the flowfield model in use. For an

inviscid steady flow over a solid surface the statement of the boundary condition is:

(2-51)

which simply says that the difference between the velocity of the component of flow normal to

the surface and the surface normal velocity (the relative velocity, VR) is zero. This simply means

that the flow is parallel to the surface, and is known as the non-penetration condition. If V is the

fluid velocity and VS is the surface velocity, then this becomes,

. (2-52)

Finally, if the surface is fixed,
. (2-53)

If the flow is viscous the statement becomes even simpler: V = 0, the no-slip condition. If the

surface is porous, and there is mass flow, the values of the surface velocity must be specified as

part of the problem definition. Numerical solutions of the Euler and Navier-Stokes solutions re-

quire that other boundary conditions be specified. In particular, conditions on pressure and tem-

perature are required, and will be discussed in later chapters.

As an example, recall that to obtain the unit normal the body is defined (in 2D) in the form

F(x,y) = 0, the traditional analytic geometry nomenclature. In terms of the usual two-dimensional

notation, the body shape is given by y = f(x), which is then written as:

(2-54)

and

.
(2-55)
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Conditions also must be specified away from the body. Commonly this means that at large

distances from the body the flowfield must approach the freestream conditions. In numerical

computations the question of the farfield boundary condition can become troublesome. How far

away is infinity? Exactly how should you specify the farfield boundary condition numerically?

How to best handle these issues is the basis for many papers currently appearing in the literature.

Another important use of boundary conditions arises as a means of modeling physics that

would be neglected otherwise. When an approximate flowfield model is used, the boundary con-

ditions frequently provide a means of including key elements of the physics in the problem with-

out having to include the physics explicitly. The most famous example of this is the Kutta

Condition, wherein the viscous effects at the trailing edge can be accounted for in an inviscid
calculation without treating the trailing edge problem explicitly. Karamcheti1 discuss boundary

conditions in more detail.

2.4  Standard Forms and Terminology of Governing Equations

To understand the literature in computational aerodynamics, several other aspects of the

terminology must be discussed. This section provides several of these considerations.

 2.4.1.  Nondimensionalization

The governing equations should be nondimensionalized. Considering fluid mechanics theory,

nondimensionalization reveals important similarity parameters. In practice, many different non-

dimensionalizations are used, and for a particular code, care must be taken to understand exactly
what the nondimensionalization is.

Sometimes the dimensional quantities are defined by ( )*’s or (~)’s. In other schemes the

non- dimensionalized variables are designated by the special symbols. In the example given here,

the non-dimensionalized values are denoted by an ( )*.  In this system, once the quantities are de-

fined, the *’s are dropped, and the nondimensionalization is understood.

Many different values can be used. We give an example here, and use the the freestream ve-

locity and flow properties, together with the reference length as follows:

(2-56)
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Each code will have a set of reference nondimensionalizations similar to these. A specific ex-

ample is given below in Section 2.4.3. Frequently, the speed of sound is used as the reference ve-

locity. Making sure that you understand the nondimensionalization is an important part of apply-

ing the codes to aerodynamics problems properly.

2.4.2. Use of divergence form

The classical forms of the governing equations normally given in textbooks usually are not

used for computations (as we gave them above). Instead the divergence, or conservation, form*

is used. This form is found to be required for reliable numerical calculation. If discontinuities in

the flowfield exist, this form must be used to account for discontinuities correctly. It is a way to

improve the capability of the differential form of the governing equations. For example, across a

shock wave the denity and velocity both jump in value. However, the product of these quantities,
the mass flow, is a constant. Thus we can easily see why it is better numerically to work with the

product rather than the individual variables. In this section we show how the divergence forms

are obtained from the standard classical form. We use the 2D steady x-momentum equation as

the example:

. (2-57)

This equation is written using the following identities:

(2-58)

or:

, (2-59)

and similarly with the second term:

(2-60)

or

. (2-61)

* Be careful here, the continuity, momentum and energy equations are all conservation equations. The terminolo-
gy can be confusing. Conservation form refers to the situation where the the variables are inside the derivatives.
That’s why I prefer the use of divergence form to describe this mathematical arrangement. Conservation form is
the more widely used terminalogy. They are both the same.
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Substituting (2-59) and (2-61) into (2-57):

(2-62)

which can be written:

. (2-63)

Finally, the x-momentum equation written in divergence form for 2D steady flow is:

. (2-64)

 The equations must be written in divergence form to be valid when shock waves are present.

2.4.3.  Standard Form of the Equations 

Even after writing the govering equations in divergence form, the equations that you see in

the literature won’t look like the ones we’ve been writing down. A standard form is used in the

literature for numerical solutions of the Navier-Stokes equations. In this section we provide one

representative set. They come from the NASA Langley codes cfl3d and cfl3de. Professors

Walters and Grossman and their students have made contributions to these codes. The Navier-

Stokes equations (and the other equations required in the system) are written in vector diver-

gence form as follows:

(2-65)

where the conserved variables are: 

. (2-66)
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The flux vectors in the x-direction are:

Inviscid terms   Viscous terms

. (2-67)

Similar expressions can be written down for the y- and z-direction fluxes, with the y-direction

given as:

Inviscid terms   Viscous terms

     
, (2-68)

and in the z-direction:

  Inviscid terms   Viscous terms

     
. (2-69)

The equation of state (perfect gas) is written in this formulation as:

. (2-70)

To complete the flow equations, we need to define the nondimensionalization, and the shear

stress and heat transfer nomenclature.

Shear stress and heat transfer terms are written in indicial (or index*) notation as:

(2-71)

* Index notation is a shorthand notation. xi  denotes x,y,z for i = 1,2,3. 

report typos and errors to W.H. Mason Fluid Mechanics Foundations  2-23

Thursday, January 16, 1997

τ x ix j
=

M∞
ReL

µ
∂ui

∂ xj
+

∂ uj

∂ x i









 + λ

∂uk

∂xk
δ ij













p = γ − 1( ) Et − ρ u2 + v2 + w2( ) / 2[ ]

H =

ρw

ρwu

ρwv

ρw2 + p

Et + p( )w

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Hv =

0

τzx

τzy

τ zz

uτ zx + vτ zy + wτ zz − ˙ q z

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

G =

ρv

ρvu

ρv2 + p

ρvw

Et + p( )v

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Gv =

0

τ yx

τyy

τ yz

uτ yx + vτ yy + wτ yz − ˙ q y

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

F =

ρu

ρu2 + p

ρuv

ρuw

Et + p( )u

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Fv =

0

τ xx

τ xy

τ xz

uτ xx + vτ xy + wτ xz − ˙ q x

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 



and:

. (2-72)

The molecular viscosity is found using Sutherland’s Law:

(2-73)

where Sutherland’s constant is .  The tilde, (~), superscript denotes a

dimensional quantity and the subscript infinity denotes evaluation at freestream conditions. The

other quantities are defined as: Reynolds number, , Mach number,

, and Prandtl number, . Stoke’s hypothesis for bulk viscosity is used,

meaning  , and the  freestream velocity magnitude is, .

The velocity components are given by:

(2-74)

and the thermodynamic variables are given by:

(2-75)

and, 

. (2-76)

This completes the nomenclature for one typical example of the application of the Navier-

Stokes equations in an actual current computer code. Note that these equations are for a Carte-

sian coordinate system. We will discuss the necessary extension to general coordinate systems in

the Chapter 9, Geometry and Grids: Major Considerations Using Computational Aerodynamics. 
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2 , p∞ = 1 / γ

T = T̃ / T̃∞ = γ p/ρ = a2 T∞ =1
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w = w̃ / ã∞ w∞ = M∞ sinα cosβ

q̃∞ = ũ∞
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2.5  The Gas Dynamics Equation and the Full Potential Equation

For inviscid flow (and even some viscous flow problems) it is useful to combine the equations in

a special form known as the gas dynamics equation. In particular, this equation is used to obtain

the complete or “full” nonlinear potential flow equation. Many valuable results can be obtained

in computational aerodynamics (CA) using the potential flow approximation. When

compressibility effects are important, a special form of the governing equation can be obtained.

This equation is based on the so-called gas dynamics equation, which we derive here. The gas

dynamics equation is valid for any flow assumed to be inviscid. The starting point for the deriva-

tion is the Euler equations, the continuity equation and the equation of state.

2.5.1 The Gas Dynamics Equation

We demonstrate the derivation using two-dimensional steady flow. (This is not required. Fur-

thermore, the notation xi , which is known as index notation, denotes x,y,z for i = 1,2,3). To start,

we make use of a thermodynamic definition to rewrite the pressure term in the momentum equa-

tion.

(2-77)

and recall the definition of the speed of sound:

 
(2-78)

allowing ∂p/∂xi to be written as:

. (2-79)

We next write u times the x and v times the y momentum equations:

(2-80)
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and use the continuity equation by expanding it from

(2-81)

to

(2-82)

or

. (2-83)

Now add the modified x- and y- momentum equations given above:

. (2-84)

Substitute into this equation the rewritten continuity equation from above:

. (2-85)

 

Finally, collecting terms we obtain in two dimensions:

(2-86)

or in three dimensions:

(2-87)

This equation is known as the gas dynamics equation.
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2.5.2 Derivation of the Classical Gas Dynamics-Related Energy Equation

 The special form of the energy equation that is used to close the system is given by (in 2D):

(2-88)

and we need to show exactly how this relation is obtained. Start with the form of the energy

equation for inviscid, adiabatic flow:

(2-89)

which yields H = constant, where H is (in two dimensions) the total enthalpy, defined by:

. (2-90)

Thus we have a purely algebraic statement of the energy equation instead of a partial differential

equation. This is an important reduction in complexity.

For a thermally and calorically perfect gas,  h = cpT, and cp = constant. Substituting for the

enthalpy, we get

. (2-91)

Recalling that  a2 = γ RT and R = cp - cv, with γ = cp/cv, we write 

(2-92)

or:

(2-93)

and substitute into the total energy equation ( H = constant), Eqn. (2-91),

(2-94)

or:

(2-95)
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and finally, solving for a (and including the third dimension):

(2-96)

which is the equation we have been working to find.

2.5.3 Full Potential Equation

The gas dynamics equation is converted to the classical nonlinear potential equation when we

make the irrotational flow assumption. The potential flow assumption requires that the flow be

irrotational. This is valid for inviscid flow when the onset flow is uniform and there are no shock

waves. However, we often continue to assume the flow can be represented approximately by a

potential when the Mach number normal to any shock wave is close to one (Mn < 1.25, say). Re-

call that the irrotational flow assumption is stated mathematically as curl V=0. When this is true,

V can be defined as the gradient of a scalar quantity, V=∇Φ.  Using the common subscript nota-

tion to represent partial derivatives, the velocity components are u = Φx , v = Φy and w = Φz.

Using the gas dynamics equation, the non-linear or “full” potential equation is then:

.

(2-97)

This is the classic form of the equation. It has been used for many years to obtain physical in-

sight into a wide variety of flows. This is a single partial differential equation. However, it is a
nonlinear equation, and as written above, it is not in divergence (or conservation) form.

2.5.4 Equivalent Divergence Form and Energy Equation

The equivalent equation written in conservation form makes use of the continuity equation.

This is the form that is used in most computational fluid dynamics codes. Written here in two di-

mensions it is:

. (2-98)

The relation between ρ and the potential is given by:

(2-99)

which is a statement of the energy equation. Note that the full potential equation is still nonlinear

when the density varies and ρ must be considered a dependent variable.
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2.5.5 Derivation of another form of the Related Energy Equation

It is informative to demonstrate the derivation of the energy equation given above. To get this

standard form, understand the specific non-dimensionalization employed with this form:

(2-100)

where a* denotes the sonic value. Start with the previous energy equation and work with dimen-

sional variables for the moment:

(2-101)

or

. (2-102)

Now, get a relation for ao in terms of the eventual nondimensionalizing velocity a*:

(2-103)

when the velocity is equal to the speed of sound a = a*. Combining terms:

(2-104)

or:

. (2-105)

Replace ao
2 in the energy relation with a*2 in the velocity term (denominator of Eq. 2-102). And

in the first term use:

,
(2-106)

recalling a2 = γ RT, to get:

(2-107)
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or

. (2-108)

Recall for isentropic flow (a consistent assumption if the use of Φ is valid): 

(2-109)
and

.
(2-110)

Now, we introduce ( ~) to denote dimensional quantities and convert to the desired nondimen-

sional form:

(2-111)

or

.
(2-112)

Using Eq. (2-112) we write the energy equation, Eq. (2-108), as:

.
(2-113)

Using the nondimensionalizing definition given above, we finally obtain:

.
(2-114)

This is an energy equation in ρ to use with the divergence form of the full potential equation.

It is also an example of how to get an energy equation in a typical nondimensional form used in

the literature. 
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2.6  Special Cases

In this section we present a number of special, simplified forms of the equations described

above. These simplified equations are entirely adequate for many of the problems of computa-

tional aerodynamics, and until recently were used nearly exclusively. The ability to obtain sim-

pler relations, which provide explicit physical insight into the flowfield process, has played an

important role in the development of aerodynamic concepts. One key idea is the notion of small

disturbance equations. The assumption is that the flowfield is only slightly disturbed by the body.

We expect this assumption to be valid for inviscid flows over streamlined shapes. These ideas

are expressed mathematically by small perturbation or asymptotic expansion methods, and are

elegantly described in the book by Van Dyke.9 The figure at the end of this section summarizes

the theoretical path required to obtain these equations.

2.6.1 Small Disturbance Form of the Energy Equation

The expansion of the simple algebraic statement of the energy equation provides an example

of a small disturbance analysis.  In this case the square of the speed of sound (or equivalently the

temperature) is linearly related to the velocity field. Start with the energy equation:

(2-115)

and 

. (2-116)

Letting u = U∞+ u', v = v':

(2-117)

and combining terms:

. (2-118)

At this point the relation is still exact, but now it is written so that it can easily be simplified.

The basic idea will be to take advantage of the assumption:

(2-119)

and thus,

(2-120)
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where the above equation becomes:

. (2-121)

This is a linear relation between the disturbance velocity and the speed of sound. It is a heuristic

example of the procedures used in a more formal approach known as perturbation theory.

2.6.2  Small Disturbance Expansion of the Full Potential Equation

We now use a similar approach to show how to obtain a small disturbance version of the full

potential equation. Again consider the situation where we assume that the disturbance to the

freestream is small. Now we examine the full potential equation.  First, we rewrite the full poten-

tial equation given above (in 2D for simplicity):

 

. (2-122)

Now write the velocity as a difference from the freestream velocity. Introduce a disturbance

potential φ, defined by:

(2-123)

where we have introduced a directional bias. The  x- direction is the direction of the freestream

velocity. We will assume that φx and φy are small compared to U∞. Using the idea of a small dis-

turbance to the freestream, simplified (and even linear) forms of a small disturbance potential

equation and an energy equation can be derived.
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]



As an example of the expansion process, consider the first term. Use the definition of the dis-

turbance potential and the simplified energy equation as:

. (2-124)

Regroup and drop the square of the disturbance velocity as small:

. (2-125)

Dividing by 

. (2-126)

Rewrite the potential equation, Eq. (2-122) dividing by . Then replace the coefficient of the

first term using Eq. (2-126):

. (2-127)
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Now, by definition

(2-128)

while:

(2-129)

and using the same approach demonstrated above we can write:

. (2-130)

Putting these relations all into the potential equation we obtain:

(2-131)

where the  terms are neglected in the coefficients. This equation is still nonlinear, but is in

a form ready for the further simplifications described below.

2.6.3 Transonic Small Disturbance Equation

Transonic flows contain regions with both subsonic and supersonic velocities. Any equation

describing this flow must simulate the correct physics in the two different flow regimes. As we

will show below, this makes the problem difficult to solve numerically. Indeed, the numerical so-

lution of transonic flows was one of the primary thrusts of research in CFD over the decades of

the ’70s and ’80s. A small disturbance equation can be derived that captures the essential nonlin-

earity of transonic flow, which is the rapid streamwise variation of flow disturbances in the x-di-

rection, including normal shock waves. Therefore, in transonic flows:

. (2-132)
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The transonic small disturbance equation retains the key term in the convective derivative,

 , which allows the shock to occur in the solution. Retaining this key nonlinear term the

small disturbance equation given above becomes:

. (2-133)

Note that using the definition of the potential from Eq.(2-123) we can identify the nonlinear

term, , which appears as the product of the second term in the bracket, , and the

 term, which is .

This is one version of the transonic small disturbance equation. It is still nonlinear, and can

change mathematical type (to be discussed in section 2.8). This means that the sign of the coeffi-

cient of φxx can change in the flowfield, depending on the value of the nonlinear term. It is valid

for transonic flow, and, as written, it is not in a divergence form. Transonic flows occur for Mach

numbers from .6 to 1.2, depending on the degree of flow disturbance. They also occur under

other circumstances. At high-lift conditions, the flow around the leading edge may become local-
ly supersonic at freestream Mach numbers as low as .20 or .25. Transonic flow occurs on rotor

blades and propellers. At hypersonic speeds the flow between the bow shock and the body will

frequently be locally subsonic. These are also transonic flows. The transonic small disturbance

equation can be solved on your personal computer.

2.6.4 Prandtl-Glauert Equation

When the flowfield is entirely subsonic or supersonic, all terms involving products of small

quantities can be neglected in the small disturbance equation. When this is done we obtain the

Prandtl-Glauert Equation:

 . (2-134)
 

This is a linear equation valid for small disturbance flows that are either entirely supersonic

or subsonic. For subsonic flows this equation can be transformed to Laplace’s Equation, while at
supersonic speeds this equation takes the form of a wave equation. The difference is important,

as described below in the section on the mathematical type of partial differential equations

(PDEs). This equation requires that the onset flow be in the x-direction, an example of the impor-

tance that coordinate systems assume when simplifying assumptions are made. Thus, use of sim-

plifying assumptions introduced a directional bias into the resulting approximate equation.

report typos and errors to W.H. Mason Fluid Mechanics Foundations  2-35

Thursday, January 16, 1997

1 − M∞
2( )φxx + φyy = 0

∂u /∂xφxx

u = φxu(∂u/∂x)

1− M∞
2( ) − γ + 1( )M∞

2 φx

U∞

 

 
 

 

 
 φxx + φyy = 0

u(∂u/∂x)



The extension to three dimensions is:

. (2-135)

2.6.5.  Incompressible irrotational flow:  Laplace’s Equation

Assuming that the flow is incompressible, ρ is a constant and can be removed from the modi-

fied continuity equation, Eq.(2-97), given above. Alternately, divide the full potential equation

by the speed of sound, a, squared, and take the limit as a goes to infinity. Either way, the follow-

ing equation is obtained:

. (2-136)

This is Laplace’s Equation. Frequently people call this equation the potential equation. For

that reason the complete potential equation given above is known as the full potential equation.

Do not confuse the true potential flow equation with Laplace’s equation, which requires the as-

sumption of incompressible flow. When the flow is incompressible, this equation is exact when

using the inviscid irrotational flow model, and does not require the assumption of small distur-

bances.

2.6.6  The Boundary Layer Equations

The last special case retains a viscous term, while assuming that the pressure is a known

function and independent of the y-coordinate value. These are the Prandtl boundary layer equa-

tions that describe the flow immediately adjacent to the body surface. For 2D, steady flow they

are:

(2-137)

(2-138)

. (2-139)

The related energy equation must also be included if compressibility effects are important.
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All the equations presented in this section provide physical models of classes of flows that,

under the right circumstances, are completely adequate to obtain an accurate representation of

the flow. Many, many other approximate flow models have been proposed. Those presented in

this section represent by far the majority of methods currently used. In recent times, numerous

versions of the Navier-Stokes equations (taken here to include the time-averaged Reynolds equa-

tions to be discussed in Chap. 10) have also been used. These equations will be discussed as ap-

propriate in subsequent chapters. Figure 2-10 given below summarizes the connection between

the various flowfield models. 

Figure 2-10. Connection between various approximations to the governing equations.

report typos and errors to W.H. Mason Fluid Mechanics Foundations  2-37

Thursday, January 16, 1997

General Governing Equations
Navier-Stokes Equations

Newtonian fluid, compressible, viscous, unsteady, heat-conducting

inviscid flow
assumption

treat turbulence via
Reynolds averaging and

turbulence model

restrict viscous effects
to gradients

normal to bodies, directional bias

introduce Prandtl BL assumption
• pressure is const. across layer
• leading viscous term only

Boundary Layer Eqns.

 Reynolds Equations
(sometimes called N-S)

Euler Equations

Thin Layer N-S Eqns.

note: aeros 1. drop body force terms
2. use divergence form

• onset flow uniform
• shocks are weak (Mn<1.25)

Potential or FULL Potential Eqn.
(Gas Dynamics Equation)

Irrotational Flow
V=∇Φ

incompressible flow

Laplace's Eqn.

small disturbance approx

sub/super & trans, incl.
P-G & TSDE Eqns.

(includes integral egn.
representation)



2.7  Examples of Zones of Application

The appropriate version of the governing equation depends on the type of flowfield being in-

vestigated. For high Reynolds number attached flow, the pressure can be obtained very accurate-

ly without considering viscosity. Recall that the use of a Kutta condition provides a simple way

of enforcing key physics associated with viscosity by specifying this feature as a boundary con-

dition on an otherwise inviscid solution. If the onset flow is uniform, and any shocks are weak,

Mn < 1.25 or 1.3, then the potential flow approximation is valid. If a slight flow separation ex-

ists, a special approach using the boundary layer equations can be used interactively with the in-

viscid solution to obtain a solution. As speed increases, shocks begin to get strong and are

curved. Under these circumstances the solution of the complete Euler equations is required.

When significant separation occurs, or you cannot figure out the preferred direction to apply

a boundary layer approach, the Navier-Stokes equations are used. Note that many different

“levels” of the N-S Equations are in use.

To avoid having many different codes, some people would like to have just one code that

does everything. While this is a goal, most applications are better treated using a variety of meth-

ods. A step in the right direction is the use of a system that employs a common geometry and

grid processing system, and a common output/graphics systems. 

2.8  Mathematical Classification or the "Type" of Partial Differential Equations (PDEs)

A key property of any system of PDEs is the “type” of the equations. In mathematics, an

equation “type” has a very precise meaning. Essentially, the type  of the equation determines the

domain on which boundary or initial conditions must be specified. The mathematical theory has

been developed over a number of years for PDEs, and is given in books on PDEs. Two examples

include Sneddon10 (pages 105-109), and Chester11 (chapter 6). Discussions from the computa-

tional fluid dynamics viewpoint are available in Anderson, Tannehill, and Pletcher12 (chapter 2), 

Fletcher13 (chapter 2), and Hoffman14 (chapter 1).

To successfully obtain the numerical solution of a PDE you must satisfy the “spirit” of the theory

for the type of a PDE. Usually the theory has been developed for model problems, frequently lin-

ear. For PDEs describing physical systems, the type will be related to the following categoriza-

tion:

1. Equilibrium problems. Examples include steady state temperature distributions and

steady incompressible flow. These are similar to boundary value problems for ordi-

nary differential equations.
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2. Marching or Propagation Problems. These are transient or transient-like problems.

Examples include transient heat conduction and steady supersonic flow. These are

similar to initial value problems for ODEs.

The types are elliptic, parabolic, and hyperbolic. A linear equation will have a constant type. The

nonlinear equations of fluid flow can change type locally depending on the local values of the

equation. This “mixed-type”  feature had a profound influence on the development of methods

for computational aerodynamics. A mismatch between the type of the PDE and the prescribed

boundary conditions dooms any attempt at numerical solution to failure.

The standard mathematical illustration of type uses a second order PDE:

. (2-140)

where A, B, C, D, E, F , and G can be constants or functions of x, y, and φ. Depending on the val-

ues of A, B , and C, the PDE will be of different type. The specific type of the PDE depends on

the characteristics of the PDE. One of the important properties of characteristics is that the sec-

ond derivative of the dependent variables are allowed, although there can be no discontinuity of

the first derivative. The slopes of the characteristics can be found from A, B, and C. From mathe-

matical theory the characteristics are found depending on the sign of determinant:  

Characteristics Type

(B2 - 4AC) >  0 real hyperbolic
=  0 real, equal parabolic (2-141)
<  0 imaginary elliptic

Hyperbolic:  The basic property is a limited domain of dependence. Initial data are required

on a curve C, which does not coincide with a characteristic curve. Figure 2-11 illustrates this re-

quirement.

Figure 2-11. Connection between characteristics and initial condition data planes.
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Classical linearized supersonic aerodynamic theory is an example of a hyperbolic system.

Parabolic: This is associated with a diffusion process. Data must be specified at an initial

plane, and march forward in a time or time-like direction. There is no limited zone of influence

equivalent to the hyperbolic case. Data are required on the entire time-like surface. Figure 2-12

illustrates the requirement.

Figure 2-12. Initial data plane for parabolic equation.

In aerodynamics, boundary layers have a parabolic type.

Elliptic: These are equilibrium problems. They require boundary conditions everywhere, as

shown in Figure 2-13. Incompressible potential flow is an example of a governing equation of el-

liptic type.

Figure 2-13. Boundary conditions required for elliptic PDEs.
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Consider the following examples. For the Prandtl-Glauert equation:

(2-142)

and:

. (2-143)

For the transonic small disturbance equation:

. (2-144)

This is an equation of mixed type. It is required to treat the physics of transonic flows.

Type plays a key role in computational approaches. The type can be used to advantage. In the

case of the Euler equations, the steady state Euler equations are hard to solve. It is standard pro-

cedure to consider the unsteady case, which is hyperbolic, and obtain the steady state solution by

marching in time until the solution is constant in time.

Alternate approaches are available for systems of first order PDEs. Classification is some-

times difficult to determine. The type of an equation is determined with respect to a particular

variable. The type  of equations with respect to time may be completely different than their type

with respect to space. The type of the equation often helps to define the appropriate solution

coordinate system. The different types of the equations given above are responsible for the dis-

tinct numerical approaches that are adopted to solve different problems.

2.8.1  Elaboration on Characteristics

This section provides additional details that provide some insight into the reason that the de-

terminant of the coefficients of the second derivative terms define the type of the equation.

Considering:
(2-145)

• Assume φ is a solution describing a curve in space
• These curves “patch” various solutions, known as characteristic curves
• Discontinuity of the second derivative of the dependent variable is allowed, but no dis-

continuity of the first derivative

report typos and errors to W.H. Mason Fluid Mechanics Foundations  2-41

Thursday, January 16, 1997

Aφxx + Bφxy + Cφyy + Dφx + Eφ y + Fφ + G = 0

1 − M∞
2( ) − γ +1( )M∞

2 φ x

U∞

 

 
 

 

 
 

    sign depends on the solution

     - locally subsonic:  elliptic

     - locally supersonic: hyperbolic

φxx + φyy = 0

M∞ <1 elliptic

>1 hyperbolic

(1 − M∞
2 )φxx + φyy = 0



The differentials of φx and φy which represent changes from x,y to x + dx, y + dy along char-

acteristics are:

(2-146)

. (2-147)

Express (2-145) as 

(2-148)

with:

. (2-149)

Assume (2-148) is linear. Solve (2-148) with (2-146) and (2-147) for second derivatives of φ:

(2-150)

or

(2-151)

and solve for φxx, φxy, φyy. Since second derivatives can be discontinuous on the characteristics,

the derivatives are indeterminate and the coefficient matrix would be singular:

. (2-152)

Expanding:

(2-153)

and the slopes of the characteristics curves are found by dividing by (dx)2:
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. (2-154)

Solve for dy/dx:

(2-155)

and hence the requirement on  to define the type of the PDE as related to the charac-

teristics of the equation. See the references cited above for more details.

2.9  Requirements for a Complete Problem Formulation

When formulating a mathematical representation of a fluid flow problem, you have to con-

sider carefully both the flowfield model equations and the boundary conditions. An evaluation of

the mathematical type of the PDEs that are being solved plays a key role in this. Boundary condi-

tions must be properly specified. Either over- or under-specifying boundary conditions will

doom your calculation before you start. A proper formulation requires:

• governing equations
• boundary conditions
• coordinate system specification.

All before computing the first number! If this is done, then the mathematical problem being

solved is considered to be well posed.
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2.10  Exercises

1. Convert the unsteady 3D Euler equations from classical non-conservative form to divergence
form.

2. Eqn. (2-70) is an unusual form of the equation of state. It is from viewgraphs defining the
equations used in cfl3d. Turn in your derivation of this equation. Is there a typo?

3. Show how Eqn. (2-76) can be obtained.

4. Why is Eqn. (2-97) not in divergence form?

5. Show that point source and point vortex singularities are solutions of Laplace's equation in
two dimensions.

Recall that a point source can be expressed as:

and a point vortex is:

.

6. Consider the point source of problem 2. What is the behavior of the velocity as the distance
from the source becomes large? What is the potential function for a point source? How does it
behave as the the distance from the source becomes large. Comment from the standpoint of
having to satisfy the “infinity” boundary condition in a program for a potential flow solution. 

 
7. Find the classification type of the following equations:

         Laplace:  Uxx + Uyy = 0.

         Heat Eqn. :  Uy = σ Uxx,   σ real

         Wave Eqn.: Uxx = c2Uyy,  c real.
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3.  Computers, Codes, and Engineering

3.1 General Comments

Success in using the methods of computational aerodynamics also depends on an ability to use

computers effectively. In this chapter we present some guidelines for the effective use of
computing systems.  Software development and computing systems are called the tarpits of engi-
neering by Brooks.1 He describes the problems of software development through analogy with
the ancient tarpits. Figure 3-1, from Brooks’ book, shows the prehistoric beasts, completely

bogged down in the primordial ooze. Almost all computer software development jobs get bogged
down in a similar quagmire. His book of essays on software engineering is required reading in
many places. Unfortunately for the beginner, a true appreciation of the essays comes only with
experience. Reading Brooks’s book may help avoid the stickiest traps. Students should under-

stand that software development and maintenance/support costs completely overshadow the cost
of computer hardware.

A great, 
but copyrighted,

figure of the grand creatures, bogged down in the tar.

Figure 3-1. Mural of the La Brea Tarpits, by C. R. Knight, from Brooks1.
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Before providing detailed suggestions for code development and use, a couple of comments
based on previous experience with students is in order:

i. Accuracy. Students are told a lot about roundoff error. In making students understand that
computers process finite length numbers, the message students get is that computers aren’t accu-

A Story There were all sorts of rumors
about the poor accuracy of the trigonometric
functions in Applesoft, the Apple version of
BASIC. So after I got an Apple ][ computer,
and converted an airfoil analysis program that
I had developed for a programmable calcula-
tor, I was willing to accept 2~3 place accura-
cy. After all, it was BASIC, and this method
relied heavily on trig functions. Telling this
story at work, a colleague winked knowingly,
shook his head and told me to find the bug. I
gave it one more try. The result? I found the
bug. In fact, I learned something important:
the order of precedence of operations in
BASIC (the unary minus in particular) as
compared to FORTRAN. It was just luck that
the test case agreed as closely as it did. The
moral? More often than not, it’s not machine
roundoff that causes poor accuracy!

rate. Rubbish. Roundoff error has become a
favorite excuse (aerodynamicists frequently
use unknown Reynolds number effects in a
similar fashion). Don’t accept three place ac-

curacy. The computer is not a slide rule. More
than likely, poor accuracy indicates bugs. At
the very least it denotes poor numerical prac-
tice, which should be fixed before you find

the case where the code goes entirely wrong.
The issue here is not whether the theory war-
rants plotting the output to more than three
places, the issue is whether the code is cor-

rect. When roundoff error is a problem, it
usually arises as the result of taking the dif-
ference of two large numbers. In aerodynam-
ics, most algorithms operate accurately using

64-bit arithmetic. This is single precision on
scientific machines (Cray), but is known as double precision on commercial machines (IBM).
Double precision must be specified to use 64-bit arithmetic on those computers. Investigation of
the accuracy of a particular computer is left to the reader as an exercise.

ii. Disdain for “canned” programs. This may reflect some instructor’s attitudes. Students
should realize they won’t be the authors of most programs they use. At best they will be making

modifications and fixing bugs. They may be combing existing codes to develop design systems.
Current codes are often the result of many man-years of development work (even hundreds of
man-years for some engineering codes). Adopt a positive approach to using other people’s codes.
This requires learning how to use the code, demonstrating a desire to make it work on your spe-

cific problem (this often requires considerable ingenuity), and knowing how to check code
accuracy against other results. You must gain confidence in a code before making an engineering
decision that may mean millions of dollars, possibly lives and the future of the company (an ex-
aggeration, but not an excessively large one). Because of the importance of maintaining software

integrity, many engineers are not even allowed to modify the source codes they use. Frequently
they won’t even be allowed to see the code.

iii. Time. Trying to use a computer program for the first time takes more time than you ex-
pect. Working with computers is a sequential (and intense) process. It’s very hard to skip steps.
When you know you are going to need to use a program, try it out as soon as you can. Don’t
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delay. Brooks1 poses the question (and answer): “How do computer projects get a year behind
schedule? One day at a time.” There are almost always unexpected delays. Letting problems

slide is a sure recipe for disaster. This is especially true when a student waits until the night be-
fore an assignment is due to try out a program for the first time. Usually, difficulties can be easi-
ly resolved if you can contact someone, or if you can step back and calmly reassess the situation.
That’s hard to do in the middle of the night with a deadline looming.  This also holds true for de-

veloping codes. Code development is deceptively time consuming. A good rule of thumb states
that the last 10% of the code development work takes at least 90% of the time.

iv. UNIX.  UNIX is the current operating system of engineering. Learn UNIX and the vi edi-
tor. Without this skill you won’t be an effective engineer. This is the only operating system that
is nearly universal. It’s used on all workstations and most advanced computing machines. 

v. It’s a dynamic world.* Computational aerodynamics codes are always changing. Every
new problem seems to require code extensions. One problem with computer science majors
working on codes (or directing software projects) is their assumption that codes are “finished”.

In aerodynamics, if a code is used it’s never finished. Someone will always need one more modi-
fication. Be prepared to change your code. This also means paying attention to defining versions
of programs as well as backing up your programs. In addition, scientific computing is in a period
of rapid change. After a long period of thinking in terms of sequential, or “scalar,” computations,

most aerospace engineers now have access to computers which offer increased performance
through advanced computer architectures. To use these architectures effectively requires using
algorithms and software designed to take advantage of the specific machine capability. Examples
are vector and parallel processing. Engineers graduating today will be using massively parallel

computing machines over a significant portion of their careers. Computational aerodynamics re-
quires that you stay abreast of scientific computing developments. 

3.2 Introduction to Software Engineering

The process of developing and maintaining computer programs is known as software engi-
neering. This field is developing approaches to code development that are intended to delay get-
ting bogged down in the tarpits described by Brooks. Before proceeding, we need to outline the

elements of software engineering and provide an overview of the proper approach to developing
a code which will prove useful after the original programmers have gone on to other projects.
Our discussion is based on Chapter 13 of the book by Darnell and Margolis2 and Chapter 11 of

* The choice of FORTRAN, C or C++ as your programming language is frequently an issue (sometimes an emo-
tional one!). Usually the particular circumstances dictate which language to use. If you know FORTRAN or C,
there are many books available to help you learn the other. You can gain proficiency with a few evenings’ study
and some practice. Studying code is also valuable, and if the circumstances require you know it, that usually
means that lots of code is already available to study. Essentially, FORTRAN is important because many, many
existing  aerodynamics codes  are written in FORTRAN. C is important because there are more graphics and
data acquisition software tools written in C. In either case, object oriented programming will be used by engi-
neers in the future, and, if you program, you will continually learn new programming methods. C++ is a little
harder to learn if you are used to FORTRAN or C, but may be better for constructing large, complicated, multi-
disciplinary systems. Although Java is not yet relevant for scientific computing, it could become important be-
cause of its rapid development and cross-platform capability. Always be prepared for change.
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the book by Stroustrup.3  The problem is that real software systems are incredibly complex.  The
“problem analysis, overall program design, documentation, testing, maintenance and manage-

ment dwarfs the actual writing and debugging of code.”3 Software development is done by peo-
ple, and relies on common sense and personal commitment. While we list numerous activities
below, software development procedures must not be allowed to discourage creativity. 

Darnell and Margolis break software engineering into the following elements:

• Product specification: The product (program) that is going to be developed must be de-
fined before work starts. Unless the goal of the project is specifically and realistically de-
fined the project will fail. How it looks to the user must be defined before the details of the
code required to implement the solution are designed. The user needs to be involved at this
point to make sure there is no misunderstanding about exactly what and how information
goes in, and exactly what comes out of the program. Vague language must be avoided.
Use of “fast” or “easy to use” as specifications will inevitably result in arguments, and
possibly lawsuits, when the product is delivered. Nevertheless, the specification will likely
be revised as the customer and designers interact during the development. Availability of a
new tool results in a change in the process as soon as it’s used. The specification includes
an abstract of the problem, the equations to be solved, the input and input interface, the op-
eration of the program as it appears to the user (screen design, subroutine calls and argu-
ment lists, etc.), output file descriptions, error messages, and plans for future extensions.

• Software design: Once the product is defined, the software can be designed. This includes
the major divisions of functionality, the major data structures, and the numerical/computa-
tional algorithms to be used. Quoting Stroustrup,3 ”The most fundamental problem in soft-
ware development is complexity. There is only one basic way of dealing with complexity:
Divide and conquer.” Thus the problem should be split up. But to be effective, the com-
munication of the various pieces requires that the interface between pieces be well de-
signed. The result will be a program with a clean internal structure and clear connections.

• Project planning and code estimation: The estimation of code development time is a major
problem. Even experienced programmers usually grossly underestimate the time a soft-
ware job will take. One of the problems is the enormous difference in productivity be-
tween programmers. Brooks continues to be the key source of insight in this area.1 One of
the keys to tracking software schedules is to use specific measurable milestones. Typically
the schedule can be broken into:

1/3 product specification and scheduling 
1/6 coding
1/4 component testing and early system testing
1/4 complete system integration and testing

• Software tools for software production: To improve productivity use tools available on
your system. These include lint programs to double check source code, profilers to evalu-
ate where the time is being spent in programs, and tools to examine the function call tree.
Most systems have make routines4 which make sure that the latest versions of routines are
being used without compiling the entire code after every change. Learn how to use these
tools.

3 - 4 Applied Computational Aerodynamics

Wednesday, January 22, 1997



• Debugging techniques: Software development suffers from poor productivity. Research is
continually being directed toward ways to improve productivity. Development and use of
debugging techniques is one area where we can expect continual improvement. Compilers
generally include debuggers. Take advantage of the best debuggers available. 

• Testing: Software validation is a difficult job. “The program that has not been tested does
not work.”3 The code must be correct, and it must be usable. The developers need to estab-
lish a set of test cases to use during code development. Once the accuracy of the code is
established, the usefulness of the code is evaluated by having others use it. This usually in-
volved an alpha and a beta test group. The alpha group is usually part of the organization
that developed the code, while the beta group is usually made up of customers for the
product. Users that call the developers frequently to complain are often selected to be part
of the beta group. It is amazing how many problems these groups can unearth. Although
bugs are never completely eliminated, the problems found in the testing process can quick-
ly reduce the initial bugs that are found after the product is released. Special consider-
ations for computational aerodynamics codes will be described below.

• Performance analysis : particularly in computational aerodynamics, the time and memory
required to solve problems must be defined and evaluated compared to other methods. The
question is always going to be asked. You must have an answer, and it will help determine
if the new code will be competitive.

• Documentation: The methods and the code should be documented separately. The product
specification should include most of this information. The user’s manual should strike a
balance between being too long, discouraging use, and being too short, so that it doesn’t
help the user. Generally the user’s manual and overview documentation should be written
by a new user of the code. The developers and long-time users do not bring the viewpoint
of a new user to the documentation, and usually do a poor job. Documentation should in-
clude sample input and output files for the key cases and options available to the user.

• Source control and organization: As the code development effort proceeds the code
changes become hard to keep track of, especially when the work is done by a team. Once
the initial code development effort is completed, the code will be changed much less fre-
quently, often by people not on the original development team. Without a formal process
to track the history of the code changes and to ensure that the proper version is distributed
there will be problems. In UNIX there is a system known as sccs/rcs which can be used.5

Commercial products are available to help do the so-called version control. Use of version
control requires self-discipline that is difficult to do in a student environment. But devel-
opment of good habits from the beginning will greatly improve the development of of a
professional approach to software engineering.

Above all, any code should be developed for:
• Readability
• Portability
• Maintainability.

When designing a computer solution to a problem, it is important to make sure that the
problem is completely defined before the computer programming begins. Evin Cramer of Boeing
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recently described the proper procedure.6 Most code projects should adopt a team approach,
where the team consists of the core team, an extended team, and the customers. The extended

team represents consultants who provide fast answers to questions that arise in the development
process. The customer, or user, needs to be involved from the beginning to provide specifications
and to make sure that the final product solves the right problem and the interface fits the user ex-
pectations. 

Tackling the problem, it is important to keep the parts of the problem separate. First define
the engineering problem. Next, look for a solution method. Once the solution method is selected,

then develop the mathematical definition of the problem precisely. Only now should the code de-
velopment effort start. In designing the computer code she suggested that modern simulation
methods be used, and that simulation (analysis) methods be kept separate from the optimization
formulation and strategy. This approach results in a modular and easily upgradeable code.

3.3 Specific Approaches to Code Development

Now we provide methods for code development applicable to computational aerodynamics.

Perhaps the most important requirement is to use a disciplined approach. Because programming
does not obey a specific natural law, the programmers must establish the process. At the heart of
effective programming is self-discipline and personal responsibility. One approach to good pro-
gramming practice has been developed by Watts Humphrey.7  Since most code projects will be

done by teams, consider the minimum team effort to be divided between interface design, numer-
ical methods coding and code verification.

Considering specifics, engineers should develop a clean, coherent style for their coding.
When engineers write poor code they provide the computer science majors with evidence to sup-
port their claim that engineers shouldn’t be allowed to touch source codes. That’s okay if the
computer science people work for you. If they take control of the organization, and engineers de-

pend on them for software support, it isn’t. Engineers can also work on codes. It simply requires
a good common sense approach and self discipline. 

The code segments in Figures 3-2 and 3-3 illustrate both the old fashioned, terrible, coding
style frequently found in codes written by engineers, and a modern, good, code style. Consider
first Figure 3-2. This atrocious example actually exists in a series of widely used codes.

In this example:
• variables names don’t mean anything
• the statement numbers are out of order
• the logic is virtually impossible to follow
• computed go tos and arithmetic ifs are used almost exclusively*

• there is no white space or structure to the statements

I was assigned to modify this code (this segment is part of over 2000 lines of similar code) as
one of my first assignments in an aerodynamics development group after graduating from school.

* arithmetics ifs have been declared obsolescent in FORTRAN 90, see Section 3.10.
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In contrast, consider Figure 3-3,  an example of code in a modern program. Here, the code
appears well structured, white space is well used, and the variable names seem to be systemati-

cally defined. It’s a good example of current code practice. I have also modified this code. Al-
though the program is much longer, the job was much easier. 

   68 IF(1.-UFUT(K)/RK-1.0E-3)69,70,70
   69 IF(TFUT(K)/RK**2-1.0E-6)71,70,70
   70 IF(K-I(6))72,72,71
        .
      IF(I(9 ))76,76,110
  110 DIV=1./(X+XSTEP-ORDIN(Z,A(2),XFUT))
      IF(I(9 )-1)76,76,77
   77 DIV=SLOPBL(Z,A(2),I(5),XFUT)/ORDIN(Z,A(2),XFUT)
      IF(I(9 )-2)76,76,1055
 1055 DIV=ORDIN(Z,A(2),XFUT)
   76 I1=I(6)+1
      IF(I(6).GE.(I8-1)) GO TO 73
      I(6)=I8-1
   73 I61=I(6)+1

    .
      DO82 J=1,I61
      Y=1.+.25*(UFUT(J+1)+UFUT(J))*(WFUT(J+1)+WFUT(J))
   82 V(J+1)=(UFUT(J+1)*V(J)-Y*(TFUT(J+1)-TFUT(J))-.5*(WFUT(J+1)+WFUT(J)
     1)*(TFUT(J+1)+TFUT(J))*Y*(UFUT(J+1)-UFUT(J))*.5-.25*(UFUT(J)+UFUT
     2(J+1))**2*A(1)*(VDLPDX*(1.-Y*AY/A(12)/(Y-1.))+DIV))/UFUT(J)
   94 A(5)=TAU0/RK2/(1.+RK5)
      I625=I(6)/4
      DO 1056 J=I625,I6
      IF(UFUT(J)/RK-.995)1057,1056,1056
 1057 L=J
      RL=FLOAT(L)
 1056 CONTINUE
          .
      TAU0=TAU0+DTW
      IF(TAU0)9411,9411,9412
 9411 IQ=1
      GO TO 28
 9412 ALPHA=ALPHA+DA
      A162=2.*A(16)
      IF(ABS(DU/UFUT(1))-A(16))1042,1042,1041
 1042 IF(ABS(DTW/TAU0)-A(16))1043,1043,1041
 1043 IF(ABS(DA/ALPHA)-A162)  1044,1044,1041
 1044 WFUT(1)=F7
      TFUTP=TFUT(1)
      TFUT(1)=(TAU0+ALPHA *A(1))/(1.+.5*UFUT(1)*WFUT(1))
      IF(TFUT(1).GT.0.0) GO TO 1039
      RMAX=WR*RMAX
      GO TO 34
1039  CONTINUE
      IF(ABS(1.-TFUT(1)/TOR0)-2.*A(16))1045,1046,1046

     
Figure 3-2. An example of a terrible programming style.
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c
      if (ivisc(3).gt.0) then

            tau   = vmu(j,i)*const/vol(j,i)*sk(j,i,4)**2
            vnorm = ub(j,i)*sk(j,i,1)+vb(j,i)*sk(j,i,2)+wb(j,i)
            dcx   = dcx+tau*(ub(j,i)-vnorm*sk(j,i,1))
            dcz   = dcz+tau*(wb(j,i)-vnorm*sk(j,i,3))
            dcy   = dcy+tau*(vb(j,i)-vnorm*sk(j,i,2))

                         end if
c
      chdl   =  chdl+abs(sk(j,i,3))*sk(j,i,4)
      swetl  =  swetl+sk(j,i,4) 
      cxl    =  cxl+dcx 
      cyl    =  cyl+dcy 
      czl    =  czl+dcz 
   50 cml    =  cml-dcz*(xa-xmc)+dcx*(za-zmc)
      xas    =  xas/float(jte2-jte1)
      yas    =  yas/float(jte2-jte1)
      zas    =  zas/float(jte2-jte1)
      cds    =  cxl*cosa+czl*sina
      cls    = -cxl*sina+czl*cosa
      cms    =  cml 
      chds   =  chdl 
      swets  =  swetl 
      cl     =  cl+cls 

Figure 3-3. An example of good programming style.

Kernighan and Plauger8 have written a book containing basic rules for good programming
practice. Their book should be read before starting to do serious programming. We repeat some
of their rules here: 

• Write clearly - don’t be too clever
• Choose variable names that won’t be confused
• Write first in an easy-to-understand pseudo-language; then translate in-

to whatever language you are using
• Modularize.  Use subroutines
• Write and test a big program in small pieces
• Make input easy to proofread
• Make sure all variable are initialized before use
• Don’t stop at one bug (keep looking!)
• Don’t test floating point numbers for equality
• Make it right before you make it fast*

• Don’t sacrifice clarity for small gains in efficiency
• Make sure comments and code agree
• Don’t just echo the code with comments—make every comment count

* With proper planning and code design, these shouldn’t have to be contradictory requirements.  

3 - 8 Applied Computational Aerodynamics

Wednesday, January 22, 1997



Consider also the following rules from Roache9  which are directed toward CFD:

• Start simple
• Debug and test on a coarse mesh first
• Print out “enough” information:

- some at each step
- lots sometimes
- print good diagnostic functionals

• Always check on the finest mesh possible before releasing code
(this is part of the “testing at the boundaries” requirement)

• Test convergence to machine accuracy
• Try to check all option combinations in a production program*

• Check convergence/stability over the widest possible range of parameters
• Test accuracy against:

- exact solutions
- approximate solutions
- experimental data

• Avoid unnecessary hardware dependence

Additional comments on style and language peculiarities of FORTRAN are discussed in the
book of Numerical Recipes .10 Here we consider only FORTRAN. Although other languages are

becoming more popular for engineering computing, most existing code is written in FORTRAN,
and knowledge of FORTRAN is required in computational aerodynamics.

Other good practice:
• Avoid system-dependent code.** Any useful code will be put on different systems. The

user’s own system will change.  Over the long term, system dependencies almost al-
ways cause more trouble than the apparent short term gain.

• An exception to the system-dependent rule: Consider using standard math libraries.
Computing centers have libraries of mathematical subroutines available for the solu-
tion of most standard math problems. These programs are written by professionals,
and take advantage of machine-specific advantages of a particular system. They help
you avoid numerical accuracy problems. However, never use one of these subroutines
in your code without first using it in a pilot code on a problem you can use as a check,
to make sure you understand how the program is supposed to be used. The text by Ka-
haner, et al.11, provides examples of this approach, and a disk of useful subroutines. 

• Don’t get carried away with the computer science possibilities. Concentrate on the
specific development job. Keep it simple. Many very bright engineers have lost the
forest for the trees when working on computer codes.

* This is essentially impossible to do with commercial codes, where millions of option combinations may be pos-
sible. That’s why code design is so important. However, any code should be tested as much as possible. Certain-
ly, a set of standard test cases must be developed to check code modifications (fixing one bug often results in
the addition of another).

** An important exception is code written to take advantage of vectorization and parallel processing. If you are
using a computer with these features, the code should be modified to use the machine specific techniques to
achieve maximum computing speed. However, the compute-intensive portion of any program is usually a small
part of the overall code. That’s the only portion that should be made machine specific. 
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Specific programming standards have been established at VPI for instruction in FORTRAN in
ESM 3074. Generally these are good rules. However, considering that new engineers with jobs

in computational aerodynamics will mainly work with existing codes, students should be ex-
posed to widely used, although poor, programming practices. 

Many of the ESM 3074 guidelines duplicate items given above. Several require comments:

Item Comment
• No FORTRAN 77 extensions allowed • OK for learning FORTRAN. But  some 

  are standard. Should know NAMELIST.* 
  Workstation manufacturers had to add 
  NAMELIST as one of the first upgrades to 
  their systems. It’s a very nice way to 
  handle input, and is widely used in 
  existing aerospace engineering codes.

• ALL variables type declared. • Although good programming practice,  
  it is highly unusual to see this in most 
  existing FORTRAN programs. Students 
  should understand that programs that do not 
  type-declare variables are not “wrong”.

• FORMAT statements to be placed • This is a holdover from the days of
 together, just before END statement  cards. Sometimes it is inefficient at display

  terminals. FORMATs are best near the 
  WRITE statements (but not obscuring
  executable code). Another way is to use
  another series of statement numbers, e.g.
  put all FORMATS in a 2XXX series.

• All DO loops end in CONTINUE • A little harsh, just make code clear. Indent
  nested loops. But FORTRAN 90 requires this.

• GO TO statement • Guideline allows. Use of GO TO should
  be minimized, if not eliminated. Use
  IF.. THEN.. ELSE for clarity.

• COMMON COMMON is still widely used. You should 
know how they work. Especially since many 
problems occur due to errors in COMMON 
block use.

• DIMENSION Still widely used. 
 

• EQUIVALENCE Still seen in some codes. Should know.
Don’t use in computational aerodynamics.

• Computed GO TO/Arithmetic IF** Still seen, know what they are, don’t use.

• Hollerith formats** Should know, no one would ever use again.

* NAMELIST is standard in FORTRAN 90, see Section 3.10.

** Also declared obsolescent in FORTRAN 90, see Section 3.10.
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3.4 Debugging Your Own Code

There is art and talent involved in debugging programs. However, experience is also an im-
portant ingredient. This is detective work. One of the problems is the difficulty in distinguishing
between errors in an analysis and the code implementation. In general:

• To find out what’s wrong, you need to know what’s right. Check carefully.
• Use modern systems which include debuggers. Learn to use them!

Typically they are part of software tools packages to enhance code 
development productivity. Consider using a lint program to examine
your source files. These programs were originally developed for C
programs, but now there are usually equivalent packages for FORTRAN
(FTNCHEK is available on good UNIX systems). 

• As a last resort if you don’t have debugging tools, use lots of write statements.
• Plot your results!  EVERYWHERE.
• Stop and think, be patient and don't panic.  
• Don’t wait until the whole code is written, test small parts separately.

3.5 Looking at Other People’s Codes 

When you do have the source code, take time to look at the structure of the program and
sketch the flow of the information. Also study the program for style. This is the best way to find
ways to improve your own programming style. Try to get a feel for the organization of the com-

putation. Make a chart of SUBROUTINE and COMMON Block structure, as well as external
I/O unit use. Figure 3-4 illustrates an example of a program tree that I make to help understand
program structure. Clearly this is not a conventional flowchart, it’s useful! Table 3-1 provides an
example of the related COMMON block map. Both of these provide a basis for finding a bug or

modifying a code. 

In executing the code (even it you don’t have the source), observe carefully where things

start to go wrong. Study your input data carefully. Try changing your input data. With
complicated analysis work, start simple and build up, i.e., if an entire airplane is going to be ana-
lyzed, do the wing, then the fuselage, and then put them together, etc. Identify when the results
become “strange”, and always have a mental model of the expected flowfield and a “back of the

envelope” idea of what the answer should be.

3.6 Getting help. 

Sometimes it helps to let someone else look at the code. One typical problem is not seeing
a misspelled variable name. If you wrote the code, and have been staring at it for an hour, you

might not see it. You can frequently overcome this problem by looking at an XREF, and spotting
a variable used only once. If you want someone else to look at your code, bring it all:

-  the exact source code that was run
-  all code and input documentation
-  the exact input file
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-  detailed description of the method of running
-  all the output, and exact system messages.

Without this information you are wasting someone’s time. More often than not, after  col-

lecting all the information in preparation for getting help, you’ll either find your mistake, or
more likely, the next step in the debugging process will become obvious.

Figure 3-4. Routine tree for a small program to help understand the program structure.
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PANELv2

SETUP - define geometry for calculation

INDATA - reads in data or defines internally generated airfoil

SLOPY2 - interpolates input points to panel points

ARCLNG - arc length

SPLIFM - spline fit
SPLIF - inverse spline

BODY - internal geometry definition

afmod - modify airfoil if desired

NACA4D - 4 or 5 digit airfoils
                    (modified slightly)

BUMP - smooth thickness
               function

COFISH -   define influence coefficients

LUDCMP - do LU decomposition for solution of equations

COFRHS -  given α, define RHS of system of equations

LUBKSB -  solve the system for singularity strengths
                    by back substitution

VELDIS -   compute surface velocities

OUTP -       find force and moment results, output results

another
α ?



3.7 Cost, Time, and Money

A serious effort using computational aerodynamics methods will take a significant invest-
ment in your time. Try to make sure that it will payoff. Spend time before starting work assess-
ing whether your approach will produce the results you need. Which method will produce the in-

formation in time for it to be useful? There are still many situations where codes can’t produce
reliable information in time - although in many cases they can.

Next, develop a sense for what the required execution time and resources are to do a calcu-
lation. Insight into how long a job takes and how much core storage is required are also keys to
effective use of computational aerodynamics. How long will it take to get your results? How

much will it cost? Figure 3-5 appeared on my desk one day over a decade ago. Computing dead-
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PANELv2

INDATA

SETUP

SLOPY2

ARCLNG

SPLIFM

SPLIF

BODY

NACA4D

afmod

bump

COFISH

LUDCMP

COFRHS

LUBKSB

VELDIS

OUTP

Table 3-1

Typical COMMON block map (program PANELv2)

COMMON Block Names

BOD NUM PAR COF ORD IOU CPD

Routine 
Names



lines are still with us. Consider any special problems. You may need too much of the machine
and be put into a special (slow) queue. Trying to do code work at the last minute is always dan-

gerous. Two stories illustrate that Murphy’s Law applied to software work. Once, after getting
overtime pay approved and a priority to
get fast turnaround, a team of six engi-
neers arrived on Saturday morning, only

to discover that the code wouldn’t run be-
cause a systems programmer took the
“clock” routine off the system for the
weekend. The disturbance this caused

was unbelievable. A contract deadline on
an important Air Force contract hung in
the balance. We had to get the job done.

This is an example where the computer systems people can wreck the job. A more common oc-

currence is to have systems programmers move codes to different disk packs. Naturally, the engi-
neer working against a deadline will discover this in the middle of the night, with no way to get
help.

Asking a code developer how long his code takes to run may not make much sense without
getting the qualifiers. A code developer may quote a time for a grid too crude to use for an appli-
cation, or without reaching a reliable level of convergence. What’s the batting average? Realize

that an advanced code may require many submissions on a single case to get everything straight-
ened out. In those cases, the CPU time of the last submission that produced the final result is not
meaningful. You need to consider the CPU time (and calender time) of all the runs leading up to
the final run that produced the desired results.

Figure 3-5. Computational aerodynamics always means deadlines.
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Don’t take getting a new code too lightly.
Even when you don’t write the code, and
think it will be easy to use, before you can
use the code you will have to make a sur-
pringly big investment in time before you
have enough confidence in the results to use
the code to make engineering decisions.

A cartoon of unknown origin:

Frame 1: Man at a
terminal,  supposed to
be a newspaperman

"People ask me if it's tough
meeting a deadline every day.

Sure it is,

Frame 3: Man being
carried on a stretcher
into the computer room

but we aerodynamicists
thrive on pressure."

Frame 2:
He reponds



3.8 Validation/Verification

Always check a new code against test cases for which you know the correct answers before
starting to use it for the analysis cases which made you get it. It is amazing how many times en-
gineers, under time pressure, try to skip this step. Trying to use a code on a project without hav-

ing prior experience with it is a sure recipe for disaster.

The process of establishing credibility in a computer code has come to be known as code

verification/validation/certification. Trying to establish code accuracy on a scientific basis is
noble goal, but is a very tricky proposition. Attempts to correlate code results with experimental
data on high performance designs that push the flowfield to extreme conditions often shows the
importance of using codes and experimental together to understand the relative importance of

competing flowfield features. 

Establishing a scientific basis for “certifying” codes for use has only recently started to re-
ceive significant attention.12-14 In fact, the semantics of this area are still the subject of discus-
sion, see for example the paper by Roache.15  In general:

• code verification means solving the specified equation right

• code validation means solving the right equation (modeling the physics correctly)

• code certification means establishing the range of applicability of a validated/verified
code

The wide range of ideas about what constitutes code validation is clear in the difference of con-
tent in papers addressing the subject. Among numerous papers, the one by Aeschliman, et al16

deserves consideration.

In practice, code users should develop a library of test cases. For a particular code the sen-
sitivity to the key solution control parameters should be well understood. They should also get to

know the tricks used in computational aerodynamics. Be wary of code validation cases presented
by the code developer. One old trick: a famous transonic test case included data at a span station
that showed a double shock. For years the code developers presented results for this case without
including this span station of data: the most interesting data on the wing!  They got poor agree-

ment at that station, so they ignored the data at that station. Another trick: researchers often com-
pare results with data and not other theories. They may present comparisons of results for Euler
or Navier-Stokes solutions without including computations for those same cases from simpler
theories. The impression: that they are presenting results for cases that couldn’t previously be

computed. The truth: often small disturbance, full potential, and full potential/boundary layer
methods are able to demonstrate results as accurate as the solution of the more exact equations.* 

Sometimes using the complete equations precludes the use of enough grid points or
sufficient run time to obtain fully converged results using the Euler or Navier-Stokes equations.
Thus a more approximate method with improved resolution may be better. Also, some numerical

* One of my colleagues who develops CFD codes objects to this statement. However, my obervations at national
meetings with numerous presentations on CFD methods continue to confirm this view.
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methods used to treat more exact equations introduced more numerical errors than results ob-
tained using better numerical techniques with more approximate equations. This last problem is

disappearing with the development of improved numerical methods. 

More discussion is presented in Chapter 14, Using Computational Aerodynamics: Review

and Reinforcement. There we will provide details of the issues associated with code validation
for computational aerodynamics. Appendix B provides references to cases that can be used to
validate calculations.

3.9 Presenting Analysis Results: visualization, time, grids and convergence, etc.

Can you understand your results by looking at a table of numbers on a computer screen?
Make maximum use of graphics to examine your results. Try to look at all the results. Computer

graphics and computational flow visualization provide powerful means of examining results. But
be cautious.  Contour plots can provide a good means of assessing sharpness of shocks, presence
of wiggles, and for checking that there are no incorrect flow gradients next to farfield
boundaries. The original standard computational flow visualization graphics package is

PLOT3D,17 which originated at NASA Ames Research Center. PLOT3D has now been absorbed
into a newer program: FAST. Computational flow visualization is part of a rapidly growing area
known as scientific visualization. This area has recently been reviewed by Edwards.18 

Watch out however, fancy color flowfield plots can be deceiving. Detailed surface pressure
and force and moment comparisons should be made with appropriate experimental data and
other calculations to assess a code’s accuracy. Beware of pretty pictures. They are extremely

valuable, but they do not provide the quantitative assessment required for engineering decision
making. In a recent article on this subject,19 we find this statement:  “According to Tufte,* the
danger in the movieland of computer-generated graphics lies in ‘dequantification’: the numbers
get lost in a fascination for shapes and effects. Scales are dropped, meaningless colors are

added….” Honest, effective presentation of results requires skill. This is an important part of
computational aerodynamics. Globus and Raible have assembled a satirical look at the misuse of
visualization in “13 Ways to Say Nothing with Scientific Visualization.”20

To demonstrate the integrity of the calculation you must always present plots of the conver-
gence history and results of grid convergence studies. Even though you may not be able to afford
to converge iterative procedures to machine accuracy for all your calculations, you should dem-

onstrate the effect of not doing this by presenting examples of not doing this for cases representa-
tive of the current problems you are studying. Examples of convergence with the number of pan-
els, mesh points, and iterative solution convergence are presented throughout the rest of the text.

* Edward R. Tufte has written two fascinating books on graphical presentations: The Visual Display of Quantita-
tive Information (1983), and Envisioning Information(1990). Both books are published by the Graphics Press,
Cheshire, Connecticut. They present a more mature (and honest) view of graphics presentation than is available
in most technical publications.
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3.10 Modern Computing Developments

Computer architectures for scientific computing are entering a period of rapid change. Tra-
ditional scalar processing available on personal computers (and many standard mainframes) is
being replaced by vector, parallel, and massively parallel machines. To use these machines effec-

tively, the user must develop methods (and program them) to exploit the specific advantages of
these machine architectures. An introduction to these issues for computational fluid dynamics
has been given by Rizzi and Enquist,21 and in an entire AGARD volume.22 The field is changing
quickly. Some of the latest information is contained in a book based on a recent conference edit-

ed by Simon.23 A review of the situation, including descriptions of two current advanced com-
puters, was given in a recent BYTE article.24 Advances in computational aerodynamics are being
driven by the High Performance Computing and Communications (HPCC) Project. An overview
of this program is described in the paper by Holst, Salas and Claus.25 . Here we review a couple

of aspects of the computing hardware and languages important to computational aerodynamics.

The key issue in advanced computing is how to increase the computation speed. Several

ways of measuring speed are important. This includes the basic processor speed, the size of
memory, and the speed of the data transfer through the machine. Although the “raw” computa-
tion speed is misleading, it is nevertheless used to quantify the speed of computers. With ad-
vanced computers there is a large difference between the peak speed and the maximum sustain-

able speed obtained in practice. The following table shows the large increases in speed obtained
over the last thirty years.

The basic speed is quoted in floating point operations per second, or flops. They are de-
fined as:

flops or defined as:

1 million 1x106 Megaflop or Mflop

1 billion 1x109 Gigaflop or Gflop

1 trillion 1x1012 Teraflop or Tflop

The goal of the HPCC Project is to demonstrate one Teraflop of sustained computing speed.
Typical results obtained by famous machines as initially released have been:

year machine speed
1964 CDC 6600 1 Mflop
1968 CDC 7600 4 Mflops
1976 Cray 1 27 Mflops
1983 Cray X-MP 70 Mflops

The current speed record was set recently at Sandia Labs using an Intel Paragon computer.
Thus remarkable gains are being made. The history of advances is shown in Fig. 3-6. The top

line is the peak performance including advanced approaches (vector and parallel architectures).
The bottom curve shows that the scalar, or serial, computing method is starting to reach its limit.
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Figure 3-6. The history of computer speed increase and current goals.25

Vector Computing

Essentially, the original sequential computing architecture is being replaced by machines
which can perform calculations simultaneously. The first step in this direction was the use of
pipelining. In performing specific operations, the computer may take several clock cycles (the

basic measure of time on a computer) to complete the instruction. During part of this time some
of the CPU may be sitting idle. The idea of pipelining is to take advantage of the idle cycles to
begin the next instruction before the machine has completed the previous instruction. This can
produce a speedup in the throughput of the CPU. Typically, this procedure is applied to arrays,

where the same operation is repeated, and is implemented in DO loops. This is known as code
vectorization. To be effective, the operations must allow for simultaneous calculations. If the cal-
culations are not independent, it may not be possible to vectorize the loop.

The VPI IBM 3090 computer (vtvm1) has vector capability. As an example of the potential
of vector processing, the program vtest, presented here in Fig. 3-7, was run with several different
compiler options (it is in caps because it was copied from the IBM screen).

The following results were obtained using the fortvs2 compiler:
compiler command execution time (hundredths of a second)

fortvs2 vtest 889
fortvs2 vtest (novector 892
fortvs2 vtest (novector opt(2) 252
fortvs2 vtest (novector opt(3) 251
fortvs2 vtest (vector opt(3) 33
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C
C     VECTOR PROCESSING CHECKS - W.H. MASON, FEB. 1, 1992

      PARAMETER (ILOOP = 9000, JLOOP = 1000)
      DIMENSION A(ILOOP),B(ILOOP),C(ILOOP)

      CALL TIMEON

      DO 5 I = 1,ILOOP
      A(I) = I
      B(I) = 2.*I
    5 C(I) = 0.01*I

      DO 20 J = 1,JLOOP
      DO 10 I = 1,ILOOP
   10 A(I) = A(I) + B(I)*C(I)
   20 CONTINUE

      CALL TIMECK(N)

      WRITE(6,100) N
  100 FORMAT(/5X,'TIME = ',I4,3X,'IN HUNDRETHS OF SECONDS'/)

      STOP
      END

Figure 3-7. A sample code used to illustrate benefits from vector processing.

These results provide several messages. Clearly, use of the vector compiler option results in a
significant reduction in computing time. However, the standard scalar execution optimization op-
tion (novector) also makes a large difference in execution time. This simple example illustrates
the potential of vectorized computing. Practical cases would not produce this much improve-

ment. This example also illustrates the potential for presenting misleading comparisons. Compar-
ison of unoptimized scalar results to optimized vectorized results overpredict the effects of vec-
torization by more than a factor of three. Discussions of vectorization can be found in mono-
graphs26 and computer manuals.27

Parallel Computers

Another approach to increasing processing speed is to perform calculations on several pro-
cessors simultaneously.  This is known as parallel computing. The recent article by Miel28 pro-

vides a good overview. There are two approaches of interest:28 “arrays of processing elements
operating in unison with a single program (SIMD or Single Instruction Multiple Data), and ar-
rays of cooperating computers running independently with distinct program memories (MIMD or
Multiple Instruction Multiple Data).” Parallel computing is becoming practical, and a number of

parallel processor computers are now available. Research is currently being conducted to under-
stand how to do computational aerodynamics easily on these machines. Within the very near fu-
ture computational aerodynamicists will be using these machines routinely. This will require the
development of new computer languages and solution algorithms. A major government initia-

tive, the High Performance Computing and Communications (HPCC) program, is addressing
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these problems. Expect rapid progress. Current practical aspects of parallel computing in aerody-
namics are discussed in the newsletter of the Numerical Aerodynamic Simulation Program, lo-

cated at NASA Ames.

In computational aerodynamics two other aspects need discussion. First, the machines can be

used in either “coarse” or “fine” grain parallelization modes. The course-grained mode is of par-
ticular interest in aerodynamic and multidisciplinary design. Here, many solutions are required
using the same program with different inputs. This is done to find the sensitivity of the design to
various design variables. Thus the same code is run on each different processor or node at the

same time. This approach is the easiest way to exploit the capability of parallel computing. Fine
grain parallel computing requires that the code be changed to make a single calculation using nu-
merous nodes.

The other aspect of concern in parallel computing is scalability. Here, the issue is whether the
speedup obtained using a small number of processors can be extrapolated to cases where a large
number of processors are used. Experience shows that the performance achieved with a small

numbers of processors, say twenty to thirty, does not scale up linearly when hundreds or thou-
sands of processors are used. One standard computer science rule-of-thumb, Ahmdahl’s Law,
says that the speedup decreases to a finite limit, which depends on the fraction of the code where
serial computations are required. Figure 3-825  shows that if even small parts of the code require

sequential computation, the speedup using parallel processing will not increase without limit. In
the figure R is the fraction of the code requiring serial computation and N is the number of pro-
cessors used. If none of the code requires serial computation, then R = 0, and the linear trend is
maintained. Otherwise, a slowdown is inevitable. Some computational scientists are currently

trying to demonstrate that for CFD this “law “ is not valid, and the trend can be shown to be ap-
proximately R = 1/N.

Experience at Virginia Tech using the coarse-grain approach is illustrated in Fig. 3-9.29 Here
we show results obtained by a student, after considerable effort, on the Virginia Tech Intel Para-
gon parallel computer. The results were obtained for some typical aerodynamics programs. The

results look good for this low number of processors. One of the bottlenecks in obtaining increas-
ing speedup with increasing numbers of processors is the use of disk IO by some codes written
for older machines.

Finally, note that progress is  being made making calculations on networks of workstations.
Supercomputing is moving from very large, very expensive machines to distributed processing
on machines that individually are much smaller and cheaper.

Language evolution

After years of little change, the computing languages are changing also. There are two rea-

sons for this. First, the C language introduced many desirable features. Many of these have been
adopted in FORTRAN 90, which also includes as standard many extensions that were so com-
mon that most users thought they were part of FORTRAN 77. Extensions that are now standard

3 - 20 Applied Computational Aerodynamics

Wednesday, January 22, 1997



include NAMELIST, IMPLICIT NONE and INCLUDE statements. Other new features are: stan-
dard calls for date and time routines, new symbols for relational operators, long variable names,

and many new intrinsic functions. In addition, several of the worst features of FORTRAN are
being declared obsolete, and are likely to be dropped in the future. Free format code is now al-
lowed, so FORTRAN 90 code will not necessarily look like FORTRAN code has in the past. The
new capabilities may lead to codes that are 50% shorter than current programs. The second rea-

son for change is the emergence of parallel computers. Although FORTRAN 90 will not address
parallel computing explicitly, it provides a basis for compiler builders to develop extensions for
use in parallel computing. 

Figure 3-8. Theoretical speed up due to parallelization.25 

FORTRAN 90 is much bigger than FORTRAN 77, and some effort will be required to learn

the new features. One book to read in making the transition is by Kerrigan.30 In addition, the is-
sues for languages specifically designed for parallel computing are addressed in a recent ICASE
Report.31 The two flavors of FORTRAN being developed for parallel computing are High Per-
formance FORTRAN (HPF) and FORTRAN-S. A standard FORTRAN for parallel computing

will not be available for some time. The HPF research is being conducted at the Center for Re-
search on Parallel Computation at Rice University.*

* A web viewer can use the URL: gopher://softlib.rice.edu/ to access reports from Rice. Other reports are avail-
able in HTML format via URL: http://softlib.rice.edu/ . A list of reports is available by sending email to soft-
lib@cs.rice.edu. In the message of the body type send trlist.ps. You will get a postscript file with the list of re-

report typos and errors to W.H. Mason Computers, Codes, and Engineering  3 - 21

Wednesday, January 22, 1997

1

10

100

1000

10000

1 10 100 1000 10000

Data 2
S (Amdahl's law, R = 0)
S (Amdahl's law, R = 0.01)
S (Amdahl's law, R = 0.10)
S (Amdahl's law, R = 1/N)

Speedup (S)

Number of Processors (N)

R: fraction of the code requiring
serial calculations



Figure 3-9. Experience at Virginia Tech with course-grained parallel computing.29

To keep abreast of current developments in hardware and language developments, students
should use the internet. In particular, the web pages associated with NASA’s Numerical Aerody-
namic Simulation facility (NAS) provide information on current developments. The NAS activi-

ty can be reviewed at 

http://www.nas.nasa.gov/home.html.*

See the NAS Newsletter in particular. Appendix F also has addresses home pages containing the

latest information on computational developments for aerodynamicists.

ports.

* The addreses are subject to change, this is a very dynamic environment. However, with the addresses of the var-
ious pages listed in Appendix F, you should be able to locate these pages.
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3.11 Exercises

1. Determine the accuracy of your computer/compiler. Find the size of the smallest number that
the computer can distinguish from 1, i.e., what is the smallest value of ε such that it  produces
the correct result when testing for  1 + ε  > 1 ? Recall that to have meaning, the computer and
compiler, including the version number, must be included in your summary of results.
Hint: try a program similar to the following:

c
c     compiler precision
c
      write(6,100) 
      epsmch     = 1.0

  
  do 10 i    = 1,999
     epsmch  = epsmch/2.0
     eps1    = 1.0 + epsmch
     if(eps1 .le. 1.0) go to 20

   10    write(6,110) i,epsmch
   
   20 continue
   
      write(6,120) epsmch

  100 format(/5x,'Estimate of computer/compiler accuracy'/
     1       /9x,'i',9x,'eps')
  110 format(5x,i5,5x,e14.7)
  120 format(//5x,'Approx. machine zero is ',e14.7)

      stop
  end

2. A practical matter: Do not put TAB characters in your FORTRAN code or a data set to be
read in by a FORTRAN code. Some editors do this automatically in the default mode. Some
compilers allow TABS in source code, many do not. If you have TABS in your code, this se-
verely limits the portability of the code. In this exercise, find out how your editor treats tabs.
Write a program to read in a simple data set in 6F10.5 format. Determine what happens if you
use TABS to  put data in the correct column. Understand this now as an isolated test case, be-
fore using codes described later in this text. This will avoid a lot of late night frustration.
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4. Incompressible Potential Flow
Using Panel Methods

4.1 An Introduction

The incompressible potential flow model provides reliable flowfield predictions over a wide range

of conditions. For the potential flow assumption to be valid for aerodynamics calculations the

primary requirement is that viscous effects are small in the flowfield, and that the flowfield must be

subsonic everywhere. Locally supersonic velocities can occur at surprisingly low freestream Mach

numbers. For high-lift airfoils the peak velocities around the leading edge can become supersonic

at freestream Mach numbers of 0.20 ~ 0.25. If the local flow is at such a low speed everywhere

that it can be assumed incompressible (M  ≤ .4, say), Laplace’s Equation is essentially an exact

representation of the inviscid flow. For higher subsonic Mach numbers with small disturbances to

the freestream flow, the Prandtl-Glauert (P-G) Equation can be used. The P-G Equation can be

converted to Laplace’s Equation by a simple transformation.1 This provides the basis for estimating

the initial effects of compressibility on the flowfield, i.e., “linearized” subsonic flow. In both

cases, the flowfield can be found by the solution of a single linear partial differential equation. Not

only is the mathematical problem much simpler than any of the other equations that can be used to

model the flowfield, but since the problem is linear, a large body of mathematical theory is

available.

The Prandtl-Glauert Equation can also be used to describe supersonic flows. In that case the

mathematical type of the equation is hyperbolic, and will be mentioned briefly in Chapter 12.

Recall the important distinction between the two cases:

subsonic flow: elliptic PDE, each point influences every other point,

supersonic flow: hyperbolic PDE, discontinuities exist,  “zone of influence”
solution dependency.

In this chapter we consider incompressible flow only. One of the key features of Laplace’s

Equation is the property that allows the equation governing the flowfield to be converted from a 3D

problem throughout the field to a 2D problem for finding the potential on the surface. The solution

is then found using this property by distributing “singularities” of unknown strength over

discretized portions of the surface: panels. Hence the flowfield solution is found by representing
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the surface by a number of panels, and solving a linear set of algebraic equations to determine the

unknown strengths of the singularities.* The flexibility and relative economy of the panel methods

is so important in practice that the methods continue to be widely used despite the availability of

more exact methods (which generally aren’t yet capable of treating the range of geometries that the

panel method codes can handle). An entry into the panel method literature is available through two

recent reviews by Hess,23  the survey by Erickson,4 and the book by Katz and Plotkin.5

The general derivation of the integral equation for the potential solution of Laplace’s equation is

given in Section 4.3. Complete details are presented for one specific approach to solving the

integral equation in Section 4.4. For clarity and simplicity of the algebra, the analysis will use the

two-dimensional case to illustrate the methods following the analysis given by Moran.6 This results

in two ironic aspects of the presentation:

• The algebraic forms of the singularities are different between 2D and 3D, due to 3D
relief. You can’t use the actual formulas we derive in Section 4.4 for 3D problems.

• The power of panel methods arises in three-dimensional applications. Two-
dimensional work in computational aerodynamics is usually done in industry using
more exact mappings,**  not panels.

After the general derivation, a panel method is used to examine the aerodynamics of airfoils.

Finally, an example and some distinctive aspects of the 3D problem are presented.

4.2 Some Potential Theory

Potential theory is an extremely well developed (old) and elegant mathematical theory, devoted to

the solution of Laplace’s Equation:

∇2φ = 0 . (4.1)

There are several ways to view the solution of this equation. The one most familiar to

aerodynamicists is the notion of “singularities”. These are algebraic functions which satisfy

Laplace’s equation, and can be combined to construct flowfields. Since the equation is linear,

superposition of solutions can be used. The most familiar singularities are the point source, doublet

and vortex. In classical examples the singularities are located inside the body. Unfortunately, an

arbitrary body shape cannot be created using singularities placed inside the body. A more

sophisticated approach has to be used to determine the potential flow over arbitrary shapes.

Mathematicians have developed this theory. We will draw on a few selected results to help

understand the development of panel methods. Initially, we are interested in the specification of the

boundary conditions. Consider the situation illustrated Fig. 4-1.

                                                
* The singularities are distributed across the panel. They are not specified at a point. However, the boundary
conditions usually are satisfied at a specific location.
** These will be mentioned in more detail in Chapter 9.
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Figure 4-1. Boundaries for flowfield analysis.

The flow pattern is uniquely determined by giving either:

φ  on  Σ +κ {Dirichlet Problem: Design} (4-2)

or
∂φ/∂n   on  Σ + κ {Neuman Problem: Analysis}. (4-3)

Potential flow theory states that you cannot specify both arbitrarily, but can have a mixed

boundary condition, aφ + b ∂φ /∂n  on Σ +κ . The Neumann Problem is identified as “analysis”

above because it naturally corresponds to the problem where the flow through the surface is

specified (usually zero). The Dirichlet Problem is identified as “design” because it tends to

correspond to the aerodynamic case where a surface pressure distribution is specified and the body

shape corresponding to the pressure distribution is sought. Because of the wide range of problem

formulations available in linear theory, some analysis procedures appear to be Dirichlet problems,

but Eq. (4-3) must still be used.

Some other key properties of potential flow theory:

• If either φ  or ∂φ/∂n is zero everywhere on Σ + σ then φ  = 0 at all interior points.

•  φ  cannot have a maximum or minimum at any interior point. Its maximum value can

only occur on the surface boundary, and therefore the minimum pressure (and

maximum velocity) occurs on the surface.
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4.3 Derivation of the Integral Equation for the Potential

We need to obtain the equation for the potential in a form suitable for use in panel method

calculations. This section follows the presentation given by Karamcheti7 on pages 344-348 and

Katz and Plotkin5 on pages 52-58. An equivalent analysis is given by Moran6 in his Section 8.1.

The objective is to obtain an expression for the potential anywhere in the flowfield in terms of

values on the surface bounding the flowfield. Starting with the Gauss Divergence Theorem, which

relates a volume integral and a surface integral,

divAdV
R

∫∫∫ = A ⋅ n dS
S
∫∫  (4-4)

we follow the classical derivation and consider the interior problem as shown in Fig. 4-2.

x

y

z

R0

S0
n

Figure 4-2. Nomenclature for integral equation derivation.

To start the derivation introduce the vector function of two scalars:

A = ωgradχ − χgradω . (4-5)

Substitute this function into the Gauss Divergence Theorem, Eq. (4-4), to obtain:

div ωgradχ − χgradω( )dV
R

∫∫∫ = ωgradχ − χgradω( )⋅ n dS
S
∫∫ . . (4-6)

Now use the vector identity: ∇⋅ σ F= σ ∇⋅F + F ⋅∇ σ  to simplify the left hand side of Eq. (4-6).

Recalling that ∇⋅ A = divA , write the integrand of the LHS of Eq. (4-6) as:

div ωgradχ − χgradω( ) = ∇⋅ ω∇χ( ) − ∇⋅ χ∇ω( )
= ω∇⋅∇ χ + ∇χ ⋅∇ω − χ∇⋅∇ ω − ∇ω ⋅∇χ

= ω∇2 χ − χ∇2ω

(4-7)
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Substituting the result of Eq. (4-7) for the integrand in the LHS of Eq. (4-6), we obtain:

ω ∇2χ − χ∇2ω( )dV
R

∫∫∫ = ωgradχ − χgradω( ) ⋅n dS
S
∫∫ , (4-8)

or equivalently (recalling that gradχ ⋅ n = ∂χ / ∂ n ),

ω ∇2χ − χ∇2ω( )dV
R

∫∫∫ = ω
∂χ
∂ n

− χ
∂ω
∂ n

 
 
  

 
 dS

S
∫∫ . (4-9)

Either statement is known as Green’s theorem of the second form.

Now, define ω = 1/r and χ = φ , where φ  is a harmonic function (a function that satisfies

Laplace’s equation). The 1/r term is a source singularity in three dimensions. This makes our

analysis three-dimensional. In two dimensions the form of the source singularity is ln r, and a two-

dimensional analysis starts by defining ω = ln r. Now rewrite Eq. (4-8) using the definitions of ω

and χ given at the first of this paragraph and switch sides,

1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  

S0

∫∫ ⋅ ndS =
1

r
∇2φ − φ∇2 1

r
 
 
  

 
  

  
 
  

R0

∫∫∫ dV . (4-10)

R0 is the region enclosed by the surface S0. Recognize that on the right hand side the first term,

∇2φ , is equal to zero by definition so that Eq. (4-10) becomes

1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  

S0

∫∫ ⋅ ndS = − φ∇2 1

r
 
 
  

 
 

R0

∫∫∫ dV . (4-11)

If a point P is external to S0, then ∇2 1

r
 
 
  

 
 = 0  everywhere since 1/r is a source, and thus satisfies

Laplace’s Equation. This leaves the RHS of Eq. (4-11) equal to zero, with the following result:

1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  

S0

∫∫ ⋅ n dS = 0. (4-12)

However, we have included the origin in our region S0 as defined above. If P is inside S0, then

∇2 1

r
 
 
  

 
 → ∞  at r = 0. Therefore, we exclude this point by defining a new region which excludes

the origin by drawing a sphere of radius ε around r = 0, and applying Eq. (4-12) to the region

between ε and S0:
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1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  ⋅ ndS

S0

∫∫
arbitrary region

1 2 4 4 4 4 3 4 4 4 4 

−
1

r

∂φ
∂r

+
φ
r2

 
 
  

 
 

ε
∫∫ dS

sphere
1 2 4 4 3 4 4 

= 0 (4-13)

or:
1

r

∂φ
∂r

+
φ
r2

 
 
  

 
 

ε
∫∫ dS =

1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  ⋅ ndS

S0

∫∫ . (4-14)

Consider the first integral on the left hand side of Eq. (4-14). Let ε → 0, where (as ε  → 0)

we take φ  ≈ constant (∂φ /∂ r == 0 ), assuming that φ  is well-behaved and using the mean value

theorem. Then we need to evaluate

dS

r2
ε
∫∫

over the surface of the sphere where ε = r. Recall that for a sphere* the elemental area is

dS = r2sinθ dθdφ (4-15)

where we define the angles in Fig. 4-3. Do not confuse the classical notation for the spherical

coordinate angles with the potential function. The spherical coordinate φ  will disappear as soon as

we evaluate the integral.

x

y

z
P

φ

θ

Figure 4-3. Spherical coordinate system nomenclature.

Substituting for dS in the integral above, we get:

sinθ dθdφ
ε
∫∫ .

Integrating from θ = 0 to π, and φ  from 0 to 2π, we get:

                                                
* See Hildebrand, F.B., Advanced Calculus for Applications, 2nd Ed., Prentice-Hall, Englewood Cliffs, 1976 for an
excellent review of  spherical coordinates and vector analysis.
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sinθ dθdφ
θ =0

θ=π
∫φ =0

φ=2π
∫ = 4π . (4-16)

The final result for the first integral in Eq. (4-14) is:

1

r

∂φ
∂r

+
φ
r2

 
 
  

 
 

ε
∫∫ dS = 4πφ . (4-17)

Replacing this integral by its value from Eq. (4-17) in Eq. (4-14), we can write the expression

for the potential at any point P as (where the origin can be placed anywhere inside S0):

φ p( ) =
1

4π
1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  

s0

∫∫ ⋅ n dS (4-18)

and the value of φ  at any point P is now known as a function of φ  and ∂φ /∂n  on the boundary.

We used the interior region to allow the origin to be written at point P. This equation can be

extended to the solution for φ  for the region exterior to R0. Apply the results to the region between

the surface SB of the body and an arbitrary surface Σ enclosing SB and then let Σ go to infinity. The

integrals over Σ go to φ ∞ as Σ goes to infinity. Thus potential flow theory is used to obtain the

important result that the potential at any point P' in the flowfield outside the body can be expressed

as:

φ ′ p ( ) = φ∞ −
1

4π
1

r
∇φ − φ∇

1

r
 
 
  

 
  

  
 
  

SB

∫∫ ⋅n dS . (4-19)

Here the unit normal n is now considered to be pointing outward and the area can include not only

solid surfaces but also wakes. Equation 4-19 can also be written using the dot product of the

normal and the gradient as:

φ ′ p ( ) = φ∞ −
1

4π
1

r

∂φ
∂n

−φ
∂

∂n

1

r
 
 
  

 
  

  
 
  

SB

∫∫ dS . (4-20)

The 1/r in Eq. (4-19) can be interpreted as a source of strength ∂φ / ∂n , and the ∇ (1/r) term in

Eq. (4-19) as a doublet of strength φ . Both of these functions play the role of Green’s functions in

the mathematical theory. Therefore, we can find the potential as a function of a distribution of

sources and doublets over the surface. The integral in Eq. (4-20) is normally broken up into

body and wake pieces. The wake is generally considered to be infinitely thin. Therefore, only

doublets are used to represent the wakes.
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Now consider the potential to be given by the superposition of two different known functions,

the first and second terms in the integral, Eq. (4-20). These can be taken to be the distribution of

the source and doublet strengths, σ and µ , respectively. Thus Eq (4-20) can be written in the form

usually seen in the literature,

φ ′ p ( ) = φ∞ −
1

4π
σ

1

r
− µ

∂
∂n

1

r
 
 
  

 
  

  
 
  

SB

∫∫ dS . (4-21)

The problem is to find the values of the unknown source and doublet strengths σ and µ  for a

specific geometry and given freestream, φ ∞.

What just happened? We replaced the requirement to find the solution over the entire flowfield

(a 3D problem) with the problem of finding the solution for the singularity distribution over a

surface (a 2D problem). In addition, we now have an integral equation to solve for the unknown

surface singularity distributions instead of a partial differential equation. The problem is linear,

allowing us to use superposition to construct solutions. We also have the freedom to pick whether

to represent the solution as a distribution of sources or doublets distributed over the surface. In

practice it’s been found best to use a combination of sources and doublets. The theory can be

extended to include other singularities.

At one time the change from a 3D to a 2D problem was considered significant. However, the

total information content is the same computationally. This shows up as a dense “2D” matrix vs. a

sparse “3D” matrix. As methods for sparse matrix solutions evolved, computationally the problems

became nearly equivalent. The advantage in using the panel methods arises because there is no

need to define a grid throughout the flowfield.

This is the theory that justifies panel methods, i.e., that we can represent the surface by panels

with distributions of singularities placed on them. Special precautions must be taken when

applying the theory described here. Care should be used to ensure that the region SB is in fact

completely closed. In addition, care must be taken to ensure that the outward normal is properly

defined.

Furthermore, in general, the interior problem cannot be ignored. Surface distributions of

sources and doublets affect the interior region as well as exterior. In some methods the interior

problem is implicitly satisfied. In other methods the interior problem requires explicit attention. The

need to consider this subtlety arose when advanced panel methods were developed. The problem is

not well posed unless the interior problem is considered, and numerical solutions failed when this

aspect of the problem was not addressed. References 4 and 5 provide further discussion.
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When the exterior and interior problems are formulated properly the boundary value problem

is properly posed. Additional discussions are available in the books by Ashley and Landahl8 and

Curle and Davis.9

We implement the ideas give above by:

a) approximating the surface by a series of line segments (2D) or panels (3D)
b) placing distributions of sources and vortices or doublets on each panel.

There are many ways to tackle the problem (and many competing codes). Possible differences

in approaches to the implementation include the use of:

- various singularities
- various distributions of the singularity strength over each panel
- panel geometry (panels don’t have to be flat).

Recall that superposition allows us to construct the solution by adding separate contributions

[Watch out! You have to get all of them. Sometimes this can be a problem]. Thus we write the

potential as the sum of several contributions. Figure 4-4 provides an example of a panel

representation of an airplane. The wakes are not shown, and a more precise illustration of a panel

method representation is given in Section 4.8.

Figure 4-4. Panel model representation of an airplane.
(Joe Mazza, M.S. Thesis, Virginia Tech, 1993).

An example of the implementation of a panel method is carried out in Section 4.4 in two

dimensions. To do this, we write down the two-dimensional version of Eq. (4-21). In addition,

we use a vortex singularity in place of the doublet singularity (Ref. 4 and 5 provide details on this

change). The resulting expression for the potential is:
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φ = φ∞
uniform onset flow
=V∞x cosα +V∞y sinα

{ +
q(s)

2π
lnr

q is the 2D
source strength

1 2 4 3 4 
−

γ (s)

2π
θ

this is a vortex singularity
of strength γ (s)

1 2 3 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

S

⌠ 

⌡ 

 
 
 
 
 

ds (4-22)

and θ = tan-1(y/x). Although the equation above shows contributions from various components of

the flowfield, the relation is still exact. No small disturbance assumption has been made.

4.4 The Classic Hess and Smith Method

A.M.O. Smith at Douglas Aircraft directed an incredibly productive aerodynamics development

group in the late ’50s through the early ’70s. In this section we describe the implementation of the

theory given above that originated in his group.* Our derivation follows Moran’s description6 of

the Hess and Smith method quite closely. The approach is to i) break up the surface into straight

line segments, ii) assume the source strength is constant over each line segment (panel) but has a

different value for each panel, and iii) the vortex strength is constant and equal over each panel.

Roughly, think of the constant vortices as adding up to the circulation to satisfy the Kutta

condition. The sources are required to satisfy flow tangency on the surface (thickness).

Figure 4-5 illustrates the representation of a smooth surface by a series of line segments. The

numbering system starts at the lower surface trailing edge and proceeds forward, around the

leading edge and aft to the upper surface trailing edge. N+1 points define N  panels.

12
34

N + 1
N

N  - 1

node

panel

Figure 4-5. Representation of a smooth airfoil with straight line segments.

The potential relation given above in Eq. (4-22) can then be evaluated by breaking the integral

up into segments along each panel:

φ = V∞ xcosα + ysinα( ) +
q(s)

2π
ln r −

γ
2π

θ 
  

 
  

panel j
∫

j=1

N

∑ dS (4-23)

                                                
* In the recent AIAA book, Applied Computational Aerodynamics, A.M.O. Smith contributed the first chapter, an
account of the initial development of panel methods.
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with q(s) taken to be constant on each panel, allowing us to write q(s) = qi,  i = 1, ... N . Here we

need to find N  values of qi and one value of γ .

i

i + 1

x

l i

θi

i

i + 1

x

θi

a) basic nomenclature b) unit vector orientation

n̂ i
t̂ i

Figure 4-6. Nomenclature for local coordinate systems.

Use Figure 4-6 to define the nomenclature on each panel. Let the i th panel be the one between

the i th and i+1th nodes, and let the i th panel’s inclination to the x axis be θ. Under these

assumptions the sin and cos of θ are given by:

sinθi =
yi+1 − yi

li
, cosθ i =

xi+1 − x i

li
(4-24)

and the normal and tangential unit vectors are:

ni = −sinθ ii + cosθij

ti = cosθ ii + sinθi j
. (4-25)

We will find the unknowns by satisfying the flow tangency condition on each panel at one

specific control point (also known as a collocation point) and requiring the solution to satisfy the

Kutta condition. The control point will be picked to be at the mid-point of each panel, as shown in

Fig. 4-7.

•

•
X

control point

panel

smooth shape

X

Y

Figure 4-7. Local panel nomenclature.
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Thus the coordinates of the midpoint of the control point are given by:

x i =
x i + xi +1

2
, y i =

yi + yi +1

2
(4-26)

and the velocity components at the control point x i , y i  are ui = u(x i , y i), vi = v(x i , y i).

The flow tangency boundary condition is given by V ⋅n = 0, and is written using the relations

given here as:

uii + vij( )⋅ − sinθii + cosθi j( ) = 0

or
−ui sinθi + vi cosθ i = 0, for each i,  i  =  1, ...,  N . (4-27)

The remaining relation is found from the Kutta condition. This condition states that the flow

must leave the trailing edge smoothly. Many different numerical approaches have been adopted to

satisfy this condition. In practice this implies that at the trailing edge the pressures on the upper and

lower surface are equal. Here we satisfy the Kutta condition approximately by equating velocity

components tangential to the panels adjacent to the trailing edge on the upper and lower surface.

Because of the importance of the Kutta condition in determining the flow, the solution is extremely

sensitive to the flow details at the trailing edge. When we make the assumption that the velocities

are equal on the top and bottom panels at the trailing edge we need to understand that we must

make sure that the last panels on the top and bottom are small and of equal length. Otherwise we

have an inconsistent approximation. Accuracy will deteriorate rapidly if the panels are not the same

length. We will develop the numerical formula using the nomenclature for the trailing edge shown

in Fig. 4-8.

•

•
•
N+1

N

1
2

t
N

t
1

^

^

Figure 4-8. Trailing edge panel nomenclature.

Equating the magnitude of the tangential velocities on the upper and lower surface:

ut1 = utN . (4-28)

and taking the difference in direction of the tangential unit vectors into account this is written as

V ⋅ t1 = −V ⋅ t N . (4-29)
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Carrying out the operation we get the relation:

u1i + v1j( )⋅ cosθ1i + sinθ1j( ) = − uN i + vN j( )⋅ cosθN i + sinθ Nj( )

which is expanded to obtain the final relation:

u1 cosθ1 + v1sinθ1 = −uN cosθ N + vN sinθ N (4-30)

The expression for the potential in terms of the singularities on each panel and the boundary

conditions derived above for the flow tangency and Kutta condition are used to construct a system

of linear algebraic equations for the strengths of the sources and the vortex. The steps required are

summarized below. Then we will carry out the details of the algebra required in each step.

Steps to determine the solution:

1. Write down the velocities, ui, v i, in terms of contributions from all the singularities. This

includes qi, γ  from each panel and the influence coefficients which are a function of the

geometry only.

2. Find the algebraic equations defining the “influence” coefficients.

To generate the system of algebraic equations:

3. Write down flow tangency conditions in terms of the velocities (N  eqn’s., N+1

unknowns).

4. Write down the Kutta condition equation to get the N+1 equation.

5. Solve the resulting linear algebraic system of equations for the qi, γ .

6. Given qi, γ , write down the equations for uti, the tangential velocity at each panel control

point.

7. Determine the pressure distribution from Bernoulli’s equation using the tangential

velocity on each panel.

We now carry out each step in detail. The algebra gets tedious, but there’s no problem in

carrying it out. As we carry out the analysis for two dimensions, consider the additional algebra

required for the general three dimensional case.
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Step 1. Velocities

The velocity components at any point i are given by contributions from the velocities induced

by the source and vortex distributions over each panel. The mathematical statement is:

ui = V∞ cosα + q jusij
+ γ uvij

j =1

N

∑
j=1

N

∑

vi = V∞ sinα + q jvs ij
+ γ vvij

j=1

N

∑
j=1

N

∑
(4-31)

where qi and γ  are the singularity strengths, and the usij, vsij, uvij, and vvij are the influence

coefficients. As an example, the influence coefficient usij is the x-component of velocity at x i due to

a unit source distribution over the j th panel.

Step 2. Influence coefficients

To find usij, vsij, uvij, and vvij we need to work in a local panel coordinate system x*, y* which

leads to a straightforward means of integrating source and vortex distributions along a straight line

segment. This system will be locally aligned with each panel j, and is connected to the global

coordinate system as illustrated in Fig. 4-9.

j X

Y

Y*
X*

j+1

θj

lj

Figure 4-9. Local panel coordinate system and nomenclature.

The influence coefficients determined in the local coordinate system aligned with a particular

panel are u* and v*, and are transformed back to the global coordinate system by:

u = u * cosθ j − v*sinθ j

v = u * sinθ j + v * cosθ j
 (4-32)
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We now need to find the velocities induced by the singularity distributions. We consider the source

distributions first. The velocity field induced by a source in its natural cylindrical coordinate system

is:

V =
Q

2πr
ˆ e r . (4-33)

Rewriting in Cartesian coordinates (and noting that the source described in Eq. (4-33) is

located at the origin, r = 0) we have:

u(x ,y) =
Q

2π
x

x2 + y2 ,          v(x,y) =
Q

2π
y

x2 + y2 . (4-34)

In general, if we locate the sources along the x-axis at a point x = t, and integrate over a length l,

the velocities induced by the source distributions are obtained from:

us =
q(t)

2π
x − t

(x − t)2 + y2 dt
t=0

t=l
∫

vs =
q(t)

2π
y

(x − t)2 + y2t=0

t=l
∫ dt

. (4-35)

To obtain the influence coefficients, write down this equation in the ( )* coordinate system,

with q(t) = 1 (unit source strength):

usij
* = 1

2π
xi

* − t

(x i
* − t)2 + yi

*2 dt
0

l j∫

vsij
* =

1

2π
yi

*

(x i
* − t)2 + yi

*20

l j∫ dt

. (4-36)

These integrals can be found (from tables) in closed form:

usij
* = −

1

2π
ln xi

* − t( )2
+ yi

*2 
  

 
  

1

2

t=0

t=l j

vsij
* =

1

2π
tan−1 yi

*

xi
* − t

 

 
 

 

 
 

t=0

t=l j

. (4-37)

To interpret these expressions examine Fig. 4-10. The notation adopted and illustrated in the

sketch makes it easy to translate the results back to global coordinates.
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y*

x*lj
j

j + 1

x*, y*
i i

r
r

ij
i,j+1

β
ij

ν ν
l0

Figure 4-10. Relations between the point x*, y* and a panel.

Note that the formulas for the integrals given in Eq. (4-37) can be interpreted as a radius and

an angle. Substituting the limits into the expressions and evaluating results in the final formulas for

the influence coefficients due to the sources:

usij
* = − 1

2π
ln

ri, j+1

rij

 

 
 

 

 
 

vsij
* =

νl − ν0

2π
=

β ij

2π

. (4-38)

Here rij is the distance from the j th node to the point i, which is taken to be the control point

location of the i th panel. The angle βij is the angle subtended at the middle of the i th panel by the j th

panel.

The case of determining the influence coefficient for a panel’s influence on itself requires

some special consideration. Consider the influence of the panel source distribution on itself. The

source induces normal velocities, and no tangential velocities, Thus, usii
* = 0  and vsii

*  depends on

the side from which you approach the panel control point. Approaching the panel control point

from the outside leads to βii = π, while approaching from inside leads to βii = -π. Since we are

working on the exterior problem,

βii = π, (4-39)

and to keep the correct sign on βij, j ≠ i, use the FORTRAN subroutine ATAN2, which takes into

account the correct quadrant of the angle.*

                                                
* Review a FORTRAN manual to understand how ATAN2 is used.
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 Now consider the influence coefficients due to vortices. There is a simple connection between

source and vortex flows that allows us to use the previous results obtained for the source

distribution directly in the vortex singularity distribution analysis.

The velocity due to a point vortex is usually given as:

V = −
Γ

2πr
eθ . (4-40)

Compared to the source flow, the u, v components simply trade places (with consideration of the

direction of the flow to define the proper signs). In Cartesian coordinates the velocity due to a point

vortex is:

u(x ,y) = +
Γ
2π

y

x2 + y2 ,          v(x, y) = −
Γ
2π

x

x2 + y2 . (4-41)

where the origin (the location of the vortex) is x = y = 0.

Using the same analysis used for source singularities for vortex singularities the equivalent

vortex distribution results can be obtained. Summing over the panel with a vortex strength of unity

we get the formulas for the influence coefficients due to the vortex distribution:

uvij
* = + 1

2π
yi

*

(x i
* − t)2 + yi

*2 dt
0

lj∫ =
βij

2π

vvij
* = −

1

2π
xi

* − t

(x i
* − t)2 + yi

*20

lj∫ dt =
1

2π
ln

ri, j+1

rij

 

 
 

 

 
 

(4-42)

where the definitions and special circumstances described for the source singularities are the same

in the current case of distributed vortices.* In this case the vortex distribution induces an axial

velocity on itself at the sheet, and no normal velocity.

Step 3. Flow tangency conditions to get N equations.

Our goal is to obtain a system of equations of the form:

Aijq j
j=1

N

∑ + Ai,N +1γ = bi i = 1,...N (4-43)

which are solved for the unknown source and vortex strengths.

Recall the flow tangency condition was found to be:

−ui sinθi + vi cosθ i = 0,     for each i, i = 1,...N (4-44)

                                                
* Note that Moran’s Equation (4-88) has a sign error typo. The correct sign is used in Eq. (4-42) above.
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where the velocities are given by:

ui = V∞ cosα + q jusij
+ γ uvij

j =1

N

∑
j=1

N

∑

vi = V∞ sinα + q jvs ij
+ γ vvij

j=1

N

∑
j=1

N

∑
. (4-45)

Substituting into Eq. (4-45), the flow tangency equations, Eq. (4-44), above:

−V∞ cosα − q jusij
− γ uvij

j=1

N

∑
j =1

N

∑
 

 
 
 

 

 
 
 sinθi + V∞ sinα + q jvs ij

+γ vvij
j =1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 cosθ i = 0

(4-46)

which is rewritten into:

−V∞ sinθi cosα + V∞ cosθ i sinα[ ]− sinθ i q jusij
j =1

N

∑ + cosθ i q jvsij
j=1

N

∑

− γ sinθ i uvij
j =1

N

∑ +γ cosθi vvij
j=1

N

∑ = 0

or

  

V∞ cosθi sinα −sinθ i cosα( )
−bi

1 2 4 4 4 4 4 3 4 4 4 4 4 
+ cosθi vsij

− sinθi usij( )
Aij

1 2 4 4 4 3 4 4 4 j=1

N

∑ q j

+ cosθi vvij
j=1

N

∑ − sinθi uvij
j=1

N

∑
 

 
 
 

 

 
 
 

Ai,N+1

1 2 4 4 4 4 4 3 4 4 4 4 4 

γ = 0

. (4-47)

Now get the formulas for A ij and A i,N+1 by replacing the formulas for usij, vsij,uvij,vvij with the ( )*

values, where:

u = u * cosθ j − v*sinθ j

v = u * sinθ j + v * cosθ j
(4-48)

and we substitute into Eq. (4-47) for the values in A ij and A i,N+1 above.

Start with:
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Aij = cosθi vsij
− sinθiusij

= cosθ i usij
* sinθ j + vsij

* cosθ j( ) − sinθi usij
* cosθ j − vsij

* sinθ j( )
= cosθi sinθ j − sinθi cosθ j( )usij

* + cosθ i cosθ j − sinθi sinθ j( )vsij
*

(4-49)

 and we use trigonometric identities to combine terms into a more compact form. Operating on the

first term in parenthesis:

cosθi sinθ j =
1

2
sin θ i + θ j( ) +

1

2
sin − θ i − θ j{ }( )

=
1

2
sin θ i + θ j( ) −

1

2
sin θ i −θ j( )

(4-50)

and

sinθi sinθ j =
1

2
sin θ i + θ j( ) +

1

2
sin θ i −θ j( ) (4-51)

results in:

cosθ i sinθ j − sinθ i cosθ j( ) = 0 −sin θi − θ j( ). (4-52)

Moving to the second term in parentheses above:

cosθi cosθ j =
1

2
cos θ i + θ j( ) +

1

2
cos θi −θ j( )

sinθ i sinθ j =
1

2
cos θ i −θ j( ) −

1

2
cos θi +θ j( )

(4-53)

and

cosθi cosθ j +sinθ i sinθ j =
1

2
cos θi +θ j( ) +

1

2
cos θ i −θ j( ) +

1

2
cos θ i −θ j( ) −

1

2
cos θi +θ j( )

= cos θ i − θ j( )
(4-54)

so that the expression for A ij can be written as:

Aij = −sin θ i −θ j( )usij
* + cos θi −θ j( )vsij

* (4-55)

and using the definitions of  

Aij =
1

2π
sin(θ i −θ j )ln

ri , j+1

ri, j

 

 
 

 

 
 +

1

2π
cos θi −θ j( )β ij . (4-56)

Now look at the expression for bi identified in (4-47):

bi = V∞ cosθi sinα − sinθi cosα( ) (4-57)
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where in the same fashion used above:

cosθi sinα =
1

2
sin θi +α( ) −

1

2
sin θ i − α( )

sinθi cosα =
1

2
sin θi +α( ) +

1

2
sin θ i − α( )

(4-58)

and

cosθi sinα − sinθi cosα = −sin θi −α( ) (4-59)

so that we get:

bi = V∞ sin θi − α( ) . (4-60)

Finally, work with the A i,N+1 term:

  

Ai,N+1 = cosθi vvij
j=1

N

∑ − sinθi uvij
j=1

N

∑
 

 
 
 

 

 
 
 

= cosθ i uvij
* sinθ j + vvij

* cosθ j( )
j=1

N

∑ − sinθi uvij
* cosθ j − vv ij

* sinθ j( )
j=1

N

∑

= cosθ i sinθ juv ij
* + cosθ i cosθ jvvij

* − sinθi cosθ juvij
* + sinθ i sinθ jvvij

*( )
j=1

N

∑

= cosθi cosθ j + sinθi sinθ j( )
a

1 2 4 4 4 4 3 4 4 4 4 
vv ij

* + cosθ i sinθ j − sinθi cosθ j( )
b

1 2 4 4 4 4 3 4 4 4 4 
uvij

*
 

 

 
 

 

 

 
 

j =1

N

∑

(4-61)

and a and b can be simplified to:

a = cos θ i − θ j( )
b = − sin θi −θ j( )

. (4-62)

Substituting for a and b in the above equation:

Ai,N+1 = cos θi −θ j( )vvij
* − sin θi −θ j( )uvij

*{ }
j=1

N

∑ (4-63)

and using the definition of  we arrive at the final result:

Ai,N+1 =
1

2π
cos(θ i − θ j)ln

ri , j+1

ri, j

 

 
 

 

 
 − sin(θi −θ j)βij

 
 
 

  

 
 
 

  j=1

N

∑ . (4-64)
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To sum up (repeating the results found above), the equations for the A ij, A i,N+1, and bi are

given by (4-56), (4-64), and (4-60):

Aij =
1

2π
sin(θi −θ j )ln

ri , j+1

ri, j

 

 
 

 

 
 +

1

2π
cos θ i − θ j( )β ij

Ai, N+1 =
1

2π
cos(θ i − θ j)ln

ri , j+1

ri, j

 

 
 

 

 
 − sin(θi −θ j)βij

 
 
 

  

 
 
 

  j=1

N

∑

bi = V∞ sin(θ i − α)

Step 4. Kutta Condition to get equation N+1

To complete the system of N+1 equations, we use the Kutta condition, which we previously

defined as:

u1 cosθ1 + v1sinθ1 = −uN cosθ N − vN sinθ N (4-66)

and substitute into this expression the formulas for the velocities due to the freestream and

singularities given in equation (4-31). In this case they are written as:

u1 = V∞ cosα + q jus1 j
+ γ uv1 j

j=1

N

∑
j =1

N

∑

v1 = V∞ sinα + q jvs1 j
+ γ vv1 j

j=1

N

∑
j=1

N

∑

uN = V∞ cosα + q jusNj
+ γ uvNj

j=1

N

∑
j=1

N

∑

vN = V∞ sinα + q jvsNj
+γ vvNj

j=1

N

∑
j=1

N

∑

. (4-67)

Substituting into the Kutta condition equation we obtain:
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V∞ cosα + q jus1j
+γ uv1 j

j=1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 cosθ1

+ V∞ sinα + q jvs1j
+γ vv1 j

j=1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 sinθ1

+ V∞ cosα + q jusNj
+ γ uvNj

j=1

N

∑
j =1

N

∑
 

 
 
 

 

 
 
 cosθ N

+ V∞ sinα + q jvsNj
+ γ vvNj

j =1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 sinθN = 0

(4-68)

and our goal will be to manipulate this expression into the form:

AN+1, jq j + AN+1,N+1γ = bN +1
j=1

N

∑ (4-69)

which is the N  + 1st equation which completes the system for the N  + 1 unknowns.

Start by regrouping terms in the above equation to write it in the form:

  

us1 j
cosθ1 + vs1 j

sinθ1 + usNj
cosθN + vsNj

sinθN( )
AN+1, j

1 2 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 j=1

N

∑ q j

+ uv1 j
cosθ1 + vv1j

sinθ1 + uvNj
cosθN + vvNj

sinθN( )
j =1

N

∑
 

 
 
 

 

 
 
 

AN+1,N+1
1 2 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 

γ

= − V∞ cosα cosθ1 + V∞ sinα sinθ1 + V∞ cosα cosθN + V∞ sinα sinθN( )
bN+1

1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 

. (4-70)

Obtain the final expression for bN+1 first:

  

bN+1 =− V∞ (cosα cosθ1 + sinα sinθ

cos α − θ1( )
1 2 4 4 4 4 3 4 4 4 4 + cosα cosθ N + sinα sinθN

cos α − θN( )
1 2 4 4 4 4 3 4 4 4 4 ) (4-71)

and using the trigonometric identities to obtain the expression for bN+1:

bN+1 =− V∞ cos θ1 − α( ) − V∞ cos θN − α( ) (4-72)
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where we made use of cos(-A) = cos A.

Now work with AN+1 ,j:

AN+1, j = us1 j
cosθ1 + vs1 j

sinθ1 + usNj
cosθN + vsNj

sinθN (4-73)

and replace the influence coefficients with their related ( )* values:

us1 j
= us1j

* cosθ j − vs1j
* sinθ j

vs1j
= us1 j

* sinθ j + vs1 j
* cosθ j

usNj
= usNj

* cosθ j − vsNj
* sinθ j

vsNj
= usNj

* sinθ j + vsNj
* cosθ j

(4-74)

so that we can write:

AN+1, j = us1j
* cosθ j − vs1 j

* sinθ j( )cosθ1

+ us1 j
* sinθ j + vs1 j

* cosθ j( )sinθ1

+ usNj
* cosθ j − vsNj

* sinθ j( )cosθN

+ usNj
* sinθ j + vsNj

* cosθ j( )sinθN

(4-75)

or:

AN+1, j = cosθ j cosθ1 + sinθ j sinθ1( )us1j
*

+ cosθ j cosθ N + sinθ j sinθN( )usNj
*

+ cosθ j sinθ1 − sinθ j cosθ1( )vs1 j
*

+ cosθ j sinθN − sinθ j cosθN( )vsNj
*

. (4-76)

Use the following trig relations to simplify the equation:

cosθ j cosθ1 + sinθ j sinθ1 = cos θ j − θ1( )
cosθ j cosθ N + sinθ j sinθN = cos θ j − θN( )

cosθ j sinθ1 − sinθ j cosθ1 = −sin θ j −θ1( )
cosθ j sinθN − sinθ j cosθN = −sin θ j −θN( )

(4-77)
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and substitute into Eq. (4-76) to obtain:

AN+1, j = cos θ j − θ1( )us1j
* + cos θ j − θN( )usNj

*

− sin θ j −θ1( )vs1j
* − sin θ j − θN( )vsNj

*
. (4-78)

Use the definition of the influence coefficients:

us1 j
* = − 1

2π
ln

r1, j+1

r1, j

 

 
 

 

 
 usNj

* = − 1
2π

ln
rN , j+1

rN , j

 

 
 

 

 
 

vs1 j
* =

β1, j

2π
vsNj
* =

βN , j

2π

(4-79)

to write the equation for AN+1 ,:

AN+1, j = −
cos θ j −θ1( )

2π
ln

r1, j+1

r1, j

 

 
 

 

 
 −

cos θ j −θ N( )
2π

ln
rN, j+1

rN, j

 

 
 

 

 
 

−
sin θ j −θ1( )

2π
β1, j −

sin θ j −θ N( )
2π

βN , j

. (4-80)

Finally, use symmetry and odd/even relations to write down the final form:

AN+1, j =
1

2π

sin(θ1 −θ j )β1, j + sin(θN −θ j)β N, j

−cos(θ1 −θ j )ln
r1, j+1

r1, j

 

 
 

 

 
 − cos(θN −θ j )ln

rN , j+1

rN , j

 

 
 

 

 
 

 

 

 
 
 

 

 

 
 
 
. (4-81)

Now work with AN+1,N+1:

AN+1,N+1 = uv1 j
cosθ1 + vv1 j

sinθ1 + uvNj
cosθN + vvNj

sinθN( )
j=1

N

∑ (4-82)

where we substitute in for the ( )* coordinate system, Eq. (4-32), and obtain:

AN+1,N+1 =
uv1 j

* cosθ j − vv1 j
* sinθ j( )cosθ1 + uv1 j

* sinθ j + vv1j
* cosθ j( )sinθ1

+ uvNj
* cosθ j − vvNj

* sinθ j( )cosθN + uvNj
* sinθ j + vvNj

* cosθ j( )sinθN

 

 
 

 
 

 

 
 

 
 j=1

N

∑ (4-83)

or:
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AN+1,N+1 =

cosθ j cosθ1 + sinθ j sinθ1( )
cos(θ j −θ1 )

1 2 4 4 4 4 3 4 4 4 4 
uv1j

* + cosθ j sinθ1 − sinθ j cosθ1( )
−sin(θ j −θ1 )

1 2 4 4 4 4 3 4 4 4 4 
vv1 j
*

+ cosθ j cosθN + sinθ j sinθ N( )
cos(θ j −θN )

1 2 4 4 4 4 4 3 4 4 4 4 4 
uvNj

* + cosθ j sinθN −sinθ j cosθN( )
− sin(θj −θ N )

1 2 4 4 4 4 4 3 4 4 4 4 4 
vvNj

*

 

 

 
 

 

 
 

 

 

 
 

 

 
 

j=1

N

∑

(4-84)

which is:

AN+1,N+1 =
cos(θ j − θ1)uv1 j

* − sin(θ j − θ1)vv1j
*

+cos(θ j − θN )uvNj
* − sin(θ j − θN )vvNj

*

 
 
 

  

 
 
 

  j=1

N

∑ ,

and using odd/even trig relations we get the form given by Moran6:

AN+1,N+1 =
sin(θ1 −θ j )vv1 j

* + sin(θN − θ j )vvNj
*

+ cos(θ1 − θ j)uv1 j
* + cos(θN −θ j )uvNj

*

 
 
 

  

 
 
 

  j=1

N

∑ . (4-86)

We now substitute the formulas derived above for the influence coefficients given in Eq. (4-

42). The final equation is:

AN+1,N+1 =
1

2π

sin θ1 −θ j( )ln
r1, j+1

ri, j

 

 
 

 

 
 + sin θN −θ j( )ln

rN , j+1

rN , j

 

 
 

 

 
 

+ cos(θ1 −θ j)β1, j + cos(θN −θ j )βN , j

 

 

 
 
 

 

 

 
 
 j =1

N

∑ . (4-86)

After substituting in the values of the velocities in terms of the singularity strengths, and

performing some algebraic manipulation, a form of the coefficients suitable for computations is

obtained.

The final equations associated with the Kutta condition are:

AN+1, j =
1

2π

sin(θ1 −θ j )β1, j + sin(θN −θ j)β N, j

−cos(θ1 −θ j )ln
r1, j+1

r1, j

 

 
 

 

 
 − cos(θN −θ j )ln

rN , j+1

rN , j

 

 
 

 

 
 

 

 

 
 
 

 

 

 
 
 

(4-81)

AN+1,N+1 =
1

2π

sin θ1 −θ j( )ln
r1, j+1

ri, j

 

 
 

 

 
 + sin θN −θ j( )ln

rN , j+1

rN , j

 

 
 

 

 
 

+ cos(θ1 −θ j)β1, j + cos(θN −θ j )βN , j

 

 

 
 
 

 

 

 
 
 j =1

N

∑ (4-86)

bN+1 =− V∞ cos(θ1 − α) − V∞ cos(θN −α ) . (4-72)
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Step 5. Solve the system for qi, γ .

The coefficients derived above provide the required coefficients to solve a system of linear

algebraic equations for the N+1 unknowns, qi, i = 1,...,N  and γ  given by (4-43) and (4-69):

Aijq j + Ai ,N+1γ = bi i = 1,...N
j=1

N

∑

AN+1, jq j + AN+1,N+1γ = bN +1
j=1

N

∑
. (4-87)

This is easily done using any number of computer subroutines.

Step 6. Given  qi, and γ , write down the equations for the tangential velocity at each

panel control point.

At each control point, (vn = 0), find ut, the tangential velocity starting with:

uti = ui cosθi + vi sinθi

= V∞ cosα + usij
q j + γ uvij

j=1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 cosθ i

+ V∞ sinα + vsij
q j + γ vv ij

j=1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 sinθi

. (4-88)

Using the ( )* values of the influence coefficients,

uti
= V∞ cosα + usij

* cosθ j − vsij
* sinθ j( )q j +γ uv ij

* cosθ j − vvij
* sinθ j( )

j=1

N

∑
j=1

N

∑
 

 
 
 

 

 
 
 cosθi

+ V∞ sinα + usij
* sinθ j + vsij

* cosθ j( )q j + γ uvij
* sinθ j + vvij

* cosθ j( )
j=1

N

∑
j =1

N

∑
 

 
 
 

 

 
 
 sinθ i

(4-89)

or:
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uti = V∞ cosα cosθ i + V∞ sinα sinθi

+ usij
* cosθ j cosθ i − vsij

* sinθ j cosθ i + us ij
* sinθ j sinθi + vsij

* cosθ j sinθi{ }
j=1

N

∑ q j

+ γ uv ij
* cosθ j cosθi − vvij

* sinθ j cosθ i + uvij
* sinθ j sinθi + vsij

* cosθ j sinθi{ }
j=1

N

∑

.

(4-90)

Collecting terms:

  

uti = (cosα cosθi + sinα sinθ i)

cos α −θ i( )
1 2 4 4 4 4 3 4 4 4 4 V∞

+ (cosθ j cosθi +sinθ j sinθ i)

cos(θ j −θ i)
1 2 4 4 4 4 3 4 4 4 4 

usij
* + (cosθ j sinθ i − sinθ j cosθi )

−sin(θ j −θi)
1 2 4 4 4 4 3 4 4 4 4 

vs ij
*

 

 
 

 
 

 

 
 

 
 
q j

j=1

N

∑

+γ (cosθ j cosθ i + sinθ j sinθi )
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which becomes:

uti
= cos α −θ i( )V∞ + cos(θ j − θi)usij

* − sin(θ j −θi )vsij
*{ }q j

j=1

N

∑

+γ cos(θ j − θi)uvij
* − sin(θ j −θ i)vvij

*{ }
j=1

N

∑
. (4-92)

Using the definitions of the ( )* influence coefficients, and some trigonometric identities, we

obtain the final result:

uti
= cos θi − α( )V∞ + qi

2π
j=1

N

∑ sin(θ i − θ j )βij − cos(θi −θ j )ln
ri, j+1

ri, j
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 
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 
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 
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 

 

 
 
 

          + γ
2π

sin(θi −θ j )ln
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ri, j

 

 
 

 

 
 + cos(θ i −θ j)β ij

 

 
 
 

 

 
 
 j=1

N

∑
. (4-93)
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Step 7. Finally, the surface pressure coefficient can be found from:

CPi
= 1−

uti

V∞

 

 
 

 

 
 

2

(4-94)

using ui from Eq. (4-93).

This completes our derivation of one panel method scheme in two dimensions. Imagine the

difficulty in performing the algebra required to extend this approach to three dimensions! That’s

why we’ve used a two-dimensional example.

4.5 Program PANEL

Program PANEL is an exact implementation of the analysis given in Section 4.4, and is

essentially the program given by Moran.6 Other panel method programs are available in the

textbooks by Houghton and Carpenter,10  and Kuethe and Chow.11  Moran’s program includes a

subroutine to generate the ordinates for the NACA 4-digit and 5-digit airfoils (see Appendix A for a

description of these airfoil sections). The main drawback is the requirement for a trailing edge

thickness that’s exactly zero. To accommodate this restriction, the ordinates generated internally

have been altered slightly from the official ordinates. The extension of the program to handle

arbitrary airfoils is an exercise. The freestream velocity in PANEL is assumed to be unity, since

the inviscid solution in coefficient form is independent of scale.

PANEL’s node points are distributed employing the widely used cosine spacing function.

The equation for this spacing is given by defining the points on the thickness distribution to be

placed at:

xi

c
=

1

2
1 − cos

i − 1( )π
N −1( )

 
 
 

 
 
 

 

 
 

 

 
               i = 1,..., N . (4-95)

These locations are then altered when camber is added (see Eqns. (A-1) and (A-2) in App. A).

This approach is used to provide a smoothly varying distribution of panel node points which

concentrate points around the leading and trailing edges.

 An example of the accuracy of program PANEL is given in Fig. 4-11, where the results

from PANEL for the NACA 4412 airfoil are compared with results obtained from an exact

conformal mapping of the airfoil (comments on the mapping methods are given in Chapter 9 on

Geometry and Grids. Conformal transformations can also be used to generate meshes of points for

use in field methods). The agreement is nearly perfect.

Numerical studies need to be conducted to determine how many panels are required to obtain

accurate results. Both forces and moments and pressure distributions should be examined.
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Figure 4-11. Comparison of results from program PANEL with an essentially exact
  mapping solution for the NACA 4412 airfoil at 6° angle-of-attack.
You can select the number of panels used to represent the surface. How many should you

use? Most computational programs provide the user with freedom to decide how detailed

(expensive - in dollars or time) the calculations should be. One of the first things the user should

do is evaluate how detailed the calculation should be to obtain the level of accuracy desired. In the

PANEL code your control is through the number of panels used.

We check the sensitivity of the solution to the number of panels by comparing force and

moment results and pressure distributions with increasing numbers of panels. This is done using

two different methods. Figures 4-12 and 4-13 present the change of drag and lift, respectively,

using the first method. For PANEL, which uses an inviscid incompressible flowfield model, the

drag should be exactly zero. The drag coefficient found by integrating the pressures over the airfoil

is an indication of the error in the numerical scheme. The drag obtained using a surface (or

“nearfield”) pressure integration is a numerically sensitive calculation, and is a strict test of the

method. The figures show the drag going to zero, and the lift becoming constant as the number of
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panels increase. In this style of presentation it is hard to see exactly how quickly the solution is

converging to a fixed value.

The results given in Figures 4-12 and 4-13 indicate that 60-80 panels (30 upper, 30 lower for

example) should be enough panels. Note that the lift is presented in an extremely expanded scale.

Drag also uses an expanded scale. Because drag is typically a small number, it is frequently

described in drag counts, where 1 drag count is a CD of 0.0001.

To estimate the limit for an infinitely large number of panels the results can be plotted as a

function of the reciprocal of the number of panels. Thus the limit result occurs as 1/n goes to zero.

Figures 4-14, 4-15, and 4-16 present the results in this manner for the case given above, and with

the pitching moment included for examination in the analysis.
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Figure 4-12. Change of drag with number of panels.

NACA 0012 Airfoil, α = 8°
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Figure 4-13. Change of lift with number of panels.

NACA 0012 Airfoil, α = 8°
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Figure 4-14. Change of drag with the inverse of the number of panels.

NACA 0012 Airfoil, α = 8°
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Figure 4-15. Change of lift with the inverse of the number of panels.

NACA 0012 Airfoil, α = 8°
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Figure 4-16. Change of pitching moment with the inverse of the number of panels.

NACA 0012 Airfoil, α = 8°



4-32 Applied Computational Aerodynamics

2/24/98

The results given in Figures 4-14 through 4-16 show that the program PANEL produces

results that are relatively insensitive to the number of panels once fifty or sixty panels are used, and

by extrapolating to 1/n = 0 an estimate of the limiting value can be obtained.

In addition to forces and moments, the sensitivity of the pressure distributions to changes in

panel density should also be investigated. Pressure distributions are shown in Figures 4-17, 4-18,

and 4-19. The case for 20 panels is given in Figure 4-17. Although the character of the pressure

distribution is emerging, it’s clear that more panels are required to define the details of the pressure

distribution. The stagnation pressure region on the lower surface of the leading edge is not yet

distinct. The expansion peak and trailing edge recovery pressure are also not resolved clearly.

Figure 4-18 contains a comparison between 20 and 60 panel cases. In this case it appears that the

pressure distribution is well defined with 60 panels. This is confirmed in Figure 4-19, which

demonstrates that it is almost impossible to identify the differences between the 60 and 100 panel

cases. This type of study should (and in fact must) be conducted when using computational

aerodynamics methods.
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Figure 4-17. Pressure distribution from progrm PANEL, 20 panels.
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NACA 0012 airfoil, α = 8°
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Figure 4-18. Pressure distribution from progrm PANEL, 
                  comparing results using 20 and 60 panels.
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Figure 4-19. Pressure distribution from progrm PANEL, 
                    comparing results using 60 and 100 panels.
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Having examined the convergence of the mathematical solution, we investigate the agreement

with experimental data. Figure 4-20 compares the lift coefficients from the inviscid solutions

obtained from PANEL with experimental data from Abbott and von Doenhof.12  Agreement is

good at low angles of attack, where the flow is fully attached. The agreement deteriorates as the

angle of attack increases, and viscous effects start to show up as a reduction in lift with increasing

angle of attack, until, finally, the airfoil stalls. The inviscid solutions from PANEL cannot capture

this part of the physics. The difference in the airfoil behavior at stall between the cambered and

uncambered airfoil will be discussed further in Chapter 10. Essentially, the differences arise due to

different flow separation locations on the different airfoils. The cambered airfoil separates at the

trailing edge first. Stall occurs gradually as the separation point moves forward on the airfoil with

increasing incidence. The uncambered airfoil stalls due to a sudden separation at the leading edge.

An examination of the difference in pressure distributions to be discussed next can be studied to

see why this might be the case.
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Figure 4-20. Comparison of PANEL lift predictions with experimental data, (Ref. 12).
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The pitching moment characteristics are also important. Figure 4-21 provides a comparison of

the PANEL pitching moment predictions (about the quarter chord point) with experimental data.

In this case the calculations indicate that the computed location of the aerodynamic center,

dCm / dCL = 0 , is not exactly at the quarter chord, although the experimental data is very close to

this value. The uncambered NACA 0012 data shows nearly zero pitching moment until flow

separation starts to occur. The cambered airfoil shows a significant pitching moment, and a trend

due to viscous effects that is exactly opposite the computed prediction.
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Figure 4-21. Comparison of PANEL moment predictions with experimental data, (Ref. 12).
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We do not compare the drag prediction from PANEL with experimental data. In two-

dimensional incompressible inviscid flow the drag is zero. In the actual case, drag arises from skin

friction effects, further additional form drag due to the small change of pressure on the body due to

the boundary layer (which primarily prevents full pressure recovery at the trailing edge), and drag

due to increasing viscous effects with increasing angle of attack. A well designed airfoil will have a

drag value very nearly equal to the skin friction and nearly invariant with incidence until the

maximum lift coefficient is approached.

In addition to the force and moment comparisons, we need to compare the pressure

distributions predicted with PANEL to experimental data. Figure 4-22 provides one example. The

NACA 4412 experimental pressure distribution is compared with PANEL predictions. In general
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the agreement is very good. The primary area of disagreement is at the trailing edge. Here viscous

effects act to prevent the recovery of the experimental pressure to the levels predicted by the

inviscid solution. The disagreement on the lower surface is surprising, and suggests that the angle

of attack from the experiment is not precise.
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Figure 4-22. Comparison of pressure distribution from PANEL with data.

NACA 4412 airfoil

Predictions from PANEL

data from NACA R-646

Panel methods often have trouble with accuracy at the trailing edge of airfoils with cusped

trailing edges, so that the included angle at the trailing edge is zero. Figure 4-23 shows the

predictions of program PANEL compared with an exact mapping solution (FLO36 run at low

Mach number, see Chap. 11) for two cases. Figure 4-23a is for a case with a small trailing edge

angle: the NACA 651-012, while Fig. 4-23b is for the more standard 6A version of the airfoil. The

corresponding airfoil shapes are shown Fig. 4-24.
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Figure 23. PANEL Performance near the airfoil trailing edge
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Figure 4-24. Comparison at the trailing edge of 6- and 6A-series airfoil geometries.

This case demonstrates a situation where this particular panel method is not accurate. Is this a

practical consideration? Yes and no. The 6-series airfoils were theoretically derived by specifying a

pressure distribution and determining the required shape. The small trailing edge angles (less than

half those of the 4-digit series), cusped shape, and the unobtainable zero thickness specified at the

trailing edge resulted in objections from the aircraft industry. These airfoils were very difficult to

use on operational aircraft. Subsequently, the 6A-series airfoils were introduced to remedy the

problem. These airfoils had larger trailing edge angles (approximately the same as the 4-digit

series), and were made up of nearly straight (or flat) surfaces over the last 20% of the airfoil. Most

applications of 6-series airfoils today actually use the modified 6A-series thickness distribution.

This is an area where the user should check the performance of a particular panel method.
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4.6 Subsonic Airfoil Aerodynamics

Using PANEL we now have a means of easily examining the pressure distributions, and

forces and moments, for different airfoil shapes. In this section we present a discussion of airfoil

characteristics using an inviscid analysis. All the illustrative examples were computed using

program PANEL. We illustrate key areas to examine when studying airfoil pressure distributions

using the NACA 0012 airfoil at 4° angle of attack as typical in Fig. 4-25.
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Figure 4-25. Key areas of interest when examining airfoil pressure distributions.
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NACA 0012 airfoil, α = 4°

Trailing edge pressure recovery

Expansion/recovery around leading edge
(minimum pressure or max velocity,
  first appearance of sonic flow)

upper surface pressure recovery
(adverse pressure gradient)

lower surface

Leading edge stagnation point 

Rapidly accelerating flow,
favorable pressure gradient

Remember that we are making an incompressible, inviscid analysis when we are using

program PANEL. Thus, in this section we examine the basic characteristics of airfoils from that

point of view. We will examine viscous and compressibility effects in subsequent chapters, when

we have the tools to conduct numerical experiments. However, the best way to understand airfoil

characteristics from an engineering standpoint is to examine the inviscid properties, and then

consider changes in properties due to the effects of viscosity. Controlling the pressure distribution

through selection of the geometry, the aerodynamicist controls, or suppresses, adverse viscous

effects. The mental concept of the flow best starts as a flowfield driven by the pressure distribution

that would exist if there were no viscous effects. The airfoil characteristics then change by the
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“relieving” effects of viscosity, where flow separation or boundary layer thickening reduces the

degree of pressure recovery which would occur otherwise. For efficient airfoils the viscous effects

should be small at normal operating conditions.

4.6.1 Overview of Airfoil Characteristics: Good and Bad

In this section we illustrate the connection between the airfoil geometry and the airfoil pressure

distribution. We identify and discuss ways to control the inviscid pressure distribution by changing

the airfoil geometry. An aerodynamicist controls viscous effects by controlling the pressure

distribution. Further discussion and examples providing insight into aerodynamic design are

available in the excellent recent book by Jones.13  A terrific book that captures much of the

experience of the original designers of the NACA airfoils was written by aeronautical pioneer E.P.

Warner.14

Drag: We discussed the requirement that drag should be zero* for this two-dimensional

inviscid incompressible irrotational prediction method when we studied the accuracy of the method

in the previous section. At this point we infer possible drag and adverse viscous effects by

examining the effects of airfoil geometry and angle of attack on the pressure distribution.

Lift: Thin airfoil theory predicts that the lift curve slope should be 2π, and thick airfoil theory

says that it should be slightly greater than 2π, with 2π being the limit for zero thickness. You can

easily determine how close program PANEL comes to this value. These tests should give you

confidence that the code is operating correctly. The other key parameter is aZL, the angle at which

the airfoil produces zero lift (a related value is CL0, the value of CL at α = 0).

Moment: Thin airfoil theory predicts that subsonic airfoils have their aerodynamic centers at

the quarter chord for attached flow. The value of Cm 0 depends on the camber. We have seen in Fig.

4-21 that the computed aerodynamic center is not precisely located at the quarter chord. However,

the slope of the moment curve in Fig. 4-21 corresponds to an aerodynamic center location of x/c =

0.2597, which is reasonably close to 0.2500.

Multi-element airfoils are also an important class of airfoils. However, their performance is so

closely connect to the effects of viscosity that the discussion of those airfoils is deferred until

Chapter 10, Viscous Flows in Aerodynamics.

                                                
* Three-dimensional panel methods can estimate the induced drag.
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Figure 4-26. Effect of angle of attack on the pressure distribution.
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Inviscid calculation from PANEL

The starting place for understanding airfoil characteristics is an examination of the angle of

attack effects on an uncambered airfoil. Figure 4-26 presents this effect for the NACA 0012 airfoil.

Here we see the progression from the symmetric zero angle of attack result. The α = 0° case

produces a mild expansion around the leading edge followed by a monotonic recovery to the

trailing edge pressure. As the angle of attack increases the pressure begins to expand rapidly

around the leading edge, reaching a very low pressure, and resulting in an increasingly steep

pressure recovery at the leading edge.

The next effect of interest is thickness. Figure 4-27 presents airfoil shapes for NACA 4 digit

sections of 6, 12, and 18 percent thick. The associated basic pressure distributions at zero angle of

attack are shown in Fig. 4-28. Clearly the thicker airfoil produces a larger disturbance, and hence a

lower minimum pressure. However, the 18 percent thick airfoil produces a milder expansion

around the leading edge and a recompression extending further upstream than the thinner airfoils,

especially at the trailing edge.



Panel Methods 4-41

2/24/98

0.30

0.20

0.10

0.00

-0.10

-0.20

-0.30

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Figure 4-27. Comparison of NACA 4-digit airfoils of 6, 12, and 18% thicknesses.
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Figure 4-28. Effect of airfoil thickness on the pressure distribution at zero lift.
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The effect of thickness in softening the expansion and recompression around the leading edge

is even more evident at an angle of attack. Figure 4-29 shows this effect at a lift coefficient of .48.

The thinnest airfoil shows a dramatic expansion/recompression due to the location of the stagnation

point below the leading edge point, requiring a large expansion around the leading edge which has

a very small radius of curvature. The thicker airfoil results in a significantly milder expansion and

subsequent recompresion.
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Figure 4-29. Effect of airfoil thickness on the pressure distribution at C
L
 = 0.48.
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Inviscid calculation from PANEL

The next effect to examine is camber. Figure 4-30 compares the shapes of the NACA 0012

and 4412 airfoils. The pressure distributions on the cambered airfoil for two different angles of

attack are shown in Figure 4-31. Note the role of camber in obtaining lift without producing a

leading edge expansion followed by a rapid recompression immediately behind the expansion. This

reduces the possibility of leading edge separation.



Panel Methods 4-43

2/24/98

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Figure 4-30. Comparison of uncambered and cambered NACA 4-digit airfoils.
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Figure 4-31. Effect of angle of attack on cambered airfoil pressure distributions at low lift.
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presuure distributions at the same lift, see Fig. 4-32.

Inviscid calculation from PANEL
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A comparison of the NACA 0012 and NACA 4412 airfoil pressure distributions at the same

lift coefficient is presented for several values of lift in Figures 4-32, 4-33 and 4-34. As the lift

increases, the camber effects start to be dominated by the angle of attack effects, and the dramatic

effects of camber are diminished until at a lift coefficient of 1.43 the pressure distributions start to

look similar.
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Figure 4-32. Camber effects on airfoil pressure distributions at C
L
 = 0.48.
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Figure 4-33. Camber effects airfoil pressure distributions at C
L
 = 0.96.
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Figure 4-34. Camber effects airfoil pressure distributions at C
L
 = 1.43.
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Finally, we examine the effect of extreme aft camber, which was part of the design strategy of

Whitcomb when the so-called NASA supercritical airfoils were developed. This effect can be

simulated using the NACA 6712 airfoil, as shown in Figure 4-35. The resulting pressure

distribution is given in Figure 4-36. Note that the aft camber “opens up” the pressure distribution

near the trailing edge. Two adverse properties of this type of pressure distribution are the large zero

lift pitching moment and the delayed and then rapid pressure recovery on the upper surface. This

type of pressure recovery is a very poor way to try to achieve a significant pressure recovery

because the boundary layer will separate early. Whitcomb’s design work primarily improved the

pressure recovery curve.

-0.05

0.05

0.15

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Figure 4-35. Highly aft cambered NACA airfoil, an NACA 6712.
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Figure 4-36. Example of the use of aft camber to "open up" 
                     the pressure distribution near the trailing edge.

α = -.6  (C
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Inviscid calculations from PANEL
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The airfoils used to demonstrate geometry effects on pressure distributions above use

parametric geometry definition formulas developed in the 1930s. More modern airfoils are

available to the aerodynamicist. Unfortunately, to obtain improved performance, the designs were

developed without the use of simple geometric definitions, and are available only as tables of

coordinates. One modern airfoil that extends some of the previous shapes to obtain a high

performance airfoil is the GA(W)-1 airfoil.15  This 17% thick airfoil designed by NASA’s Richard

Whitcomb provides better maximum lift and stall characteristics. Figure 4-37 shows the airfoil

shape, and Fig. 4-38 shows the pressure distribution.

-0.10
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0.00
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0.15

0.0 0.2 0.4 0.6 0.8 1.0

y/c

x/c

Figure 4-37. GA(W)-1 airfoil, also known as NASA LS(1)-0417.
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Inviscid calculations from PANEL

Figure 4-38. Pressure distribution at zero angle of attack of the GA(W)-1.
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Notice that in this case the upper surface pressure distribution reaches a constant pressure

plateau, and then has a moderate pressure recovery. Aft camber is used to obtain lift on the lower

surface and “open up” the airfoil pressure distribution near the trailing edge in a manner suggested

previously in Fig. 4-36. The area of aft camber on the lower surface is know as the “cove” region.

If the camber is too extreme here the adverse pressure gradient will be too steep, and the flow will

separate on the lower surface before it separates on the upper surface. Also, this type of pressure

distribution has a significantly higher Cm 0 than conventional airfoil sections.

4.6.2 Geometry and Design

Effects of Shape Changes on Pressure Distributions: So far the examples have

demonstrated global effects of camber and thickness. To develop an understanding of the typical

effects of adding local modifications to the airfoil surface, Exercise 5 provides a framework for the

reader to carry out an investigation analogous to the one for which results were presented in

Section 4.6.1. It is also worthwhile to investigate the very powerful effects that small deflections

of the trailing edge can produce. This reveals the power of the Kutta condition, and alerts the

aerodynamicist to the basis for the importance of viscous effects at the trailing edge.

This approach is extremely educational when implemented in an interactive computer

program, where the aerodynamicist can make shape changes with a mouse and see the effect on the

pressure distribution immediately. An outstanding code that does this has been created by Ilan

Kroo.16  It is called PANDA, originally was for the Macintosh, but now is available for a PC.

Shape for a specified pressure distribution: There is another way that aerodynamicists view

the design problem. The local modification approach described above is useful to make minor

changes in airfoil pressure distributions. Often the aerodynamic designer wants to find the

geometric shape corresponding to a prescribed pressure distribution from scratch. This problem is

known as the inverse problem. This problem is more difficult than the analysis problem. It is

possible to prescribe a pressure distribution for which no geometry exists. Even if the geometry

exists, it may not be acceptable from a structural standpoint. For two-dimensional incompressible

flow it is possible to obtain conditions on the surface velocity distribution that ensure that a closed

airfoil shape exists. Excellent discussions of this problem have been given by Volpe17  and Sloof.18

A two-dimensional panel method has been developed by Bristow.19  Numerical optimization can

also be used to find the shape corresponding to a prescribed pressure distribution.20
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4.7 Issues in the Problem formulation for 3D flow over aircraft

The extension of panel methods to three dimensions leads to fundamental questions regarding

the proper specification of the potential flow problem for flow over an aircraft. Examples include

the proper treatment of wing tips and the treatment of the wake and fuselage aft of the wing. Hess21

provides an excellent discussion of the problems. In particular, the Kutta condition has to be

reconsidered in three-dimensional flow. There are several aspects to consider. When solving the

flow over a complete aircraft the aerodynamicist has to decide how to model the flow streaming off

the fuselage or tip tank. The Kutta condition applies to distinct edges, and the inviscid model is not

as precise. Many different approaches have been followed. Carmichael and Erickson22  also provide

good insight into the requirements for a proper panel method formulation. Similarly, references 4

and 5 provide good overviews.

Aerodynamics panel methods generally use quadrilateral panels to define the surface. Since

three points determine a plane, the quadrilateral may not necessarily define a consistent flat surface.

In practice, the methods actually divide panels into triangular elements to determine an estimate of

the outward normal. It is important that edges fit so that there is no leakage in the panel model

representation of the surface.

Other practical considerations also require fastidious attention to detail. These include making

sure that the outward surface normal is oriented in the proper direction, that all surfaces are

properly enclosed, and that wakes are properly specified. In some methods wakes are handled

automatically. In other methods the wakes must be precisely specified by the user. This provides

complete control over the simulation, but means that the user must understand precisely what the

problem statement should be. Figure 4-39 shows an example of a panel model including the details

of the wakes. For high lift cases and wakes from one surface streaming near another, wake

deflection must be computed as part of the solution. Figure 4-39 comes from a one week “short”

course that was given to prospective users of an advanced panel method known as PAN AIR.23

Clearly, to ensure that the problem is properly specified, and to examine the entire flowfield in

detail, a complete graphics capability is required.

There is one other significant difference. Induced drag occurs even in inviscid, irrotational

incompressible flow. However, its calculation by integration of pressures over the surface requires

extreme accuracy, as we saw above for the two-dimension examples. The use of a farfield

momentum approach is much more accurate, and is described in Chap. 5, Drag, An Introduction.



4-50 Applied Computational Aerodynamics

2/24/98

Wing Wake

Carry-Over
Wakes

Body Wake

Tail Wake
Nor Shown

Impermeable Surface

a) wing-body-tail configuration panel scheme with wakes

Impermeable
Surfaces

Body Wake

Wing Wake
Wing-Body
Carry-Over
Wake

Tail Wake

Tail-Body
Carry-Over
Wake

b)  details of the wake model required

Figure 4-39. Example of a panel model containing wake model details.
 (from a viewgraph presented at a PAN AIR user’s short course, Ref. 23)
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4.8 Example applications of panel methods

Many examples of panel methods have been presented. Figure 4-40 shows an example of the

use of a panel model to evaluate the effect of the space shuttle on the Boeing 747. This is a classic

example. Other uses include the simulation of wind tunnel walls, support interference, and ground

effects. Panel methods are also used in ocean engineering. Recent America’s Cup designs have

been dependent on panel methods for hull and keel design. The effects of the free surface can be

treated using panel methods.

Figure 4-40. The space shuttle mounted on a Boeing 747.

One example has been selected to present in some detail. It is an excellent illustration of how a

panel method is used in design, and provides a realistic example of the typical agreement that can

be expected between a panel method and experimental data in a demanding real application. The

work was done by Ed Tinoco and co-workers at Boeing.24  Figure 4-41 shows the modifications

required to modify a Boeing 737-200 to the 737-300 configuration.The panel method was used to

investigate the design of a new high lift system. They used PAN AIR, which is a Boeing

developed advanced panel method.2525 Figure 4-42 shows the panel method representation of the

airplane.
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Figure 4-41. The Boeing 737-300 relative to the model 737-200 (Ref.24).

Figure 4-42. The panel representation of the 737-300 with 15° flap deflection (Ref. 4).
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An understanding of the wing flowfield for two different takeoff flap settings was desired.

The cases are “flaps 15”, the normal takeoff setting, and “flaps 1”, the high altitude, hot day

setting. The work was conducted in concert with the flight test program to provide insight into the

flight test results by providing complete flowfield details not available from the flight test. The

computational models used 1750 panels for flaps 1 and 2900 panels for flaps 15. The modeling

used to simulate this flowfield illustrates typical idealizations employed when applying panels

methods to actual aircraft. Although typical, it is one of the most geometrically complicated

examples ever published.

Figure 4-43 shows the wing leading edge and nacelle. The inboard Krueger flap was actually

modeled as a doublet of zero thickness. The position was adjusted slightly to allow the doublet

sheet to provide a simple matching of the trailing edge of the Krueger and the leading edge of the

wing. These types of slight adjustments to keep panel schemes relatively simple are commonly

used. The outboard leading and trailing edge flap geometries were also modified for use in this

inviscid simulation. Figure 4-44 a) shows the actual and computational flaps 1 geometry. In this

case the airfoil was modeled as a single element airfoil. The flaps 15 trailing edge comparison

between the actual and computational geometry is shown in Fig. 4-44 b). The triple slotted flap

was modeled as a single element flap. At this setting the gap between the forward vane and main

flap is closed, and the gap between the main and aft flap is very small.

Figure 4-43. Inboard wing leading edge and nacelle details (Ref. 24).
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a) Comparison of actual and computational wing geometry for the flaps 1 case (Ref. 24).

Actual Geometry

Computational Geometry

b) Actual and computational trailing edge geometry for the flaps 15 case (Ref. 4).

Figure 4-44. Examples of computational modeling for a real application.

Several three-dimensional modeling considerations also required attention. In the flaps 1 case

shown in Fig. 4-45, spanwise discontinuities included the end of the outboard leading edge slat

and trailing edge discontinuities at the back of the nacelle installation (called the thrust gate)

between the inboard and outboard flaps. At the outboard leading edge the edges of the slat and

wing were paneled to prevent leakage. A 0.1 inch gap was left between these surfaces. At the

trailing edge discontinuity a wake was included to model a continuous trailing edge from which a

trailing vortex sheet could be shed.
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Figure 4-45. Spanwise discontinuity details requiring modeling for flaps 1 case (Ref. 24).

Similar considerations are required for the flaps 15. Here, special care was taken to make sure

that the configuration was closed, and contained no holes in the surface at the ends of the flap

segments.

Another consideration is the nacelle model. This requires the specification of the inlet flow at

the engine face, a model of the strut wake, and both the outer bypass air plume and the primary

wake from the inner hot gas jet. Figure 4-46 provides the details.

Figure 4-46 Nacelle model (Ref. 24).
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Complete details of the model are contained in Ref. 24. With the model complete, the solution

was obtained. The spanwise distribution of airfoil section lift coefficients is presented in Figure 4-

47. The first part of the figure shows the results for the flaps 1 case, and the second part of the

figure presents the flaps 15 case. In both cases the jig shape and flight shape including aeroelastic

deformation are included. This is another consideration in making a proper aerodynamic

simulation. In both cases the shape including the deformation under load shows much better

agreement with flight and wind tunnel data. Notice the loss of lift on the wing at the nacelle station,

and the decrease in lift outboard of the trailing edge flap location.

a) flaps 1 case

b) flaps 15 case

Figure 4-47. Spanwise distribution of lift coefficient on the Boeing 737-300 (Ref.24).
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Figure 4-48 presents the change in section lift coefficient with angle of attack at several span

stations. The agreement between PAN AIR and flight test is better for the flaps 1 case. Viscous

effects are becoming important for the flaps 15 case.

a) flaps 1 case

b) flaps 15 case

Figure 4-48. Comparison of section lift coefficient change with angle of attack(Ref.24)
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Figure 4-49 completes this example by presenting the comparison of pressure distributions for

the two cases at four spanwise stations. The flaps 1 case agreement is generally good. Calculations

are presented for both the actual angle of attack, and the angle of attack which matches the lift

coefficient. Matching lift coefficient instead of angle of attack is a common practice in

computational aerodynamics. Considering the simplifications made to the geometry and the

absence of the simulation of viscous effects the agreement is very good. The flaps 15 case starts to

show the problems that arise from these simplifications. This is a good example of the use of a

panel method. It illustrates almost all of the considerations that must be addressed in actual

applications.

                     a) flaps 1 case                                                          b) flaps 15 case

Figure 4-49. Comparison of pressure distributions between flight and computations for the 737-

300, solid line is PAN AIR at flight lift, dashed line is PAN AIR at flight angle of attack (Ref. 24).
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4.9 Using Panel Methods

4.9.1 Common sense rules for panels

• Vary the size of panels smoothy
• Concentrate panels where the flowfield and/or geometry is changing rapidly
• Don’t spend more money and time (i.e., numbers of panels) than required

Panel placement and variation of panel size affect the quality of the solution. However,

extreme sensitivity of the solution to the panel layout is an indication of an improperly posed

problem. If this happens, the user should investigate the problem thoroughly.

 Panel methods are an aid to the aerodynamicist. You must use the results as a guide to help

you develop your own judgement. (An issue: lawyers often get involved because you frequently

sign an agreement that the code developer is not liable for problems that stem from the use of the

code; the same disclaimer you see with every PC programs).

Remember that the panel method solution is an approximation of the real life problem; an

idealized representation of the flowfield. An understanding of aerodynamics that provides an

intuitive expectation of the types of results that may be obtained, and an appreciation of how to

relate your idealization to the real flow is required to get the most from the methods. This insight

requires experience and study.

4.9.2 What a Panel Method Can't Do

1. Panel methods are inviscid solutions. You will not capture viscous effects except via

user “modeling” by changing the geometry.

2. Solutions are invalid as soon as the flow develops local supersonic zones

[i.e., Cp < Cpcrit]. For two-dimensional isentropic flow, the exact value of Cp for critical

flow is:
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(4-96)

4.10 Advanced panel methods: What is a “Higher Order” Panel Method?

So-called “higher-order” panel methods use singularity distributions that are not constant on

the panel, and may also use panels which are non-planar. Higher order methods were found to be

crucial in obtaining accurate solutions for the Prandtl-Glauert Equation at supersonic speeds. At

supersonic speeds, the Prandtl-Glauert equation is actually a wave equation (hyperbolic), and
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requires much more accurate numerical solution than the subsonic case in order to avoid

pronounced errors in the solution (Magnus and Epton25). However, subsonic higher order panel

methods, although not as important as the supersonic flow case, have been studied in some detail.

In theory, good results can be obtained using far fewer panels with higher order methods. In

practice the need to resolve geometric details often leads to the need to use small panels anyway,

and all the advantages of higher order panelling are not necessarily obtained. Nevertheless, since a

higher order panel method may also be a new program taking advantage of many years of

experience, the higher order code may still be a good candidate for use.

4.11 Today’s standard programs: a brief survey

Panel methods are widely used in the aircraft industry, and have been for a long time.

Comparisons between codes have been made, the most recent comparison being by Margason, et

al.26  In general, all the new professionally-developed codes work well. The selection of a specific

code will likely be based on non-technical considerations. In recent times, several codes have

emerged as the primary ones. The newest is known as PMARC,27  for     P    anel      M     ethod     A    mes

    R    esearch     C    enter. These codes have received the most development effort. We provide a brief

description of the codes a new aerodynamicist will most likely encounter. Specific references are

provided in Tables 4-1 through 4-3.

PAN AIR - Boeing-developed code, funded by a variety of government agencies, and available

through COSMIC (a lease arrangement, about $7000 last time I looked, and export controlled).

This code provides total flexibility, i.e., it’s really an integral equation solver and not an

aerodynamicist’s tool per se. It uses higher order panels, and is both subsonic and supersonic. It’s

relatively expensive and difficult to run (a PAN AIR user would take months to train, and it would

probably become his primary job).

To effectively use the code good pre- and post- processing systems must be available. Although

Boeing has these systems in place, they were internally developed and are not available outside the

company.

VSAERO - AMI developed (Analytical Mechanics Inc., Frank Dvorak and Brian Maskew). It uses

low order panels and is subsonic only. It also handles general geometries, and includes options to

treat viscous effects and vortex flows. The original NASA version is available through COSMIC.

However, the code has been much further developed by AMI and is for sale by this company. The

price for the current code is about $100K, and they also have a plotting package (OMNIPLOT,

about $20K) available for purchase. This code also requires considerable user training. Support

from AMI is about $10-$15K per year, and site licensing is not available (as of 1990). You pay a
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large fee for each machine on which you install VSAERO. The business of licensing codes from

developers is an important consideration in computational aerodynamics in the ’90s.

The public domain version of this code was obtained by several groups that worked on the design

of the America’s Cup Yacht competitors in the mid-eighties. The code was used for hull and keel

design. One of the modifications that was made was the addition of the free surface representing

the air-water interface (recall that the free surface problem means that the surface displacement is

unknown, and the boundary condition is that a constant pressure exists at the interface).

QUADPAN - Lockheed-developed, and possibly developed at some government labs. Not widely

used by industry outside of Lockheed. This is probably because of availability.

Versions of the “Hess Code” - further developments of the team at Douglas now led by Hess.

Naturally, Douglas uses this code exclusively. Douglas developed numerous versions under

various government contracts, and it seems to be available mainly at Navy facilities.

Woodward: An old panel method that is sometimes encountered is the code known as the

“Woodward” or “Woodward-Carmichael” code. Woodward was a pioneer panel method

developer, and the most likely Woodward code a new aerodynamicist might encounter is a version

of USSAERO, which was developed under NASA contract. Woodward’s first methods were

developed while he was at Boeing, and were supported by NASA Ames, primarily for the US SST

program (which was an important national effort in the sixties). Subsequently, Woodward went

into business and continued to develop codes. USSAERO treats both supersonic and subsonic

flow, and a version which incorporates design options “Woodward 1-2” is available at VPI.

PMARC -This is the newest panel method code, and was developed at NASA Ames to provide an

extremely flexible method to simulate a wide range of very general geometries. An example is the

simulation of high lift systems and jet exhausts for VSTOL aircraft. The code is a lower order

panel method, and can simulate steady as well as unsteady flow. The wake position can be

obtained as part of the solution. It is being used for underwater applications as well as for aircraft.

This code is also available at VPI.

The history of panel methods is illustrated in the tables. Table 4-1 summarizes some of the

key early methods that were developed. W12SC3 is included because it was a valuable

combination of two early codes, providing significant design capability, particularly at supersonic

speeds. Table 4-2 reviews the extremely active era of the development of advanced methods.

Finally, Table 4-3 provides details on the current production codes likely to be used on current

aerodynamic design and analysis projects.
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Hess and Smith1

(Douglas)

Rubbert2

(vortex lattice)

Woodward3

(Woodward I)

Rubbert and
Saaris4

(Boeing A-230)

Hess I5

USSAERO 6

(Woodward II)

W12SC37

(Grumman)

Table 4 - 1
Comparison of Some Major Panel Method Programs: Early Codes

Year
Panel

Geometry
Source
Type

Doublet
Type

Boundary
Conditions Restrictions Comments

Originator and
Method Name

1

2

3

4

5

6

7

Hess, J.L., and Smith, A.M.O., "Calculation of Nonlifting Potential Flow About Arbitrary
Three-Dimensional Bodies," Douglas Report ES40622, Douglas Aircraft Company, 1962.

Rubbert, P.E., "Theoretical Characteristics of Arbitrary Wings by a Nonplanar Vortex Lattice Method,"
Boeing Report D6-9244, The Boeing Company, 1964.

Woodward, F.A., Tinoco, E.N., and Larsen, J.W., "Analysis and Design of Supersonic Wing-Body
Combinations, Including Flow Properties in the Near Field," Part I - Theory and Application, NASA
CR-73106, 1967.

Rubbert, P.E., and Saaris, G.R., "A General Three-Dimensional Potential Flow Method Applied to
V/STOL Aerodynamics," SAE Paper No. 680304, 1968.

Hess, J.L., "Calculation of Potential Flow About Arbitrary 3-D Lifting Bodies," Douglas Report
MDC-J5679-01, October 1972.

Woodward, F.A., "An Improved Method for the Aerodynamic Analysis of Wing-Body-Tail Configurations
in Subsonic and Supersonic Flow," NASA CR-2228, Parts I and II, 1973.

Mason, W.H., and Rosen, B.S., "The COREL and W12SC3 Computer Programs for Supersonic Wing
Design and Analysis," NASA CR 3676, 1983 (contributions by A. Cenko and J. Malone acknowledged).

from Magnus and Epton, NASA CR 3251, April 1980 (with extensions)

1962 flat constant none
specification
of normal

flow

non-lifting
wings and
bodies only

1964 flat none constant normal flow
planar wings

only

1967 flat constant linear normal flow
wings must

be planar

mainly
supersonic,
includes
design &

optimization

1968 flat constant constant normal flow
nearly

constant
panel density

1972 flat constant linear normal flow
wings and
bodies only

1973 flat
subsonic and
supersonic,

analysis only

1983 flat
mixed design

and
analysis

combines
Woodward

1 & 2
features
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Roberts and
Rundle1

Mercer, Weber
and Lesford2

Morino and Kuo3

(SOUSSA)

Johnson and
Rubbert 4

Ehlers and
Rubbert 5

 (Mach line
paneling)

Ehlers et al.6

(PAN AIR
"pilot code")

Table 4 - 2
Comparison of Some Major Panel Method Programs: Advanced Methods

Year
Panel

Geometry
Source
Type

Doublet
Type

Boundary
Conditions Restrictions Comments

Originator and
Method Name

1

2

3

4

5

6

Roberts, A., and Rundle, K., "Computation of First Order Compressible Flow About Wing-Body
Configurations," AERO MA No. 20, British Aircraft Corporation, February, 1973.

Mercer, J.E., Weber, J.A., and Lesford, E.P., "Aerodynamic Influence Coefficient Method Using
Singularity Splines," NASA CR-2423, May 1974.

Morino, L., and Kuo, C-C, "Subsonic Potential Aerodynamics for Complex Configurations: A General
Theory," AIAA Journal, Vol. 12, No. 2, pp 191-197, February, 1974.

Johnson, F.T., and Rubbert, P.E., "Advanced Panel-Type Influence Coefficient Methods Applied to
Subsonic Flow," AIAA Paper No. 75-50, January 1975.

Ehlers, F.E., and Rubbert, P.E., "A Mach Line Panel Method for Computing the Linearized Supersonic
Flow," NASA CR-152126, 1979.

Ehlers, F.E., Epton, M.A., Johnson, F.T., Magnus, A.E., and Rubbert, P.E., "A Higher Order Panel
Method for Linearized Flow," NASA CR-3062, 1979.

from Magnus and Epton, NASA CR 3251, April 1980 (with extensions)

1973 paraboloidal quadratic quadratic normal flow

numerical
integration,

very
expensive

1973 flat none
smooth,

cubic/
quadratic

normal flow
in least

squares sense
planar wings

subsonic/
supersonic,

cubic
spanwise,
quadratic
chordwise

1974
continuous,

hyperbo-
loidal

constant constant potential
no thin

configura-
tions

unsteady

1975 paraboloidal linear quadratic normal flow

1976 flat linear
continuous

quadratic
normal flow

planar
wings,
special
paneling

supersonic
flow

1977
continuous
piecewise

flat
linear

continuous
quadratic

arbitrary in
φ, ∇φ

subsonic and
supersonic
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MCAIR 1

(McDonnell)

PAN AIR 2

(Boeing)

Hess II 3

(Douglas)

VSAERO4

(AMI)

QUADPAN 5

(Lockheed)

PMARC 6

(NASA Ames)

Table 4-3
Comparison of Some Major Panel Method Programs: Production Codes

Year
Panel

Geometry
Source
Type

Doublet
Type

Boundary
Conditions Restrictions Comments

Originator and
Method Name

1

2

3

4

5

6

Bristow, D.R., "Development of Panel Methods for Subsonic Analysis and Design," NASA CR 3234,
1980.

Magnus, A.E., and Epton, M.A., "PAN AIR - A Computer Program for Predicting Subsonic or
Supersonic Linear Potential Flows About Arbitrary Configurations Using a Higher Order Panel Method,"
Volume I - Theory Document (Version 1.0), NASA CR 3251, 1980.

Hess, J.L., and Friedman, D.M., "An Improved Higher Order Panel Method for Three Dimensional
Lifting Flow," Douglas Aircraft Co. Report No. NADC-79277-60, 1981.

Maskew, B., "Prediction of Subsonic Aerodynamic Characteristics: A Case for Lower Order Panel
Methods," AIAA Paper No. 81-0252, 1981.

Coopersmith, R.M., Youngren, H.H., and Bouchard, E.E., "Quadrilateral Element Panel Method
(QUADPAN)," Lockheed-California LR 29671, 1981.

Ashby, D.L., Dudley, M.R., and Iguchi, S.K., "Development and Validation of an Advanced Low-Order
Panel Method," NASA TM 101024, 1988 (also TM 102851, 1990).

from Magnus and Epton, NASA CR 3251, April 1980 (with extensions)

1980 flat constant quadratic
design
option

1980
continuous
piecewise

flat

continuous
linear

continuous
quadratic

arbitrary in
φ, ∇φ

subsonic and
supersonic

1981 parabolic linear quadratic normal flow

1981 flat constant constant
exterior and

interior
normal flow

subsonic

1981 flat constant constant

1988 flat constant constant
unsteady,

wake rollup
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4.12 Exercises

1. Program PANEL.

a) Obtain a copy of program PANEL and the sample case.

b) Convert PANEL to run on your PC.

c) Run the sample case: NACA 4412, 20 pts. upper, 20 pts. lower, α = 4° , and verify
against sample case.

d) Document
i) compile time required on your PC

(cite computer and compiler used)
ii) the execution time for the sample case
iii) the accuracy relative to the sample case.
iv) the exact modifications required to make the code

work on your computer

2.  Start work on program PANEL

a) Save a reference copy of the working code!

b) Check convergence with panels (NLOWER+NUPPER must be less than 100
currently). How many panels do you need to get results independent of the number of
panels? What happens to the computer time as the number of panels increases?

c) Check the coordinates generated by the airfoil routine vs. exact (consider using the
NACA 0012, see App. A for geometry definition), including examination of the
coordinates at the trailing edge. This is best done by making a table of exact and
computed values at selected values of x/c. What did you find out?

d) Locate the source strengths, and sum the source strengths x panel lengths to get the
total source strength. Does it sum to zero? Should it?

e) Where is the moment reference center in this code?

Submit an assessment of your findings.

3. Modify program PANEL:

You need a version of PANEL that will allow you to compute the pressure
distribution on arbitrary airfoils. This exercise will give you this capability. Modify
the code to interpolate input airfoil points to the program defined surface points, x/c.
The resulting code should:

a) accept arbitrary airfoil input data

b) echo all the input data on the output

c) generate an output file for post processing

    (both for plotting and as the input to a boundary layer code)

d) output Cm about the airfoil quarter chord point.

Hint: Don’t alter the panel distribution. The paneling scheme should be independent
of the input distribution of airfoil coordinates. This produces a much more general
and accurate program. This problem is usually solved by finding both the x/c and y/c
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values as functions of the airfoil arc length, starting at the lower surface trailing edge.
A spline fit is usually used to interpolate the values along the arc length.

Check your modified code. Run the airfoil you ran previously with internal
coordinate generation. This time use an input file with the same coordinates as
external inputs. Submit a description of your work, and assess your results.

4. Assess the accuracy of incompressible potential flow theory. Run your modified PANEL code
using the airfoil you selected in the exercise in Chap. 1. (What happens if your airfoil has a
trailing edge with finite thickness? What do you do now?)

- compare the computed pressure distribution with the experimental data
- compare the computed force and moment results with the data
  (over a range of angles of attack

Turn in a CONCISE report describing the results of your work. Include a plot showing the
pressure distribution comparison, and a plot(s) showing comparison with forces and
moments. What do you conclude about the accuracy of this method?

5. Airfoil design using program PANEL

Take your reference airfoil:

        a) add thickness on the bottom (mid chord)- what happens?
        b) shave some thickness off the bottom (mid chord) - ?
        c) add thickness on the top (mid chord)- what happens?
        d) deflect the trailing edge down a couple of degrees
            (how sensitive is the airfoil to changes at the TE?)

Hint: use smooth δ 's to the reference foil employing analytic formulas.

Turn in a CONCISE report comparing the effects on the pressure distribution due to the above
modifications.

6. How good is thin airfoil theory? Compare the thin airfoil ∆Cp for a flat plate with program
PANEL.

Recall thin airfoil theory for an uncambered flat plate:

∆Cp = 4α
1− x /c( )

x /c
.

a) pick an NACA 0012 airfoil at α = 2° and 12° and run PANEL.
b) plot ∆Cp/α as a function of x/c.
c) how many panels do you need to get a converged solution from PANEL?
d) what conclusions do you reach?
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5.   Drag: 

An Introduction

5.1 The Importance of Drag

The subject of drag didn’t arise in our use of panel methods to examine the inviscid flowfield

around airfoils in the last chapter: the theoretical drag was always zero! Before proceeding fur-

ther in any study of computational aerodynamics the issue of drag must be addressed. There are

many sources of drag. In three-dimensional flow, and in two dimensions when compressibility

becomes important, drag occurs even when the flow is assumed inviscid. Before discussing the

aerodynamics of lifting systems, the fundamental aspects of aerodynamic drag will be examined.

Drag is at the heart of aerodynamic design. The subject is fascinatingly complex. All aerody-

namicists secretly hope for negative drag. The subject is tricky and continues to be controversial.

It’s also terribly important. Even seemingly minor changes in drag can be critical. On the Con-

corde, a one count drag increase (∆CD = .0001) requires two passengers, out of the 90 ∼ 100 pas-

senger capacity, be taken off the North Atlantic run.1 In design studies a drag decrease is equated

to the decrease in aircraft weight required to carry a specified payload the required distance. One

advanced fighter study2 found the drag sensitivity in supersonic cruise was 90 lb/ct and 48 lb/ct

for subsonic/transonic cruise. At the transonic maneuver design point the sensitivity was 16 lb/ct

(drag is very high here). In comparison, the growth factor was 4.1 lb of takeoff gross weight for
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every 1 lb of fixed weight added. For one executive business jet the range sensitivity is 17

miles/drag count. Advanced supersonic transports now being studied have range sensitivities of

about 100 miles/drag count. When new aircraft are sold, the sales contract stipulates numerous

performance guarantees. One of the most important is range. The aircraft company guarantees a

specified range before the aircraft is built and tested. The penalty for failure to meet the range

guarantee is severe. Conservative drag projections aren’t allowed—the competition is so intense

that in the design stage the aerodynamicist will be pressured to make optimistic estimates. In one

briefing in the early ’80s, an aerodynamicist for a major airframer said that his company was

willing to invest $750,000 for each count of drag reduction. Under these conditions the impor-

tance of designing for low drag, and the ability to estimate drag, can hardly be overstated.

The economic viability and future survival of an aircraft manufacturer depends on minimiz-

ing aerodynamic drag (together with the other design key technologies of structures, propulsion,

and control) while maintaining good handling qualities to ensure flight safety and ride comfort.

New designs that employ advanced computational aerodynamics methods are needed to achieve

vehicles with less drag than current aircraft. The most recent generation of designs (Boeing 767,

777, Airbus A340, etc.) already take advantage of computational aerodynamics, advanced exper-

imental methods, and years of experience. Future advances in aerodynamic performance present

tough challenges requiring both innovative concepts and the very best methodology possible. 

Initial drag estimates can dictate the selection of a specific configuration concept in compari-

son with other concepts early in the design phase. The drag projections have a huge effect on the

projected configuration size and cost, and thus on the decision to proceed with the design.

There are two other key considerations in discussing drag. First, drag cannot yet be predicted

accurately with high confidence levels3 (especially for unusual configuration concepts) without

extensive testing, and secondly, no one is exactly sure what the ultimate possible drag level real-

ly is that can be achieved for a practical configuration. To this extent, aerodynamic designers are

the dreamers of the engineering profession.

Because of its importance, AGARD has held numerous conferences devoted to drag and its

reduction. In addition to the study of computational capability cited above, AGARD publications

include CP-124,4 CP-264,5 R-7236 and R-7867. These reports provide a wealth of information.

An AIAA Progress Series book has also been devoted primarily to drag.8 Chapters discuss

the history of drag prediction, typical methods currently used to predict drag, and the intricacies

of drag prediction for complete configurations. The most complete compilation of drag informa-

tion available is due to Hoerner.9 In this chapter we introduce the key concepts required to use

computational aerodynamics to evaluate drag. Additional discussion is included in the chapters

on viscous effects, transonic, and supersonic aerodynamics.
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5.2 Some Different Ways to View Drag - Nomenclature and Concepts

In discussing drag, the numerous viewpoints that people use to think about drag can create

confusion. Here we illustrate the problem by defining drag from several viewpoints. This pro-

vides an opportunity to discuss various basic drag concepts.

1. Simple Integration: Consider the distribution of forces over the surface. This includes a

pressure force and a shear stress force due to the presence of viscosity. This approach is known

as a nearfield drag calculation. An accurate integration will result in an accurate estimate of the

drag. However, two problems exist:

i) This integration requires extreme precision (remember that program PANEL did
not predict exactly zero drag).

ii) The results are difficult to interpret for aerodynamic analysis. Exactly where is the
drag coming from? Why does it exist, and how do you reduce it?

Thus in most cases a simple integration over the surface is not satisfactory for use in aerody-

namic design. Codes have only recently begun to be fairly reliable for nearfield drag estimation,

and then only for certain specific types of problems. The best success has been achieved for air-

foils, and even there the situation still isn’t perfect (see Chapters 10 and 11).

2. Fluid Mechanics: This viewpoint emphasizes the drag resulting from various fluid me-

chanics phenomena. This approach is important in conceiving a means to reduce drag. It also

provides a means of computing drag contributions in a systematic manner. Thinking in terms of

components from different physical effects, a typical drag breakdown would be:

• friction drag
• form drag
• induced drag
• wave drag.

Each of these terms will be defined below. Figure 5-1 illustrates possible ways to find the total

drag. It is based on a figure in Torenbeek’s book.10 He also has a good discussion of drag and its

estimation. Clearly, the subject can be confusing.

3. Aerodynamics: This approach combines the fluid mechanics viewpoint with more practical

considerations. From the aerodynamic design aspect it proves useful to think in terms of contri-

butions from a variety of aircraft features. This includes effects due to the requirement to trim the

aircraft, and interactions between the aerodynamics of the vehicle and both propulsion induced

flow effects and structural deformation effects. Within this context, several other considerations

are identified. The basic contributions from each component must be included. This leads to a

drag analysis based on typical configuration features, as shown below:
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• individual component contributions to drag
• base drag
• inlet drag with spillage
• boattail drag
• camber drag
• trim drag
• thrust-drag bookkeeping
• aeroelastic effects on drag

Fig. 5-1. Drag breakdown possibilities (internal flow neglected).

4. Performance: To calculate the performance of an airplane it is natural to define drag as the

sum of the drag at zero lift and the drag due to lift. This is the approach that leads to the typical

drag polar equation:

. (5-1)

Here each term is a function of Mach number, Reynolds number (in practice this is given to the

performance group in terms of Mach number and altitude), and the particular geometric configu-
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ration (flap deflection, wing sweep, etc.). The drag is not precisely a quadratic function of the

lift, and the value of the Oswald efficiency factor, E, in Eq.(5-1) is defined as a function of the

lift coefficient and Mach number: E = E(CL,M). The drag also depends on the throttle setting, but

that effect is usually included in the thrust table, as discussed below. There is another drag polar

approximation that is seen often. This approximation is more commonly used by aerodynamic

designers trying to understand wing performance. It is used to take into account the effect of

wing camber and twist, which causes the drag polar to be displaced “upward”, becoming asym-

metrical about the CL = 0 axis . It is given as:

(5-2)

In taking into account the effect of camber and twist on shifting the polar, the  term repre-

sents a penalty associated with using twist and camber to achieve good performance at the design

lift coefficient. This equation is for a fixed geometry. Figure 5-2 shows how this looks (  is

exaggerated for emphasis). The value of K defines the shape of the polar. CD0 represents the

minimum drag of the configuration without camber and twist. The values of  and  are

functions of the design lift coefficient. Sometimes novice aerodynamicists fail to include 

properly and obtain incorrect values of E when evaluating published drag polars. This type of

polar shape will be discussed in more detail later in this chapter. Advanced design concepts such

as the X-29 minimize this penalty by defining a device schedule to maximize performance across

a broad range of lift coefficients.

Figure 5-2. Drag polar
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As mentioned above, basic drag nomenclature is frequently more confused than it needs to be,

and sometimes the nomenclature gets in the way of technical discussions. The chart in Fig. 5-3

provides a basic classification of drag for overview purposes. The aerodynamic configuration-

specific approach to drag is not covered in fluid mechanics oriented aerodynamics texts, but is

described in aircraft design books. Two other good references are the recent books by Whitford11

and Huenecke.12 An approach to the evaluation of drag performance, including the efficiency

achieved on actual aircraft, was presented by Haines.13

We need to define several of these concepts in more detail. The most important overview of

aerodynamic drag for design has been given by Küchemann,14 and should be studied for a com-

plete understanding of drag concepts.

A fluid mechanics refinement: transonic wave drag.

The broadbrush picture of drag presented in Fig. 5.3 suggests that wave drag appears sudden-

ly at supersonic speeds. A more refined examination shows that wave drag arises at subsonic

speeds when the flow accelerates locally to supersonic speeds, and then returns to subsonic speed

through a shock wave. This leads to the presence of wave drag at subsonic (actually, by defini-

tion, transonic) freestream speeds. This initial drag increase, known as drag rise, is followed by a

rapid increase in drag, and is an important consideration in the design of wings and airfoils. The

Mach number at which the rapid drag increase occurs is known as the drag divergence Mach

number, MDD. The increase in drag occurs directly because of the wave drag associated with the

presence of shock waves. However, the drag also increases because the boundary layer thickness

increases due to the sudden pressure rise on the surface due to the shock wave, which leads to in-

creased profile drag. Lynch15 has estimated that at drag divergence the additional transonic drag

is approximately evenly divided between the explicit shock drag and the shock induced addition-

al profile drag. Several definitions of the drag rise Mach number are commonly used. The specif-

ic definition is usually not important because at drag divergence the drag rises very rapidly and

the definitions all result in similar values of MDD.

One standard definition of MDD is the Mach number where

. (5-3)

Another definition of drag rise is the Mach number at which

 from the subsonic value. (5-4)
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Figure 5-3. A Broadbrush categorization of drag.

Commercial transports fly at or close to MDD, and the drag divergence Mach number is a key

part of the performance guarantee. Figure 5.4 (data from Shevell16) illustrates this refinement to
Fig. 5-3, together with the definitions associated with the drag rise. The figure also illustrates a

common characteristic, “drag creep,” which occurs with many transonic designs.

An aerodynamics/flight mechanics refinement: trim drag.

A drag not directly related directly to pure fluid mechanics arises from the need to trim the ve-

hicle (Cm = 0 about the center of gravity) for steady flight. This requirement can lead to control

surface deflections that increase (or decrease) the drag. It can be especially important for super-
sonic aircraft because of the shift in the aerodynamic center location with Mach number. Other

cases with significant trim drag may include configurations with variable wing sweep and the
use of airfoils with large values of the zero lift pitching moment about their aerodynamic center.

Trim drag details are presented in Section 5.10. 
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Figure 5.4 Details of wave drag increases at transonic speeds.

A practical aspect of aero-propulsion integration: thrust-drag bookkeeping

To determine aircraft performance, the key value is actually not drag, but the balance between

thrust and drag. The drag of the airframe is affected by the operation of the propulsion system,

and care must be taken to understand and define these interactions. The amount of air used by the

engine defines the size of the streamtube entering the inlet. If all the air in front of the inlet does

not enter the inlet, a spillage drag will result. Similarly, the boattail drag over the external por-

tion of the nozzle will depend on the nozzle setting in the case of engines with afterburners, and

the pressure of the nozzle flow. The definition of a system to properly account for aero-propul-

sion interactions on the specification of thrust minus drag values is known as thrust-drag book-

keeping. Since thrust is usually provided by the propulsion group, and drag is provided by the

aerodynamics group, significant errors in the estimation of aircraft performance have occurred

when the necessary coordination and adjustments were not made. The details of this procedure

are described in the article by Rooney.17

Generally, the aerodynamics group provides the performance group with a reference drag

polar, and all thrust dependent corrections to the drag polar are accounted for by making adjust-

ments to the thrust values. This is done because it is natural to establish a performance calcula-

tion procedure using this approach. The precise details are not important as long as everyone in-

volved in the performance prediction agrees to a specific approach. Usually this requires a spe-

cific document defining thrust-drag bookkeeping for each aircraft project.
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Aerodynamic-structural interaction: aeroelastic effects on drag

This issue is not strictly a drag consideration, but can make a contribution to the drag if it is

not addressed. Aircraft structures deform due to air loads. If the design is centered around a sin-

gle design point, the aerodynamic shape at the design point can be defined, and the structural an-

alysts will adjust for structural deformation, specifying a “jig shape” that will produce the de-

sired aerodynamic shape at the design point. This is harder to do if there are multiple design

points. Deformation of wind tunnel models should also be considered when estimating drag. 

5.3 Farfield Drag Analysis

We can estimate the drag on a body most accurately when our predictions methods are not

exact by considering the overall momentum balance on a control volume surface well away from

the body—a farfield calculation. This is much less sensitive to the detailed calculations of sur-

face pressure and integration of the pressures over the surface to obtain the drag.

The farfield analysis makes use of the momentum theorem. References containing good deri-

vations are by Ashley and Landahl,18 sections 1.6, 6.6, 7.3 and 9.2, and Heaslet and Lomax,19

pages 221-229.

For a surface S, which encloses the volume containing an aerodynamic body, the force can be

determined by balancing the momentum across S:

(5-5)

where q is the disturbance velocity vector,

. (5-6)

Define a control volume for use in Eq.(5-5) as shown in Fig. 5-5.

Consider flows far enough away from the body such that linearized flow relations are valid;

and use the small disturbance relations:

(5-7)

and

. (5-8)
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Figure 5-5. Control volume for farfield drag evaluation.

Now, consider the drag component of Eq. (5-5), making use of Eq. (5-7) and Eq. (5-8):

  
(5-9)

and vr is the radial component,  vr
2= v2 + w2, where r2 = x2 + y2.

Considering the control volume shown in Fig. 5-5, place I and II far upstream and down-

stream and make r large. Then, the integral over I is zero as . The integral over II as

, corresponds to the so-called Trefftz Plane. The integral over III  is the wave drag inte-

gral, which is zero for subsonic flow, and when any embedded shock waves do not reach III.

Consider the integral over III

This is the farfield wave drag integral. This integral corresponds to the last term on the right

hand side of Eq. (5-9), and can be written as:

.

(5-10)

If . Thus, when the flow is subsonic there is no wave drag, as

we already know. However, if the flow is supersonic, and shock waves are generated, the inte-
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gral is not zero. This integral can be calculated for any numerical solution. In this analysis we as-

sume that the flow is governed by the Prandtl-Glauert equation: 

,
(5-11)

which implies small disturbance flow. This is valid if the vehicle is highly streamlined, as any

supersonic vehicle must be. However, since far from the disturbance this equation will model

flows from any vehicle, this is not a significant restriction.

To obtain an expression for φ that can be used to calculate the farfield integral, assume that

the body can be represented by a distribution of sources on the x-axis (the aircraft looks very

“slender” from far away). To illustrate the analysis, assume that the body is axisymmetric. Recall

that there are different forms for the subsonic and supersonic source:

 

. (5-12)

This means that the integral will have a contribution along the Mach wave independent of

how far away the outer control volume is taken. Figure 5-6 illustrates this effect. The resulting

force is exactly what is expected—the shock wave contribution to drag: the wave drag.

Figure 5-6. Behavior of disturbances along Mach lines in the farfield.
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The farfield behavior of the source singularity given in Eq.(5-12) can be used to obtain an ex-

pression for the farfield integral in terms of geometric properties of the aircraft. A complete anal-

ysis is given in Ashley and Landahl,18 and Liepman and Roshko.20 The key connection is the as-

sumption relating the supersonic source strength and aircraft geometry. The approximate bound-

ary conditions on the surface equate the change of cross-sectional area to the supersonic source

strength: σ (x) = S'(x). One required assumption is that the cross-sectional area distribution, S(x),

satisfies S'(0) = S'(l) = 0.  After some algebra the desired relation is obtained:

. (5-13)

This is the wave drag integral. The standard method for evaluation of this integral is available

in a program known as the “Harris Wave Drag” program.21 That program determines the cross-

sectional area distribution of the aircraft and then evaluates the integral numerically. Note that as

given above, the Mach number doesn’t appear explicitly. A refined analysis18 for bodies that

aren’t extremely slender extends this approach by taking slices, or Mach cuts, of the area through

the body at the Mach angle. This is how the Mach number dependence enters the analysis. Final-

ly, for non-axisymmetric bodies the area associated with the Mach cuts changes for each angle

around the circumferential integral for the cylindrical integration over Region III in Fig. 5-5.

Thus the area distribution must be computed for each angle. The total wave drag is then found

from

. (5-14)

Examples of the results obtained using this computational method are given in Section 5.7, a dis-

cussion of the area rule.

Consider the integral over II

This is the first integral in Eq. (5-9), the induced drag integral:

(5-15)

Note that many supersonic aerodynamicists call this the vortex drag, Dv, since it is associated

with the trailing vortex system. However, it is in fact the induced drag. The term vortex drag is
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confusing in view of the current use of the term “vortex” to denote effects associated with other

vortex flow effects (described in Chapter 6). Far downstream, u → 0, and we are left with the v

and w components of velocity induced by the trailing vortex system. The trailing vortex sheet

can be thought of as legs of a horseshoe vortex. Thus the integral becomes:

(5-16)

which relates the drag to the kinetic energy of the trailing vortex system.

Now, the flow is governed downstream by the Prandtl-Glauert equation (even if the flow at

the vehicle has large disturbances, the perturbations decay downstream):

(5-11)

and as x → ∞, u = 0, and ux = φxx = 0. As a result, the governing equation for the disturbance ve-

locities is Laplace’s Equation for the crossflow velocity:

. (5-17)

An interesting result arises here. The induced drag is explicitly independent of Mach number

effects. The analysis is valid for subsonic, transonic and supersonic flows. The Mach number

only enters the problem in an indirect manner through the boundary conditions, as we will see.

We now use Green’s Theorem, as discussed previously, to convert the area integral, Eq. (5-

16), to a contour integral. Applying the theorem to the drag integral we obtain:

. (5-18)

This is a general relation which converts the integral over the entire cross plane into an inte-

gral over the contour. It applies to multiple lifting surfaces. To illustrate the application of the in-

tegral to the determination of the induced drag, we consider the special case of a planar lifting

surface. Here the contour integral is taken over the surface shown in Fig. 5-7, where the trace of

the trailing vortices shed from the wing are contained in the slit from -b/2 to b/2.
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Figure 5-7. Contour integral path for induced drag analysis in the Trefftz plane.

In this Trefftz plane, the integral vanishes around the outside contour as  and the inte-

grals along AB and CD cancel. Thus, the only contribution comes from the slit containing the

trace of vorticity shed from the wing. The value of φ is equal and opposite above and below the

vortex sheet, and on the sheet , the downwash velocity.

Thus the integral for a single flat lifting surface can be rewritten as:

(5-19)

and w  is the velocity induced by the trailing vortex system. The jump in the potential on the slit

at infinity can be related to the jump in potential at the trailing edge. To see this, first consider

the jump in the potential at the trailing edge. Recall that the circulation is given by the contour

integral:

. (5-20)

For an airfoil we illustrate the concept by considering a small disturbance based argument.

However, the results hold regardless of the small disturbance based illustration. Consider the air-

foil given in Fig. 5-8.
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Figure 5-8. Integration path around an airfoil.

The dominant velocity is in the x-direction, , and the integral, Eq. (5-20), around the

airfoil can be seen to be essentially:

. (5-21)

 The value of the potential jump at infinity can be found by realizing that the circulation is creat-

ed by the wing, and any increase in the contour of integration will produce the same result.

Therefore, 

(5-22)

Next, the induced velocity is found from the distribution of vorticity in the trailing vortex

sheet. Considering the slit to be a sheet of vorticity, we can find the velocity induced by a distri-

bution of vorticity from the following integral, which is a specialized case of the relation given in

Chap.4, Eq.(4-42):

.
(5-23)

To complete the derivation we have to connect the distribution of vorticity in the trailing vor-

tex sheet to the circulation on the wing. To do this consider the sketch of the circulation distribu-

tion given in Fig. 5-9.
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Figure 5-9. Relation between circulation change on the wing and vorticity in the wake.

As the circulation on the wing, Γ, changes across the span, circulation is conserved by

shedding an amount equal to the local change into the wake. Thus the trailing vorticity strength

is related to the change in circulation on the wing by

  . (5-24)

Substituting this into Eq. (5-23), we obtain:

.
(5-25)

Substituting Eq. (5-22) and (5-25) into Eq.(5-19) and integrating by parts using the condi-

tions that Γ(-b/2) = Γ(b/2) = 0 (which simply states that the load distribution drops to zero at the

tip), we get:

. (5-26)

Note that this is the same form as the wave drag integral, where the area distribution is the

key contributor to the wave drag, but here the spanload distribution is responsible for the induced

drag. Because of the double integral we can get the total drag, but we have lost the ability to get

detailed distributions of the induced drag on the body (or in the case of wave drag, its distribu-

tion on the surface). This is the price we pay to use the farfield analysis. 

Finally, this result shows that the induced drag is a function of the Γ distribution (spanload)

alone. Mach number effects enter only in so far as they affect the circulation distribution on the

wing. 
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5.4  Induced Drag

Although the inviscid flow over a two-dimensional airfoil produces no drag, as we’ve just

seen in Chapter 4, this is not true in three dimensions. The three-dimensional flowfield over a

lifting surface (for which a horseshoe vortex system is a very good conceptual model) does result

in a drag force, even if the flow is inviscid. This is due to the effective change in the angle of at-

tack along the wing induced by the trailing vortex system. This induced change of angle results

in a local inclination of the force vector relative to the freestream, and produces an induced drag.

It is one part of the total drag due to lift, and is typically written as:

. (5-27)

The small “e” in this equation is known as the span e. As we will show below, the induced

drag is only a function of the spanload. Additional losses due to the fuselage and viscous effects

are included when a capital E, known as Oswald’s E, is used in this expression. Note that al-

though this notation is the most prevalent in use in the US aircraft industry, other notations are

frequently employed, and care must be taken when reading the literature to make sure that you

understand the notation used.

When designing and evaluating wings, the question becomes: what is “e”, and how large can

we make it? The “conventional wisdom” is that for a planar surface, emax = 1, and for a non-pla-

nar surface or a combination of lifting surfaces,  emax > 1, where the aspect ratio, AR, is based

on the projected span of the wing with the largest span.* However, studies searching for higher

e’s abound. The quest of the aerodynamicist is to find a fundamental way to increase aerodynam-

ic efficiency. In the ’70s, increased aerodynamic efficiency, e, was sought by exploiting non-pla-

nar surface concepts such as winglets and canard configurations. Indeed, these concepts are now

commonly employed on new configurations. In the’80s, a great deal of attention was devoted to

the use of advanced wing tip shapes on nominally planar configurations. It is not clear however

that the advanced wingtips result in theoretical e’s above unity. However, in practice these im-

proved tip shapes help clean up the flowfield at the wing tip, reducing viscous effects and result-

ing in a reduction in drag.

To establish a technical basis for understanding the drag due to lift of wings, singly and in

combination, three concepts must be discussed: farfield drag (the Trefftz plane), Munk’s Stagger

Theorem for design of multiple lifting surfaces, and, to understand additional drag above the in-

duced drag due to “e,” it is appropriate in introduce the concept of leading edge suction. Here we

will discuss the induced drag. Subsequent sections address Munk’s Stagger Theorem (Section

5.6) and leading edge suction (Section 5.9)

* However, e is not too much bigger than unity for practical configurations. 
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In the last section we derived the expression for the drag due to the trailing vortex system.

The far downstream location of this face of the control volume is known as the Trefftz plane.

Here we explain the physical basis of the idea of the Trefftz plane following Ashley and Lan-

dahl18 almost verbatim. An alternate and valuable procedure has been described by Sears.22

The Trefftz Plane

The idea:

1. Far downstream the motion produced by the trailing vortices becomes 2D in the
y-z plane (no induced velocity in the x-direction).

2. For a wing moving at a speed U∞ through the fluid at rest, the amount of mechan-
ical work DiU∞ is done on the fluid per unit time. Since the fluid is nondissipa-
tive (potential flow), it can store energy in kinetic form only. Therefore, the work
DiU∞ must show up as the value of kinetic energy contained in a length U∞ of
the distant wake.

and:

3. The vortices in the trailing vortex system far downstream can be used to find the
induced drag.

The Trefftz Plane is a y-z plane far downstream, so that all motion is in the crossflow plane (y-

z), and no velocity is induced in the x-direction, u = U∞. For a single planar lifting surface, the
expression for drag was found to be:

 .       

(5-26)

The usual means of evaluating the induced drag integral is to represent Γ as a Fourier Series,

. (5-28)

The unknown values of the An’s are found from a Fourier series analysis, where Γ(y) is known

from an analysis of the configuration. Panel or vortex lattice methods can be used to find Γ(y).

Vortex lattice methods are described next in Chapter 6. Integration of the drag integral with this

form of Γ results in:

 (5-29)

and

, (5-30)
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which are the classical results frequently derived using lifting line theory. Note that the lift

depends on the first term of the series, whereas all of the components contribute to the drag. Put-

ting the expressions for lift and drag into coefficient form, and then replacing the A1 term in the

drag integral by its definition in terms of the lift coefficient leads to the classical result:

(5-31)

where:

.

(5-32)

These expressions show that emax = 1 for a planar lifting surface. However, if the slit repre-

senting the trailing vortex system is not a simple flat surface, and CDi
 is based on the projected

span, a nonplanar or multiple lifting surface system can result in values of e > 1.  In particular,

biplane theory addresses the multiple lifting surface case, see Thwaites23 for a detailed discus-

sion. If the wing is twisted, and the shape of the spanload changes as the lift changes, then e is

not a constant, independent of the lift coefficient.

It is important to understand that the induced drag contribution to the drag due to lift assumes

that the airfoil sections in the wing are operating perfectly, as if in a two-dimensional potential

flow that has been reoriented relative to the freestream velocity at the angle associated with the

effects of the trailing vortex system. Wings can be designed to operate very close to these condi-

tions.

We conclude from this discussion:

1. Regardless of the wing planform(s), induced drag is a function of circulation distribu-
tion alone,  independent of Mach number except in the manner which Mach number
influences the circulation distribution (a minor effect in subsonic/transonic flow).

2. Given Γ, “e” can be determined by finding the An’s of the Fourier series for the simple
planar wing case.  Other methods are required for nonplanar systems.

3. Extra drag due to the airfoil’s inability to create lift ideally must be added over and
above the induced drag (our analysis here assumes that the airfoils operate perfectly in
a two-dimensional sense; there is no drag due to lift in two-dimensional flow).
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5.5 Program LIDRAG

For single planar surfaces, a simple Fourier analysis of the spanload to determine the “e”

using a Fast Fourier Transform is available from the code LIDRAG. The user’s manual is given

in Appendix D.3. Numerous other methods could be used. For reference, note that the “e” for an

elliptic spanload is 1.0, and the “e” for a triangular spanload is 0.728. LIDRAG was written by

Dave Ives, and is employed in numerous aerodynamics codes.24

5.6 Multiple Lifting Surfaces and Munk's Stagger Theorem

An important result in the consideration of multiple lifting surfaces is Munk’s Stagger Theo-

rem.25 It states that the total induced drag of a multi-surface system does not change when the el-

ements of the system are translated parallel to the direction of the flow, as illustrated in the

sketch shown in Fig. 5-10, provided that the circulation distributions on the elements are left un-

changed. This theorem is proven in the text by Milne-Thompson.25 Thus the drag depends only

on the projection of the system in the cross-plane. This means that given the circulation distribu-

tions, the Trefftz plane analysis can be used to find the induced drag. This is consistent with the

analysis given for the Trefftz plane above, and reinforces the concept of using the farfield analy-

sis to determine the induced drag. Naturally, to maintain the circulation distribution of the ele-

ments when they are repositioned their geometric incidence and twist have to be changed.

Fig. 5-10. Example of Munk’s Stagger Theorem, where the fore and aft positions of multiple 
lifting surfaces do not affect drag as long as the circulation distribution remains fixed.
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When the lifting system is not limited to a single lifting component, LIDRAG cannot be used

to find the span e. However, two limiting cases can be considered. If the lifting elements are in

the same plane, then the sum of the spanloads should be elliptic for minimum drag. It the ele-

ments are vertically separated by a large distance, then each component individually should have

an elliptic spanload to obtain minimum induced drag.

When the system is composed of two lifting surfaces, or a lifting surface with dihedral breaks,

including winglets, then a code by John Lamar26 is available to analyze the induced drag. As

originally developed, this code finds the minimum induced drag and the required spanloads for a

prescribed lift and pitching moment constraint. It is known as LAMDES, and the user’s manual

is given in Appendix D.4. This program is much more elaborate than LIDRAG. For subsonic

flow the program will also estimate the camber and twist of the lifting surfaces required to

achieve the minimum drag spanload. I extended this code to incorporate, approximately, the ef-

fects of viscosity and find the system e for a user supplied spanload distribution.27

 

5.7  Zero Lift Drag Friction and Form Drag Estimation 

Although not formally part of computational aerodynamics, estimates of skin friction based on

classical flat plate skin friction formulas can be used to provide initial estimates of the friction

and form drag portion of the zero lift drag. These are required for aerodynamic design studies

using the rest of the methods described here. These simple formulas are used in conceptual de-

sign in place of detailed boundary layer calculations, and provide good initial estimates until

more detailed calculations using the boundary layer methods described in Chapter 10 are made.

They are included here because they appear to have been omitted from current basic aerodynam-

ics text books.* An excellent examination of the methods and accuracy of the approach described

here was given by Paterson, MacWilkinson and Blackerby of Lockheed.28

For a highly streamlined, aerodynamically clean shape the zero lift drag (friction and form

drag at subsonic speeds where there are no shock waves) should be mostly due to these contribu-

tions, and can be estimated using skin friction formulas. However, Table 5-1, for a typical mili-

tary attack airplane, shows that on this airplane only about two-thirds of the zero lift drag is asso-

ciated with skin friction and form drag. This illustrates the serious performance penalties associ-

ated with seemingly small details. R.T. Jones29 has presented a striking figure, included here as

Fig. 5-11, comparing the drag on a modern airfoil to that of a single wire. It’s hard to believe,

and demonstrates the importance of streamlining. An accurate drag estimate requires that these

details be included in the estimates.

* Expanded details including compressibility effects and mixed laminar-turbulent skin friction estimates are given
in App. D.5, FRICTION.
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Fig. 5-11. A wire and airfoil with the same drag!29

Until recently, aerodynamicists assumed the flow was completely turbulent. However, as a re-

sult of work at NASA over the last decade and a half, some configurations can now take advan-

tage of at least some laminar flow, with its significant reduction in friction drag. Advanced air-

foils can have as much as 30 to 40% laminar flow.

As an example of this approach, consider a typical turbulent flow skin friction formula (for

one side of a “flat plate” surface only):

(5-33)

where “log” means log to the base 10.  Note also that the capital CF denotes an integrated value.

Formulas for the local skin friction coefficient customarily use a small f subscript.

Numerous form factors are available to help account for effects due to thickness and addition-

al trailing edge pressure drag. Hoerner9 and Covert8 provide summaries. For planar surfaces, one

form factor is,

(5-34)

where t/c is the maximum thickness to chord ratio. For bodies, the form factor would be:

(5-35)
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where d/l is the diameter to length ratio. The skin friction coefficient estimate is then converted

to aircraft coefficient form through:

.
(5-36)

Here Swet is the total area scrubbed by the flow, and Sref is the reference area used in the defini-

tion of the force coefficients. For a thin wing the reference area is usually the planform area and

the wetted area is approximately twice the planform area (including the upper and lower surface

of the wing).  

Program FRICTION automates this procedure using slightly improved formulas for the skin

friction that include compressibility effects. The program computes the skin friction and form

drag over each component, including laminar and turbulent flow. The user can input either the

Mach and Reynolds numbers or the Mach number and altitude. The use of this program is de-

scribed in Appendix D.5. This analysis assumes that the aircraft is highly streamlined. For many

aircraft this is not the case. As discussed above, Table 5-1 provides an example of the signifi-

cantly increased drag that results when developing an aircraft for operational use.

Comment: On a tour of the final assembly lines of the Boeing 747 and 777 on
February 29, 1996, I observed that the 777 was much, much smoother aerody-
namically than the 747. Clearly, a lot of the advanced performance of the 777
is due to old-fashioned attention to detail. The aerodynamicists have apparently
finally convinced the manufacturing engineers of the importance of aerody-
namic cleanliness. Think about this the next time you compare a Cessna 182 to
the modern homebuilts, as exemplified by the Lancairs and Glassairs.

More details are presented in Chapter 10, Viscous Flows in Aerodynamics. Viscous effects due

to lift and shock-wave boundary layer interaction are also discussed in Chapter 11, Transonic

Aerodynamics.
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Table 5-1

Example of zero lift drag buildup on a “dirty” military airplane.

Low Speed Minimum Parasite Drag Breakdown
 M < .65,   CL = 0.0

Component Swet Sπ CDf
CDπ ∆CD % Total

1 Wing 22.1%
a) not affected by slats 262. .00308 .00308
b) not affected by slats 150. .00280 .00162

2. Horizontal Tail 84.4 .0033 .00108 5.1%
3. Vertical Tail 117. .00385 .00173 8.1%
4. Fuselage (including inlets) 434. .00306 .00512 24.0%
5. Enclosure 2.3 .122 .00108 5.1%

6. Appendages 33.1%

a) Upper avionics bay .00069
b) Drag-chute fairing .00012
c) Landing gear fairings .00042
d) Aero 7A Rack-Pylon @ CL .00058
e) Arresting hook .00058
f) Inflight-Fueling Probe .00092
g) Wing-Vortex Generators .00115
h) Boundary Layer Diverter .00042
i) Boundary-Layer Splitter Plate .00004
j)  Inlet Vortex Fences .00023
k) Landing Spoilers .00012
l) ECM Antenna and Chaff Dispensers .00038
m) Pitot tube .00004
n) Angle-of-Attack Indicator .00004
o) Rudder Damper .00023
p) Aileron Damper .00023
q) Barrier Detents .00008
r) Anti-Collision Lights .00008
s) Radar altimeter .00015
t) Fuel Dump and Vent .00023
u) Airblast Rain Removal .00008
v) Catapult Holdback .00027

7. Inlets and Exits
a) Powerplant (vents, etc.) .00027 1.6%
b) Air Conditioning .00008

8. Miscellaneous .00020 .9%

Total Zero lift drag coefficient (based on Sref = 260 ft2) .0213 100.%

Note: based on a total wetted area of 1119 ft2, CD = .00495
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5.8 Supersonic Wave Drag: The Farfield Wave Drag Integral and the Area Rule

The farfield analysis also showed us that for supersonic flight there is a wave drag. Not sur-

prisingly, the supersonic wave drag has played a key role in the aerodynamic design of superson-

ic aircraft. The equations are repeated here as:

(5-12)

and

(5-13)

where the S(x) values represent the area from an oblique (Mach angle) cut to find the cross sec-

tion area of the aircraft at a specific theta.

The importance of the distribution of the cross-sectional area is clear in the integral. To mini-

mize the integral the area change should be very smooth. Thus, the shaping of the design geome-

try plays a major role in the value of the integral. In any case, low drag is achieved by minimiz-

ing the maximum cross-sectional area of the design. The key parameter is the fineness ratio,

which is the length divided by the maximum diameter. Increasing the fineness ratio decreases the

wave drag. A number of minimum drag bodies of revolution have been derived using Eq. (5-12).

The geometric details of these shapes are given in Appendix A.

The principle that aerodynamicists use to achieve low values of wave drag is known as the

area rule. Proposed by Richard Whitcomb* at the NACA’s Langley Field, the area rule states

that the air displaced by the body should develop in a smooth fashion as it moves around and

along the body, with no sudden discontinuities. Thus the total aircraft area distribution should

form a smooth progression. In particular, when the wing becomes part of the cross-sectional

area, the adjacent fuselage area should be reduced to make the total area distribution smooth.

This results in the distinctive area ruled, or “coke bottle,” fuselage shape.

Whitcomb’s evidence for the validity of this rule was obtained experimentally (the computer

had not yet become practical design tool). Figure 5-12 shows the key result obtained by Whit-

comb.30 The increase in drag with increasing transonic Mach number is almost identical for a

wing-body combination and a body of revolution with the same cross sectional area distribution.

The wing-body combination has significantly higher subsonic drag because of the increased sur-

face area compared to the body alone case. All the cases Whitcomb presented weren’t as dramat-

ic, but similar trends were found for a number of shapes. Whitcomb’s original idea addressed

*  He won the Collier trophy for this work.
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transonic speeds, and the normal area distribution (the area in the plane perpendicular to the

flow) was made smooth to obtain low drag. At supersonic speeds the problem is more complicat-

ed. Instead of using the normal area distribution, the supersonic area rule requires that the area on

the so-called Mach cuts that correspond to the area distribution along the Mach angle for each

theta angle (Eq. 5-13) be smooth.

Figure 5-12. Whitcomb’s proof of the area rule.30

The most famous application of the area rule occurred on the F-102 aircraft program.* This

airplane was supposed to be supersonic in level flight. When it first flew, the prototype YF-102

was unable to break the sound barrier and fly supersonically. The nose was lengthened approxi-

mately five feet and area was added (with the plane already completed it was impossible to re-

move area) to the fuselage via faired bulges—or “bustles”—at the wing trailing edge-fuselage in-

tersection. The bulges were faired beyond the engine exhaust nozzle to improve the fineness

ratio and area distribution. After these modifications, the prototype YF-102 was capable of pene-

trating deeper into the transonic region. However, it was still not capable of exceeding Mach 1.0

in level flight. A complete redesign was necessary. It had to be done to continue the contract.

* Portions of this section were contributed by Nathan Kirscbaum.
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One hundred and seventeen working days later(!), a new, completely redesigned F-102 was

ready to fly. The fuselage fineness ratio and area distribution had been increased and refined.

The fuselage mid-section cross-sectional area had been reduced (cinched-up, wasp waisted, or

coke-bottled) as much as structure and component integration would permit. It was lengthened

11 feet 3 inches, with most of the increased length added ahead of the wing. The cockpit canopy

was reduced in cross-section with a near triangular cross-section and headed by a flat plate, high-

ly swept “V” windshield. The cockpit and the side-mounted engine inlets were moved forward to

reduce their sudden area build-up, or impact on the fuselage area. The aft fuselage bustles were

retained to avoid the rapid collapse of the cross-sectional area at the delta wing trailing edge. So

reconfigured, the airplane was able to fly at low supersonic speeds (M = 1.2). Figure 5-13 shows

the original prototype and the reconfigured F-102A as produced for service use.31 The resulting

change in drag from the YF-102 to the F-102A was about twenty-five counts, and is shown in

Fig. 5-14 (from the original Convair plot). Although the change might not appear dramatic, the

reduction in wave drag was sufficient to allow the plane to fly faster then the speed of sound.

Notice also that the use of conical camber (discussed later), introduced to improve the lift and

drag due to lift characteristics of the delta wing, added a significant penalty (camber drag) to the

minimum drag.

Subsequently, the configuration was completely redesigned incorporating a more refined, in-

tegrated area rule. Further slimmed down by a reduced weapon bay capacity and shortened and

repositioned engine air intake ducts, and powered by a fifty percent more powerful engine, it was

capable of routine Mach 2+ speeds. The designation was then changed to F-106A. This design is

also shown in Fig. 5-13. The volume of the increased area of the vertical tail on the F-106A, re-

quired to counteract the loss of tail surface effectiveness at the increased operational Mach num-

ber, replaced the aft side “bustles” on the F-102.

As an historical note, the Grumman F-11F (F-11) was the first aircraft designed “from

scratch” using the area rule. The result is clearly evident as shown in Fig. 5-15a.32 Another de-

sign employing the area rule in an effective manner was the Northrop F-5A/B (and the T-38 de-

rivative), as shown in Fig. 5-15b.32 This design had essentially unswept wings. Even the wing tip

fuel tanks were area ruled, although the inboard localized area reduction could be arguably as-

signed to Küchemann interface contour theorems.14

When considering the area rule, remember that this is only one part of successful airplane de-

sign.33 Moreover, extreme area ruling for a specific Mach number may significantly degrade the

performance of the design at other Mach numbers.
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Figure 5-13 Convair YF-102, F-102A, F-106A configuration evolution.31
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Figure 5-14. Zero lift drag for the YF-102 and F-102A airplanes. 

To estimate the wave drag, a theoretical analysis of the integral is available.* Note that the in-

tegrand is proportional to the second derivative of the area distribution, so that even without an

analysis it is clear that the lowest drag occurs when the distribution is made as smooth as possi-

ble. Eminton34 devised the standard method for the numerical evaluation of the integral in Eqn.

5-12. The difficulty in evaluating the integral is that the result depends on the second derivative

of the area distribution. This distribution is made up of contributions from numerous compo-

nents, and it is not known with great precision. Polynomials or other interpolation schemes used

to perform the quadrature may amplify any imprecision in the data, and produce unreasonably

high drag predictions. Ms. Eminton used a Fourier series for the distribution of the gradient of

the area. The coefficients are then found by solving an optimization problem that determines the

coefficients that will produce the curve passing through the known values of the area having the

least drag. In this sense the method is also a design method. By specifying a small number of

control stations (say, from a designer’s configuration layout) with a specified area distribution,

the method will provide the complete distribution of area required for minimum drag and satisfy-

ing the imposed control station constraints.

* Note: advanced CFD calculation methods don’t require the aerodynamicist to look at the problem using the area
rule diagram. Those approaches don’t provide the insight for design available through the area rule diagram.
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a) Grumman F-11F

b) Northrop F-5A/B

Figure 15. Other aircraft designs with evident area ruling.
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The practical implementation of this scheme is available in the so-called Harris wave drag

program.21 Figure 5-16 illustrates the procedure. At each “roll angle” θ a number of x-cuts are

made to use in evaluating the integral. Typically, 50 to 100 x-cuts are made for each of from 24

to 36 θ  values. Note that in making these calculations the inlet capture area is removed from the

area distribution.

As discussed above, area ruling plays an important role in supersonic cruise vehicle design.

Figure 5-17 presents the results of an analysis of a current high speed civil transport (HSCT)

concept.35 Figure 5-17a shows the highly blended configuration. Figure 5-17b shows the

variation in drag as the integral is computed for various “theta cuts.” This curve also contains the

results of a combined structural-aerodynamic study to improve this design using systematic ad-

vanced design methodology.36 Note that the drag is presented in terms of D/q. This is a tradition-

al approach, and eliminates any false impressions produced when configurations with differing

reference areas are compared. Figure 5-17c shows the normal area distribution. Here the nacelles

are seen to make a large impact on the area distribution.However, the area distribution of interest

is for M = 3.0. Figures 5-17d and e present the area distributions for the theta 0° and 90° cases.

Here the area distribution is seen to be much smoother. This is especially true for the theta 0°

case. The theta 90° case still shows the problem of integrating the propulsion system into the

configuration to obtain a smooth area distribution. Comparing the area distributions presented in

Figures 5-17d and 17e with the change in drag at these two different roll angles provides some

insight into the importance of shaping to produce a smooth area distribution.

Figure 5-16 Evaluation of the wave drag integral.21
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a) basic concept three view

b) distribution of the drag for each circumferential cut.

Figure 5-17 The AST3I,35 an advanced concept for a Mach 3 High Speed Civil Transport.
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c) normal area distribution (capture area removed)

d) Mach 3 area distribution, θ = 0°

Figure 5-17 The AST3I,35  an advanced Mach 3 High Speed Civil Transport (cont’d).
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e) Mach 3 area distribution, θ = 90°

Figure 5-17 The AST3I,35  an advanced Mach 3 High Speed Civil Transport (concluded).

Area diagrams for typical current fighters are not nearly so streamlined. Figure 5-18 shows

the area distribution for the F-16.37 The original area distribution is seen in Fig. 5-18a, and the re-

sult of refinements in Fig 5-18b. The F-16 was not designed primarily for supersonic flight, and

it has a low fineness ratio and consequently a relatively high wave drag. Small aircraft are much

more difficult to lay out to ensure a smooth distribution of area. Note in Fig. 5-18 that the canopy

is placed to help “fill in” the area diagram. Figure 5-18b shows the revisions made to improve

the contour forward and aft of the maximum cross-sectional area to fill in the shape and also add

fuel volume. Note that this curve has no scale. Manufacturers are sensitive about this informa-

tion.

There is also a wave drag due to lift (see Ashley and Landahl18). However,  almost all area

ruling at supersonic speeds primarily emphasizes the volumetric wave drag.
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a) Original cross-sectional area

b) Refined area distribution

Figure 5-18 The YF-16 area rule diagram.37
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5.9  The Leading Edge Suction Concept

Aerodynamicists often evaluate the performance of configurations in term of so-called lead-

ing edge suction. The concept can be explained by considering the inviscid flow over the prover-

bial zero thickness flat plate at angle of attack in an incompressible inviscid flow, as shown in

Fig. 5-19.

                              

Figure 5-19 Basic relations between forces for an infinitely thin plate.

What is the drag? According to theory, it must be zero. In the sketch we see that the force

acts in a direction perpendicular to the plate, and this clearly leads to a force component in the

drag direction. What’s the explanation of the paradox? Consider the following sketch of the front

portion of an airfoil section in Fig. 5-20.

Figure 5-20. Details of the flow near the leading edge of a thin plate.

There is a low pressure over the front edge face due to the expansion of the flow around the

leading edge. The expansion becomes stronger as the thickness decreases, so that the force on the

front face of the plate due to the product of the pressure and plate thickness is:

(5-37)
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and the value of the limit is just such that the drag is zero. Thus the correct model of the flow

over the flat plate is actually modified from the sketch given above to include an edge force, as

shown in Fig. 5-21.

Figure 5-21. Corrected flow model to satisfy inviscid flow theory.

Of course, a very thin flat plate will realize almost none of the suction force, and hence will

have a drag component. However, an airfoil section (even a fairly thin one) with a smooth round

nose may in fact achieve nearly all of the suction force, at least at small angles of attack. If the

airfoil section in the wing does not achieve the full suction performance, the resulting drag must

be added to the induced drag. 

The drag due to lift is thus broken up into induced drag and additional profile drag. As de-

scribed previously, the induced drag is a function of the wing spanload only, and is independent

of the details of the particular airfoil used in the wing. The additional profile drag is associated

with the airfoil used in the wing. At low lift coefficients this drag should be small, only

becoming important as flow separation starts to develop on the airfoil section. The additional

profile drag becomes large as wing stall is approached.

Wing performance is evaluated based on the ability to obtain a high value of the lift to drag

ratio, (L/D), relative to the maximum possible for that planform, and the ability to achieve a high

maximum lift coefficient. Essentially, the wing is designed to allow the airfoil to achieve its full

performance. Recalling that a two-dimensional airfoil under the assumption of inviscid subsonic

flow has no drag due to lift, the maximum performance should occur by adding the induced drag,

assuming an elliptic spanload, to the zero lift drag. This is known as the 100% suction polar,

since the airfoil section has no additional profile drag due to lift, and is thus achieving 100% of

the leading edge suction required to eliminate the drag force in a two-dimensional flow. This lift

is

CDL100%
 = CL

2/πAR . (5-38)
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At the other extreme, the worst case occurs when the airfoil fails to produce any efficient lift,

such that the only force is normal to the surface and there is no edge or suction* force (0% lead-

ing edge suction). In this case the entire lifting force on the wing is the normal force, and the

polar can be determined by resolving that force into lift and drag components. The equation for

the 0% suction drag can be expressed in a variety of forms, starting with

CDL0%
= CL tan(α−α0)} (5-39)

where α0 is the zero lift angle of attack.  We also use the linear aerodynamic relation:

(5-40)

which can be solved for the angle of attack:

.
(5-41)

Finally, substitute Eqn. (5-41) into Eqn. (5-39) for the angle of attack as follows:

or

.
(5-42)

This equation for the 0% suction polar shows why this polar is often referred to as the

“1/CLα” polar by aerodynamicists. Using this approach, effective wing performance is quoted in

terms of the fraction of suction achieved, based on the difference between the actual drag and the

100% and 0% suction values as shown in Figure 5-22. This figure illustrates how wings typically

perform. The wing will approach the 100% level at low lift coefficients, and then as flow separa-

tion starts to develop, the performance deteriorates. Eventually, the wing may have a drag sub-

stantially higher than the 0% suction value that was said above to be the worst case.

* On a swept wing the suction force is normal to the leading edge. The component of the leading edge suction
force in the streamwise direction is called the leading edge thrust.
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Figure 5-22 Definition of percent leading edge suction performance.

The value of E for this level of performance can be found by equating Eq.(5-42) to the stan-

dard form:

(5-43)

which leads to:

.
(5-44)

Typically, the value of E varies with the lift coefficient. By plotting experimental data, typical

variations can be obtained for various classes of wings. Figure 5-23 shows the typical variation.

This relation was shown in general by McKinney and Dollyhigh.38

Alternately, in supersonic flow, the drag due to lift relation is frequently written as

(5-45)

for uncambered airfoils. For cambered and twisted wings the polar is shifted, and the minimum

drag occurs at a CL other than zero, as shown previously in Fig. 5-2, and described by Eq. (5-2).

In practice we expect the wing to achieve a performance level between the K100% and K0%  lim-

its. This approach is described in detail by Raymer.39
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Figure 5-23. Typical variation of E with lift coefficient. 

In considering the shift of the polar, a few comments are required. First, the wing performance

cannot excede the optimum value, which for subsonic flow over a single planar lifting surface is

E = 1. Especially for wings in supersonic flow it is hard to get 100% of the leading edge suction.

In that case the approach is to camber the wing to make the drag performance of a wing with less

than 100% suction attain the 100% suction level at a specified value of lift, CLD. Using the polar

definition 

(5-46)

where the value of K corresponds to the performance of the wing in terms of leading edge suc-

tion (LES), we find the values of  and  in terms of the design lift, . To do this

equate the polar to the 100% suction value at the design lift. This polar must also be tangent to

the 100% polar at this point so that the polar will not predict better performance than the optimi-

mum at other values of the lift. Using as an example a 0% leading edge suction wing:

(5-47)

(5-48)

and the unknown values of  and are:

(5-49)
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and

. (5-50)

In any experimental evaluation of wing performance both the 100% and 0% polars should be

constructed, and used to establish bounds on the experimental polar. Thus a typical drag polar

would include the 100% and 0% suction polars as well as the predicted or measured performance

to establish a basis for evaluating a wing’s efficiency. Figure 5-24 presents the actual perfor-

mance of an unswept rectangular wing at subsonic speed. Here the performance is very close to

the lower drag limit until the wing stalls.

Figure 5-24 Drag performance of simple unswept wing with a Clark-Y airfoil.

It is difficult to identify the initial flow breakdown using the drag polar. Often you can identi-

fy flow breakdown more clearly by plotting the axial force as a function of normal force. In this

plot the axial force should initially decrease, as described above. When the airfoil section starts
to loose leading edge suction the data displays a sharp “break.” Figure 5-25 illustrates this ap-

proach to the examination of wing efficiency. 

For configurations with very poor aerodynamic efficiency, the 0% suction force provides a
good estimate of the vehicle drag. However, 0% suction levels are so inefficient that for most de-

signs this level of performance would be unacceptable and not competitive. 
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To make estimates of the performance of real configurations, which operate between the two

limits, Harry Carlson40,41 at NASA Langley established the notion of “attainable” leading edge

suction. Based on an extensive analysis of 2D airfoil data, Carlson established an empirical cor-

relation which is used to estimate the fraction of the full suction that should be attained for the

specified airfoil, planform and flight condition. Carlson’s concepts are based on linear theory.

Nonlinear effects can be important, and can be exploited. Although the linear theory based

concepts described here provide a valuable way of looking at wing designs, nonlinear effects can

provide a means of improving performance. Considering nonlinear effects, interactions between

thickness and lifting effects can be exploited.42 

Figure 5-25. Axial force analysis of wing performance.

5.10 Trim Drag

For equilibrium flight the airplane must be trimmed. The forces must be such that the mo-

ments about the center of gravity in all axes are zero. To achieve this condition the controls are

usually deflected to generate the required trimming moments. Figure 5-26 shows a schematic of

the requirement. Two typical situations are shown in Fig. 5-26a. In one case the center of gravity

is ahead of the wing center of pressure, the aircraft is stable, and a download on the tail is re-

quired to balance the lift of the wing. In the other case the center of gravity is behind the wing

center of pressure, the airplane is unstable, and an upload on the tail is required to balance the lift

of the wing. Other situations are possible, but these two illustrate the key idea.
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Figure 5-26. Examination of the configuration setup required for trim.

Part b of Fig. 5-26 illustrates the difference between stable and unstable configurations. For a

stable airplane the basic Cm0 is typically positive, while for an unstable aircraft the basic Cm0 is

negative. In each case, a control has to be deflected over a range of settings to maintain trim over

a range of lift coeficients (unless the configuration is neutrally stable). On modern aircraft the

control could be the deflection of the thrust by thrust vectoring.

Control surface deflections change the drag from the reference undeflected value. This differ-

ence in drag could be termed a “trim drag.” There are many definitions of trim drag. Definitions

differ because it is difficult to be precise in defining trim drag. Some definitions contain only the
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drag due to the lift of the trimming surface. Some analyses allow for a negative trim drag. How-

ever, for a given flight condition the total lift must be fixed, and any change in lift on the trim-

ming surface requires a change in lift, and hence drag, on the primary surface. On a well de-

signed aircraft the trim drag should be small. Canard concepts are often considered advantageous

because both the canard and wing supply positive lift to trim, whereas for traditional aft-tail con-

figurations the tail load is negative and the wing must operate at a higher lift to compensate.

However, for modern aft-tail designs the tail load is near zero, resulting in little trim drag.

Trim drag has always been an important consideration in airplane design. However, trim drag

became especially important with the development of stability and control augmentation systems

that allowed the designer much greater freedom in the choice of a center of gravity location. Na-

tural static stability was no longer required. The static stability condition had frequently made it

difficult to obtain minimum trim drag. This meant that trim drag could become a key criteria for

the placement of the center of gravity in a configuration (this is part of the motivation for so-

called control configured vehicle, CCV, concepts).

Trim drag is especially important for several specific classes of aircraft. Supersonic aircraft

demand special consideration because of the aerodynamic center shift from subsonic to super-

sonic flight. To control trim drag as well as stability, fuel is transferred fore and aft between sub-

sonic and supersonic flight to achieve proper balance on supersonic cruise aircraft. Variable

sweep wing aircraft also have aerodynamic center locations that vary with wing sweep, potential-

ly leading to high values of trim drag. Finally, maneuvering aircraft can suffer high trim drag at

high lift coefficients, severely limiting sustained turn performance. This was especially true of

the first generation of supersonic capable fighters. Examples of the contribution of trim drag to

the total drag are shown in Figure 5-27, taken from Nicolai.43

A more useful approach to the trim drag analysis is to consider the value of “trimmed drag”.

In this approach it is difficult to define a specific trim drag value. The best way to assess the trim

penalty is to define the difference between the minimum drag attainable for the system and the

minimum trimmed drag for a specified center of gravity position. This provides the designer with

a measure of the drag penalty being paid for a particular center of gravity location. This approach

also demonstrates directly the connection between static margin and minimum trimmed drag.

Different configuration concepts lead to different values of static margin to obtain minimum

trimmed lift. In general, for aft swept wings aft tail configurations, the minimum trimmed drag

occurs at a slightly unstable center of  gravity (5-10%?), canard  configurations  have  minimum

trim drag at slightly more unstable conditions (15%?), and forward swept wing canard configura-

tions must be even more unstable to achieve minimum trimmed drag (the X-29 is about 30-35%

unstable). Many studies of these fundamental properties of various configuration concepts have

been made. See the study by Landfield and Rajkovic44 and the references contained therein for

more information.  
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a) C-141 at M = 0.75 b) F-111A

Figure 5-27. Contributions to drag for two configurations.43

Several key papers examining trim drag from a nearfield point of view have been written.

They are by McKinney and Dollyhigh,38 Lutze,45 and Sachs.46 In the nearfield, extreme care

must be taken to include the downwash incidences and induced angles of attack correctly. Alter-

nately, an analysis can be made in the Trefftz plane. Lamar26 developed a code for finding the

minimum trimmed induced drag for two surfaces, and this was extended to include (approxi-

mately) the effects of profile drag by Mason.27 Note that a farfield analysis which combines the

minimization of induced drag and wave drag due to lift has been presented by Tulinius and Mar-

gason.47 A more general approach to treat multiple surfaces was given by Kuhlman.48 More re-

cently, three surface configuration have been introduced, and the three surface minimum trim

drag problem has been solved by Goodrich, Sliwa, and Lallman49 using a nearfield approach.

An example of the possible dramatic effects of cg location on trimmed drag is presented in

Figure 5-28.27 All the results contained in the figure are for the minimum trimmed drag at differ-

ent values of a specified cg location. These results were obtained during early forward-swept

wing configuration studies, and illustrate why an aft cg position and resulting highly unstable

configuration are required to obtain the full benefits of a forward swept wing configuration simi-
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lar to the X-29.* The very high drag values reflect a transonic maneuver condition. Trim drag

should be much smaller for the cruise condition (certainly less than 2-4%). As shown here, mod-

ern technology should allow the aircraft to fly with no trim drag. The difference between the

minimum trimmed drag at ∆xcg = -40 and any other cg could be considered the trim drag. The

figure contains both induced and profile drag contributions to the total trimmed drag. As the cg

moves forward  (x positive in this nomenclature, x = 0 corresponds to neutral stability), the addi-

tional load on the canard leads to a rapidly increasing value of the minimum trimmed drag. Be-

cause of the increasing load on the canard, the canard airfoil section becomes important. Near the

cg for minimum drag the canard airfoil is not important because the canard is lightly loaded. This

figure shows why canard configurations are most efficient when used with unstable configura-

tion concepts. Stable canard configurations are not necessarily the most efficient aerodynamical-

ly. Because of the high loads on a stable canard configuration, the canard airfoil section is very

carefully selected. Specifically, it is usually highly cambered to achieve the high lift coefficients,

and has a small leading edge radius so that the it will stall before the main wing. 

Figure 5-28 Minimum trimmed drag throughout a range of balance locations,
including the effect of canard airfoil section.27

* Note that the hydraulic power used to activate the canard to achieve apparent stability is obtained from the en-
gine, reducinges thrust and resulting in increased fuel flow. Thus, in essence, some trim drag benefits are gained
at the expense of increased fuel usage to control the unstable vehicle.
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5.11 Current Issues for Drag Calculation Using Computational Aerodynamics

Because of the quest for reduced drag, and the difficulty in computing and measuring small

changes in drag, numerous disputes have arisen in aerodynamics. Confusion introduced by non-

standard drag nomenclature also contributes to these spirited debates. One recent issue was the

so-called sheared wing-tip drag reduction controversy. Here it was speculated that wing tip shap-

ing could lead to span e’s greater than one for planar planforms.50 This conclusion arose based

on both computations and wind tunnel tests. Refined computational investigations,51 illustrating

the need to study computational solution convergence carefully as shown elsewhere in this text,

resulted in the conclusion that e’s greater than one were not actually computed. However, it is

clear that wing tip planform shaping can lead to improved aerodynamic efficiency.

Another area currently attracting attention is the search for more fundamental understanding

of drag. These theories differ significantly from the accepted approach to drag. One key example

is due to Yates.52

 In addition to the efforts to reduce drag due to lift by tip shaping, use of winglets, tip sails,

and canard configurations among others, significant efforts are being made to reduce skin fric-

tion drag. They include efforts to obtain laminar flow through passive means (NLF), suction, or a

combination known as hybrid natural laminar flow control. Turbulent friction reduction tech-

niques are also being developed. Riblets are perhaps the most well known means. A recent

AIAA book reviews this area.53 

5.12 Exercises

1. Derive equations 5-7 and 5-8.

2. Derive equations 5-31 and 5-32.

3. Get a copy of LIDRAG and check it against the the known values of the span e for an elliptic
and a triangular load distribution. How do your results compare?

4. Use experimental results and show quantitatively that Fig. 5-11 is correct.

5. Get a copy of FRICTION. Repeat the check case in the user’s manual. Then examine the skin
friction values in Table 5-1. Are they reasonable?

6. Find the shape of the Karman ogive, the body with minimum wave drag for a given length
and base area.
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6. Aerodynamics of 3D Lifting Surfaces
through Vortex Lattice Methods

6.1 An Introduction

There is a method that is similar to panel methods but very easy to use and capable of providing

remarkable insight into wing aerodynamics and component interaction. It is the vortex lattice

method (vlm), and was among the earliest methods utilizing computers to actually assist

aerodynamicists in estimating aircraft aerodynamics. Vortex lattice methods are based on

solutions to Laplace’s Equation, and are subject to the same basic theoretical restrictions that

apply to panel methods.

As a comparison, vortex lattice methods are:

Similar to Panel methods:
• singularities are placed on a surface
• the non-penetration condition is satisfied at a number of control points
• a system of linear algebraic equations is solved to determine singularity strengths

Different from Panel methods:
• Oriented toward lifting effects, and classical formulations ignore thickness
• Boundary conditions (BCs) are applied on a mean surface, not the actual surface

(not an exact solution of Laplace’s equation over a body, but embodies some
 additional approximations, i.e., together with the first item, we find ∆Cp, 
  not Cpupper and Cplower)

• Singularities are not distributed over the entire surface
• Oriented toward combinations of thin lifting surfaces
   (recall Panel methods had no limitations on thickness).

Vortex lattice methods were first formulated in the late ’30s, and the method was first called

“Vortex Lattice” in 1943 by Faulkner. The concept is extremely simple, but because of its purely

numerical approach (i.e., no answers are available at all without finding the numerical solution of

a matrix too large for routine hand calculation) practical applications awaited sufficient

development of computers—the early ’60s saw widespread adoption of the method. A workshop

was devoted to these methods at NASA in the mid ’70s.1 A nearly universal standard for vortex

lattice predictions was established by a code developed at NASA Langley  (the various versions

were available prior to the report dates):

Margason & Lamar2 1st Langley report NASA TN D-6142 1971
Lamar & Gloss3 2nd     "           " NASA TN D-7921 1975
Lamar & Herbert4,5 3rd      "           " NASA TM 83303 1982
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Each new version had considerably more capability than the previous version. The “final”

development in this series is designated VLM4.997. The original codes could handle two lifting

surfaces, while VLM4.997 could handle four. Many, many other people have written vortex

lattice method codes, some possibly even better than the code described in the NASA reports.

But the NASA code’s general availability, versatility, and reliability resulted in its becoming a

de-facto standard.

Some of the most noteworthy variations on the basic method have been developed by Lan6

(Quasi-Vortex Lattice Method), Hough7, DeJarnette8 and Frink9. Mook10 and co-workers at

Virginia Tech have developed vortex lattice class methods that treat flowfields that contain

leading edge vortex type separation (see Section 6.12) and also handle general unsteady motions.

The recent book by Katz and Plotkin11 contains another variation. At Virginia Tech, Jacob Kay

wrote a code using the method of Katz and Plotkin to estimate stability derivatives, which is

available from the department web page.12

To understand the method, a number of basic concepts must be reviewed. Then we describe

one implementation of the vlm method, and use it to obtain insights into wing and wing-canard

aerodynamics. Naturally, the method is based on the idea of a vortex singularity as the solution

of Laplace’s equation. A good description of the basic theory for vortices in inviscid flow and

thin wing analysis is contained in Karamcheti,13 pp. 494-496, 499-500, and 518-534. A good

description of the vortex lattice method is given by Bertin and Smith.14 After the discussion of

wing and wing-canard aerodynamics, an example of a vortex lattice method used in a design

mode is presented, where the camber line required to produce a specified loading is found. The

chapter concludes with a few examples of the extension of vortex lattice methods to treat

situations with more complicated flowfields than the method was originally intended to treat.

6.2  Boundary conditions on the mean surface and the pressure relation

An important difference between vortex lattice methods and panel methods is the method in

which the boundary conditions are handled. Typically, the vortex lattice method uses an

approximate boundary condition treatment. This boundary condition can also be used in other

circumstances to good advantage. This is a good “trick” applied aerodynamicists should know

and understand. In general, this approach results in the so-called “thin airfoil boundary

condition,” and arises by linearizing and transferring the boundary condition from the actual

surface to a flat mean “reference” surface, which is typically a constant coordinate surface.

Consistent with the boundary condition simplification, a simplified relation between the pressure

and velocity is also possible. The simplification in the boundary condition and pressure-velocity

relation provides a basis for treating the problem as a superposition of the lift and thickness

contributions to the aerodynamic results. Karamcheti13 provides an excellent discussion of this

approach.
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To understand the thin airfoil theory boundary condition treatment, we provide an example in

two dimensions. Recall (from Eqn. 2-54) that the exact surface boundary condition for steady

inviscid flow is:
V ⋅n = 0 (6-1)

on F(x, y) = 0 = y − f (x) . The unit normal vector is n = ∇F(x , y) / ∇F(x, y)  and the velocity

field is defined using the notation defined in Fig. 6-1.

V

V  cos

V  sin

α

αα

∞

∞
∞

y

x

Figure 6-1. Basic coordinate system for boundary condition analysis.

Define the velocity components of V as:

  

V = V∞ + q(x,y)
a disturbance velocity

1 2 3 
(6-2)

where q is a disturbance velocity with components u and v. If we assume irrotational flow, then

these components are described in terms of a scalar potential function,  u = ∇φx and v = ∇φy. The

total velocity V then becomes in terms of velocity components:

uTOT = V∞ cosα + u(x ,y)

vTOT = V∞ sinα + v(x , y)
(6-3)

and we can write out the boundary condition as:

V ⋅n = (uTOTi + vTOTj) ⋅
∂F

∂x
i +

∂F

∂ y
j

 
 
 

 
 
 = 0  (6-4)

or

V∞ cosα + u(x, y)[ ]∂F

∂x
+ V∞ sinα + v(x , y)[ ] ∂F

∂y
= 0 (6-5)

on F(x,y) = 0, and recalling the relationship between F and f given below Eqn. (6-1):
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∂F
∂x

= ∂
∂ x

y − f (x){ } = − df (x)
dx

∂F

∂y
= ∂

∂ y
y − f (x){ } = 1

. (6-7)

Substituting for F in Eq.(6-5) we have:

V∞ cosα + u( ) −
df

dx
 
 
  

 
 + V∞ sinα + v( ) = 0 (6-8)

which, solving for v, is:

v = V∞ cosα + u( ) df

dx
− V∞ sinα (6-9)

on y = f(x). Note that v is defined in terms of the unknown u. Thus Eq. (6-9) is a nonlinear

boundary condition and further analysis is needed to obtain a useful relation.*

6.2.1 Linearized form of the boundary condition

The relation given above by Eq.(6-9) is exact. It has been derived as the starting point for

the derivation of useful relations when the body (which is assumed to be a thin surface at a small

angle of attack) induces disturbances to the freestream velocity that are small in comparison to

the freestream velocity. Thus we assume: u << V∞, v << V∞, and ∂F/∂x < ∂F/∂y. Note that this

introduces a bias in the coordinate system to simplify the analysis, a typical consequence of

introducing simplifying assumptions. Consistent with this assumption, the components of the

freestream velocity are:
V∞ cosα ≈ V∞
V∞sinα ≈ V∞α

(6-10)

and the expression for v in Eq.(6-9) becomes:

v = V∞ + u( ) df

dx
−V∞α . (6-11)

Dividing by V∞,

v

V∞
= 1+

u

V∞

 

 
 

 

 
 

df

dx
− α (6-12)

the linearized boundary condition is obtained by neglecting u/V∞ compared with unity

(consistent with the previous approximations). With this assumption, the linearized boundary

condition becomes:

v

V∞
=

df

dx
− α on y = f (x) . (6-13)

                                                
* Observe that even when the flowfield model is defined by a linear partial differential equation, an
assumption which we have not yet made, the boundary condition can make the problem nonlinear.
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This form of the boundary condition is not valid if the flow disturbance is large compared to

the freestream velocity {for aerodynamically streamlined shapes this is usually valid everywhere

except at the leading edge of the airfoil, where a stagnation point exists (u = -V∞) and the slope

is infinite (df/dx = ∞ )}. In practice, a local violation of this assumption leads to a local error.

Thus, if the details of the flow at the leading edge are not important to the analysis, which

surprisingly is often the case, the linearized boundary condition can be used.

6.2.2 Transfer of the boundary condition

Although Eqn. (6-13) is linear, it’s hard to apply because it is not applied on a coordinate

line.* We now use a further approximation of this relation to get the useful form of the linearized

boundary condition. Using a Taylor series expansion of the v component of velocity about the

coordinate axis we obtain the v velocity on the surface:

v{x , y = f(x)} = v(x,0) + f (x)
∂v

∂y y=0

+ ... . (6-14)

For the thin surfaces under consideration, f(x) is small, and because the disturbances are assumed

small, ∂v/∂y is also small.  For example, assume that v and ∂v/∂y are the same size, equal to 0.1,

and df/dy is also about 0.1. The relation between v on the airfoil surface and the axis is:

  
v{x , y = f(x)} = (.1) +(.1)(.1) = .1 + .01

neglect
{ . (6-15)

Neglecting the second term, we assume:

v{x , f (x)} ≈ v(x, 0). (6-16)

We now apply both the upper and lower surface boundary conditions on the axis y = 0, and

distinguish between the upper and lower surface shapes by using:

f = fu on the upper surface

f = fl on the lower surface
. (6-17)

Using Eq. (6-17), we write the upper and lower surface boundary conditions as:

v x,0+( )
V∞

up

=
dfu
dx

− α ,
v x,0−( )

V∞
low

=
dfl
dx

− α . (6-18)

                                                
* The simplification introduced by applying boundary conditions on constant coordinate surfaces justifies
the use of rather elaborate tranformations, which will be dicussed in more detail in Chap. 9, Geometry and
Aerodynamics.
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These are the linearized and transferred boundary conditions. Frequently, these boundary

conditions result in a surprisingly good approximation to the flowfield, even in transonic and

supersonic flow.

6.2.3 Decomposition of boundary conditions to camber/thickness/alpha

Further simplification and insight can be gained by considering the airfoils in terms of the

combination of thickness and camber, a natural point of view. We thus write the upper and lower

surface shapes in terms of camber, fc, and thickness, ft, as:

fu = fc + ft
fl = fc − ft

(6-19)

and the general problem is then divided into the sum of three parts as shown in Fig. 6-2.

General
airfoil
at α

Thickness
at α = 0°

Camber
at α = 0°

Flat plate
at α

= + +

Figure 6-2. Decomposition of a general shape at incidence.

The decomposition of the problem is somewhat arbitrary. Camber could also be considered

to include angle of attack effects using the boundary condition relations given above, the sign is

the same for both the upper and lower surface. The aerodynamicist must keep track of details for

a particular problem. To proceed further, we make use of the basic vortex lattice method

assumption: the flowfield is governed by a linear partial differential equation (Laplace’s

equation). Superposition allows us to solve the problem in pieces and add up the contributions

from the various parts of the problem. This results in the final form of the thin airfoil theory

boundary conditions:

v x,0+( )
V∞

up

= dfc
dx

+ dft
dx

−α

v x,0−( )
V∞

low

= dfc

dx
− dft

dx
−α

. (6-20)

The problem can be solved for the various contributions and the contributions are added together
to obtain the complete solution. If thickness is neglected the boundary conditions are the same
for the upper and lower surface.
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6.2.4 Thin airfoil theory pressure relation

Consistent with the linearization of the boundary conditions, a useful relation between the

pressure and velocity can also be obtained. For incompressible flows, the exact relation between

pressure and velocity is:

Cp =1 −
V

V∞

 

 
 

 

 
 

2
(6-21)

and we expand the velocity considering disturbances to the freestream velocity using the

approximations discussed above:

V 2 = V∞ cosα + u( )2 + V∞ sin α + v( )2

V∞ V∞α
.

Expanding:

V 2 = V∞
2 + 2V∞u + u2 + V∞α( )2 + 2V∞αv + v2  (6-22)

and dividing by V∞
2 we get:

V 2

V∞
2 =1 + 2

u

V∞
+

u2

V∞
2 + α 2 + 2α

v

V∞
+

v2

V∞
2 . (6-23)

Substituting into the Cp relation, Eqn. (6-21), we get:

CP = 1− 1 + 2
u

V∞
+ u2

V∞
2 + α 2 + 2α v

V∞
+ v2

V∞
2

 

 
 

 

 
 

= 1− 1− 2
u

V∞
−

u2

V∞
2 − α 2 − 2α

v

V∞
−

v2

V∞
2

(6-24)

and if α, u /V∞  and v/V∞ are  << 1, then the last four terms can be neglected in comparison with

the third term. The final result is:

Cp =− 2
u

V∞
. (6-25)

This is the linearized or “thin airfoil theory pressure formula”. From experience gained

comparing various computational results, I’ve found that this formula is a slightly more severe

restriction on the accuracy of the solution than the linearized boundary condition. Equation (6-

25) shows that under the small disturbance approximation, the pressure is a linear function of u,

and we can add the Cp contribution from thickness, camber, and angle of attack by

superposition. A similar derivation can be used to show that Eq. (6-25) is also valid for

compressible flow up to moderate supersonic speeds.
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6.2.5  Delta Cp due to camber/alpha (thickness cancels)

Next, we make use of the result in Eq. (6-25) to obtain a formula for the load distribution on

the wing:

∆Cp = CpLOWER − CpUPPER . (6-26)

Using superposition, the pressures can be obtained as the contributions from wing thickness,

camber, and angle of attack effects:

CpLOWER
= CpTHICKNESS

+ CpCAMBER
+ CpANGLE OF ATTACK

CpUPPER
= CpTHICKNESS

− CpCAMBER
− CpANGLE OF ATTACK

(6-27)

so that:

∆Cp = CpTHICKNESS + CpCAMBER + CpANGLE OF ATTACK( )
− CpTHICKNESS − CpCAMBER − CpANGLE OF ATTACK( )

= 2 CpCAMBER
+ CpANGLE OF ATTACK( )

. (6-28)

Equation (6-28) demonstrates that for cases where the linearized pressure coefficient relation is

valid, thickness does not contribute to lift to 1st order in the velocity disturbance!

The importance of this analysis is that we have shown:

1. how the lifting effects can be obtained without considering thickness, and

2. that the cambered surface boundary conditions can be applied on a flat coordinate
surface, resulting in an easy to apply boundary condition.

The principles demonstrated here for transfer and linearization of boundary conditions can be

applied in a variety of situations other than the application in vortex lattice methods. Often this

idea can be used to handle complicated geometries that can’t easily be treated exactly.

The analysis here produced an entirely consistent problem formulation. This includes the

linearization of the boundary condition, the transfer of the boundary condition, and the

approximation between velocity and pressure. All approximations are consistent with each other.

Improving one of these approximations without improving them all in a consistent manner may

actually lead to worse results. Sometimes you can make agreement with data better, sometimes it

may get worse. You have to be careful when trying to improve theory on an ad hoc basis.
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6.3   Vortex Theorems
In using vortex singularities to model lifting surfaces, we need to review some properties of

vortices. The key properties are defined by the so-called vortex theorems. These theorems are

associated with the names of Kelvin and Helmholtz, and are proven in Karamcheti.13 Three

important results are:

1. Along a vortex line (tube) the circulation, Γ, is constant.
2. A vortex filament (or line) cannot begin or end abruptly in a fluid. The vortex line

must  i) be closed, ii) extend to infinity, or iii) end at a solid boundary.
Furthermore, the circulation, Γ, about any section is the vortex strength.

3. An initially irrotational, inviscid flow will remain irrotational.

Related to these theorems we state an important result:

• A sheet of vortices can support a jump in tangential velocity [i.e. a force],
while the normal velocity is continuous. This means you can use a vortex sheet
to represent a lifting surface.

6.4  Biot-Savart Law

We know that a two-dimensional vortex singularity satisfies Laplace’s equation (i.e. a point

vortex):

V =
Γ

2π r
eθ (6-29)

where Vθ is the irrotational vortex flow illustrated in Fig. 6-3.

                         
Vortex normal

to page

Vθ

               
r

V
θ

1/r

.
a) streamlines b) velocity distribution

Figure 6-3. The point vortex.

What is the extension of the point vortex idea to the case of a general three-dimensional

vortex filament? Consider the flowfield induced by the vortex filament shown in Fig. 6-4, which

defines the nomenclature.
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Γ
dl

q

p

rpq
vortex
filament

Figure 6-4. General three-dimensional vortex filament.

The mathematical description of the flow induced by this filament is given by the Biot-

Savart law (see Karamcheti,13 pages 518-534). It states that the increment in velocity dV at a

point p due to a segment of a vortex filament dl at q is:

dVp =
Γ
4π

⋅
dl × rpq

rpq
3 . (6-30)

To obtain the velocity induced by the entire length of the filament, integrate over the length

of the vortex filament (or line) recalling that Γ is constant. We obtain:

  

r 
V p =

Γ
4π

d
r 
l ×

r 
r pq

r 
r pq

3

⌠ 

⌡ 
 
 . (6-31)

To illustrate the evaluation of this integral we give the details for several important

examples. The vector cross product definition is reviewed in the sidebar below. Reviewing the

cross product properties we see that the velocity direction dVp induced by the segment of the

vortex filament dl is perpendicular to the plane defined by dl and rpq, and its magnitude is

computed from Eq. (6-31).

Case #1: the infinitely long straight vortex.

In the first illustration of the computation of the induced velocity using the Biot-Savart Law, we

consider the case of an infinitely long straight vortex filament. The notation is given in Fig. 6-5.
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+ ∞

p

dl

Γ
θ

h

q

rpq

- ∞
.

Figure 6-5. The infinitely long straight vortex.

A review: the meaning of the cross product. What does a x b mean? Consider the following

sketch:

a

b

c

θ

Here, the vectors a and b form a plane, and the result of the cross product operation is a vector c,

where c is perpendicular to the plane defined by a and b. The value is given by:

c = a × b = a b sinθ e

and e is perpendicular to the plane of a and b. One consequence of this is that if a and b are

parallel, then a x b  = 0.

Also:  a × b =   area of the parallelogram

and

a × b =
i j k

Ax Ay Az

Bx By Bz

= AyBz − AzBy( )i − AxBz − AzBx( )j + Ax By − AyBx( )k
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Now consider the numerator in Eq. (6-30) given above using the definition of the cross

product:

dl × rpq = dl rpq sinθ
V
V

(6-32)

so that the entire expression becomes

dVp =
Γ
4π

⋅
dl rpq sinθ

rpq
3

V
V

= Γ
4π

V
V

sinθ dl

rpq
2

. (6-33)

Next, simplify the above expressions so they can be readily evaluated. Use the nomenclature

shown in Fig. 6-6.

p

q

l l1

h
rpq

θ

Figure 6-6. Relations for the solution of the Biot-Savart  Law.

Using the notation in Fig. 6-6 to find the relations for rpq and dl. First we see that:

h = rpq sinθ (6-34)

or rpq =
h

sinθ
(6-35)

and l1 − l =
h

tanθ
= hcotθ . (6-36)

Next look at changes with θ.  Start by taking the differential of Eq. (6-36):

which is

d(l1 − l) = d
h

tanθ
 
 
  

 
 = d(hcotθ)

−dl = h d(cot θ)

− dl
dθ

= h
d
dθ

(cotθ) = −hcosec2θ

(6-37)

and we can now write dl in terms of dθ :

dl = hcosec2θ dθ (6-38)
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so that the Biot-Savart Law gives:

dVp = Γ
4π

V
V

sinθ dl

rpq
2

=
Γ
4π

V
V

sinθ hcosec2θ dθ
h

sinθ
 
 
  

 
 

2

=
Γ
4π

sinθ
h

dθ (direction understood)

. (6-39)

Thus we integrate:

Vp =
Γ
4π

sinθ
h

dθ∫ =
Γ

4π h
sinθ dθ

θ =0

θ=π

∫ (6-40)

where here the limits of integration would change if you were to consider a finite straight length.

Carrying out the integration:

Vp = Γ
4π h

−cosθ[ ]θ =0
θ =π

=
Γ

4π h
−(−1) − −1( )[ ]

and:

Vp =
Γ

2π h
(6-41)

which agrees with the two dimensional result.

Although a vortex cannot end in a fluid, we can construct expressions for infinitely long

vortex lines made up of a series of connected straight line segments by combining expressions

developed using the method illustrated here. To do this we simply change the limits of

integration. Two cases are extremely useful for construction of vortex systems, and the formulas

are given here without derivation.

Case #2: the semi-infinite vortex.

This expression is useful for modeling the vortex extending from the wing to downstream

infinity.

+ ∞

p

dl

Γ
θ

θ0

h

                  Vp =
Γ

4πh
1 + cosθ0( )e (6-42)

Figure 6-7. The semi-infinite vortex.
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Case #3: the finite vortex.

This expression can be used to model the vortex on a wing, and can be joined with two

semi-infinite vortices to form a vortex of infinite length, satisfying the vortex theorems.

p

dl

Γ

θ

θ1

h

θ2

                Vp =
Γ

4πh
cosθ1 − cosθ2( )e   (6-43)

Figure 6-8. The finite vortex.

Systems of vortices can be built up using Eqns. (6-42) and (6-43) and the vortex theorems.

The algebra can become  tedious, but there are no conceptual difficulties.

6.5  The Horseshoe Vortex

There is a specific form of vortex used in the traditional vortex lattice method. We now use

the expressions developed from the Biot-Savart Law to create a “horseshoe vortex”, which

extends from downstream infinity to a point in the field “A”, then from point “A” to point “B,”

and another vortex from point “B” downstream to infinity. The velocity induced by this vortex is

the sum of the three parts. The basic formulas were presented in the previous section. Here we

extend the analysis of the previous section, following the derivation and notation of Bertin and

Smith.14 In particular, the directions of the induced flow are made more precise. Our goal is to

obtain the expression for the velocity field at a general point in space (x,y,z) due to the specified

horseshoe vortex.

To create a horseshoe vortex we will use three straight line vortices: one finite length vortex

and two semi-infinite vortices. This is illustrated in Fig. 6-9. To start our analysis, we rewrite the

Biot-Savart Law in the Bertin and Smith notation,14 which is given in Fig. 6-10.
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∞

∞
A

B

Γ

Γ

Γ

Figure 6-9. The horseshoe vortex.

A
C

B

r1

r
r2

rpdl
θ2

θ
θ 1

              

ro = AB

r1 = AC

r2 = BC

Figure 6-10. Nomenclature for induced velocity calculation.

The next step is to relate the angles to the vector definitions. The definition of the dot product

is used:
A ⋅ B = A B cosθ (6-44)

so that:

cosθ1 =
r0 ⋅r1

r0 r1

cosθ2 =
r0 ⋅ r2

r0 r2

. (6-45)

Next, we put these relations into the formula for the finite length vortex segment formula for the

induced velocity field given above in Eq. (6-43).

Vp =
Γ

4π rp
cosθ1 − cosθ2( )e (6-46)

so that, substituting using the definition in Eq. (6-44), we get

Vp =
Γ

4π
r0

r1 × r2

r0 ⋅ r1
r0 r1

−
r0 ⋅ r2

r0 r2

 

 
 

 

 
 

r1 × r2

r1 × r2
. (6-47)
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Collecting terms and making use of the vector identity provided in the sidebar, we obtain the

Bertin and Smith statement of the Biot-Savart Law for a finite length vortex segment:

Vp =
Γ

4π
r1 × r2

r1 × r2
2 r0 ⋅

r1
r1

−
r2

r2

 

 
 

 

 
 

 

 
 

 

 
 . (6-48)

For a single infinite length horseshoe vortex we will use three segments, each using the

formula given above. The nomenclature is given in the sketch below. The primary points are the

Bertin and Smith14 use the relation:

rp =
r1 × r2

r0
rp =

r1 × r2
r0

and we need to demonstrate that this is true. Consider the parallelogram ABCD shown in the

sketch:

A
B

CD

r
1

r
2

r
0

rp

by definition: r1 × r2 = Ap , is the area of the parallelogram.

Similarly, the area of ABC is:

AABC =
1

2
bh

=
1

2
ro rp

The total area of the parallelogram can be found from both formulas, and by equating these two

areas we obtain the expression we are trying to get:

2AABC = Ap

ro rp = r1 × r2

which can be rewritten to obtain the expression given by Bertin and Smith:14

 rp =
r1 × r2

r0
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connecting points A and B. Between A and B we use a finite length vortex which is considered a

“bound” vortex, and from A to infinity and B to infinity we define “trailing” vortices that are

parallel to the x-axis.

The general expression for the velocity at a point x, y, z due to a horseshoe vortex at (x1n,

y1n, z1n), (x2n,y2n, z2n) with trailing vortices parallel to the x-axis is (from Bertin and Smith14):

V = VAB + VA∞ + VB∞
(6-49)

where the total velocity is the sum of the contributions from the three separate straight line

vortex segments making up the horseshoe vortex, as shown in Fig. 6-11.

∞

∞
A

B

Γ

Γ

Γ
n

n

n

x

z

y

Figure 6-11. Definitions for notation used in induced velocity expressions.

The corner points of the vortex, A and B , are arbitrary, and are given by:

A = A(x1n , y1n , z1n)

B = B(x2n , y2n ,z2n)
. (6-50)

We now write the expression for the velocity field at a general point in space (x,y,z) due to

the horseshoe vortex system. At C(x,y,z) find the induced velocity due to each vortex segment.

Start with AB, and use Fig. 6-12.

Now we define the vectors as:
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r0 = x2n − x1n( )i + y2n − y1n( )j + z2n − z1n( )k
r1 = x − x1n( )i + y − y1n( )j + z − z1n( )k
r0 = x − x2n( )i + y − y2n( )j + z − z2n( )k

(6-51)

A

B

C(x,y,z)

r

r

r

0

1

2

Figure 6-12. Velocity induced at Point C due to the vortex between A and B.

and we simply substitute into:

  

VC =
Γ

4π
r1 × r2

r1 × r2
2

Ψ
1 2 4 3 4 

r0 ⋅
r1
r1

− r0 ⋅
r2

r2

 

 
 

 

 
 

Ω
1 2 4 4 4 3 4 4 4 

. (6-52)

 Considering the bound vortex on AB first we obtain,

VAB =
Γn

4π
Ω 

 
  

 
 Ψ (6-53)

where Ψ and Ω are lengthy expressions. By following the vector definitions, Eqn. (6-53) can be

written in Cartesian coordinates. The vector Ψ is:

Ψ = r1 × r2

r1 × r2
2

=

y − y1n( ) z − z2n( ) − y − y2n( ) z − z1n( )[ ]i
− x − x1n( ) z − z2n( ) − x − x2n( ) z − z1n( )[ ]j

+ x − x1n( ) y − y2n( ) − x − x2n( ) y − y1n( )[ ]k

 

 
  

 
 
 

 

 
  

 
 
 

y − y1n( ) z − z2n( ) − y − y2n( ) z − z1n( )[ ]2

+ x − x1n( ) z − z2n( ) − x − x2n( ) z − z1n( )[ ]2

+ x − x1n( ) y − y2n( ) − x − x2n( ) y − y1n( )[ ]2

 

 

 
 

 

 
 

 

 

 
 

 

 
 

. (6-54)
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The scalar portion of the expression, Ω, is:

Ω = ro ⋅ r1
r1

− ro ⋅ r2

r2

 

 
 

 

 
 

=
x2n − x1n( ) x − x1n( ) + y2n − y1n( ) y − y1n( ) + z2n − z1n( ) z − z1n( )[ ]

x − x1n( )2 + y − y1n( )2 + z − z1n( )2

−
x2n − x1n( ) x − x2n( ) + y2n − y1n( ) y − y2n( ) + z2n − z1n( ) z − z2n( )[ ]

x − x2n( )2 + y − y2n( )2 + z − z2n( )2

. (6-55)

We find the contributions of the trailing vortex legs using the same formula, but redefining

the points 1 and 2. Then, keeping the 1 and 2 notation, define a downstream point, “3” and let x3

go to infinity. Thus the trailing vortex legs are given by:

VA∞ =
Γn

4π
z − z1n( )j + y1n − y( )k
z − z1n( )2 + y1n − y( )2[ ]

 
 
 

  

 
 
 

  
1.0 +

x − x1n

x − x1n( )2 + y − y1n( )2 + z − z1n( )2

 

 

 
 

 

 

 
 

(6-56)

and

VB ∞ = −
Γn

4π
z − z2n( )j + y2n − y( )k
z − z2n( )2 + y2n − y( )2[ ]

 
 
 

  

 
 
 

  
1.0 +

x − x2n

x − x2n( )2 + y − y2n( )2 + z − z2n( )2

 

 

 
 

 

 

 
 .

(6-57)

Note that Γn is contained linearly in each expression, so that the expression given above can

be arranged much more compactly by using (6-49) with (6-52), (6-56), and (6-57) as:

Vm = CmnΓn
(6-58)

and Cmn is an influence coefficient for the nth horseshoe vortex effect at the location m,

including all three segments.

Now that we can compute the induced velocity field of a horseshoe vortex, we need to

decide where to place the horseshoe vortices to represent a lifting surface.

6.6 Selection of Control Point/Vortex Location

Since we are interested in using the horseshoe vortex defined above to represent a lifting

surface, we need to  examine exactly how this might be done. In particular: where do you locate

the vortex, and where do you locate a control point to satisfy the surface boundary condition?

Tradition has been to determine their locations by comparison with known results. In particular,

we use two dimensional test cases, and then apply them directly to the three dimensional case.
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An alternate distribution based on numerical properties of quadrature formulas has been derived

by Lan. Section 6.11 will demonstrate the use of his vortex/control point locations in the inverse

case, where the pressure is given, and the shape of the surface is sought.

a) Simplest Approach: A Flat Plate

Consider representing the flow over a flat plate airfoil by a single vortex and control point.

Comparing with the known result from thin airfoil theory we determine the spacing between the

vortex and control point which produces a lift identical with the thin airfoil theory value.

Consider the flat plate as sketched in Fig. 6-13.

X

c

Γ

a b

control point

r

Figure 6-13. The notation for control point and vortex location analysis.

The velocity at the control point, cp,  due to the point vortex is:

vcp = −
Γ

2πr
. (6-59)

The flow tangency condition was given above as:

vBC

V∞
=

dfc
dx

−α (6-60)

and ignoring camber:

vBC

V∞
= −α (6-61)

or:
vBC = −αV∞ . (6-62)

Now, we equate vBC and vcp: 

−
Γ

2πr
= −αV∞ (6-63)

resulting in the expression for α:
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α =
Γ

2πrV∞
. (6-64)

To make use of this relation, recall the Kutta-Joukowsky Theorem:

L = ρV∞Γ (6-65)

and the result from thin airfoil theory:

  

L = 1
2 ρV∞

2

q∞
1 2 3 

c
Sref

{ 2πα
CL
{ . (6-66)

Equate the expressions for lift, Eqns. (6-65) and (6-66) and substitute for α using the

expression in Eqn. (6-64) given above:

ρV∞Γ = 1
2 ρV∞

2c2πα

= 1
2 ρV∞

2c2π
Γ

2πrV∞

1 =
1

2

c

r

(6-67)

and finally:

r =
c

2
. (6-68)

This defines the relation between the vortex placement and the control point in order for the

single vortex model to reproduce the theoretical lift of an airfoil predicted by thin airfoil theory.

Since the flat plate has constant (zero) camber everywhere, this case doesn’t pin down placement

(distance of the vortex from the leading edge) completely. Intuitively, the vortex should be

located at the quarter-chord point since that is the location of the aerodynamic center of a thin

flat plate airfoil. The next example is used to determine the placement of the vortex.

b) Determine placement of the vortex using parabolic camber model.

Rewrite the velocity at the control point due to the point vortex in a little more detail, where

a denotes the location of the vortex, and b the location of the control point:

vcp = −
Γ

2π a − b( ) (6-69)

and the boundary condition remains the same:

vBC = V∞
dfc
dx

−α 
 
  

 
 . (6-70)
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Equating the above expressions (and dividing by V∞:):

−
Γ

2π a − b( )V∞
=

dfc
dx

− α 
 
  

 
 . (6-71)

For parabolic camber,

fc(x) = 4δ
x

c
 
 
  

 
 c − x( ) (6-72)

we have the slope,

dfc(x)

dx
= 4δ 1− 2

x

c
 
 
  

 
  

  
 
  (6-73)

so that:

−
Γ

2π a − b( )V∞
= 4δ 1− 2

x

c
 
 
  

 
  

  
 
  −α . (6-74)

Now use the result from thin airfoil theory:

L = 1
2 ρV∞

2c2π α + 2δ( )

and substitute for the lift from the Kutta-Joukowsky theorem. We thus obtain an expression for

the circulation of the vortex in terms of the angle of attack and camber:

Γ = πV∞c α + 2δ( ). (6-75)

Substitute for Γ from (6-75) into (6-74), and satisfy the boundary condition at x = b:

−πV∞c α + 2δ( )
2π b − a( )V∞

= 4δ 1 − 2
b

c
 
 
  

 
  

  
 
  − α

or:

−
1

2

c

b − a
 
 
  

 
 α + 2δ( ) = 4δ 1− 2

b

c
 
 
  

 
  

  
 
  −α . (6-76)

To be true for arbitrary α, δ, the coefficients must be equal:

− 1
2

c
b − a

 
 
  

 
 = −1

−
c

b − a
 
 
  

 
 = 4 1 − 2

b

c
 
  

 
  

(6-77)

and we solve for a and b. The first relation can be solved for (b-a):

b − a( ) =
c

2
(6-78)

and we obtain the same results obtained above, validating our previous analysis ( r = c/2).
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Now, rewrite the 2nd equation:

−c = 4 1− 2
b

c
 
 
  

 
  

  
 
  (b − a)

or:

−c = 4 1− 2
b

c
 
 
  

 
  

  
 
  

c

2
(6-79)

and solve for b/c:

−1 = 2 1 − 2
b

c
 
 
  

 
  

  
 
  

−
1

2
=1 − 2

b

c
 
 
  

 
 

2
b

c
=1 +

1

2
=

3

2

b

c
=

1

2

3

2
=

3

4 , (6-80)

and use this to solve for a/c starting with Eqn. (6-78) :

b − a( ) =
c

2

or:

b

c
−

a

c
=

1

2
(6-81)

and:

a

c
=

b

c
−

1

2
=

3

4
−

1

2
.

Finally:

a

c
=

1

4
. (6-82)

Thus the vortex is located at the 1/4 chord point, and the control point is located at the 3/4

chord point. Naturally, this is known as the “1/4 - 3/4 rule.” It’s not a theoretical law, simply a

placement that works well and has become a rule of thumb. It was discovered by Italian Pistolesi.

Mathematical derivations of more precise vortex/control point locations are available (see Lan6),

but the 1/4 - 3/4 rule is widely used, and has proven to be sufficiently accurate in practice.
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To examine the use of these ideas we present a two-dimensional example. The airfoil is

divided into a number of equal size panels. Each panel has a vortex at the quarter chord point and

the non-penetration condition is satisfied at the three-quarter chord point. We use the example to

illustrate the accuracy of the classical thin airfoil theory formulation. In Fig. 6-14, we compare

the results obtained for a 5% circular arc camber.* Three solutions are presented. The linear

theory curve uses classical thin airfoil theory with results obtained satisfying the boundary

condition on the mean surface. This is compared with numerical results for the case where the

boundary condition is applied exactly on the camber line, and the result obtained applying the

boundary condition using the approximate method described above. The difference between

placing the vortex on the actual camber surface and satisfying the boundary condition on the

actual surface, and the more approximate traditional approach of locating the vortex and control

point on the mean surface is extremely small.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

∆Cp

0.0 0.2 0.4 0.6 0.8 1.0
x/c

5% Circular arc camber line
α = 0 °
40 panels

∆Cp bc's on camber line

∆Cp bc's on axis
∆Cp linear theory

Figure 6-14. Comparison in 2D of the 1/4-3/4 rule for vortex-control point locations with
linear theory, and including a comparison between  placing the vortex and
control point on the camber line or on the axis.

                                                
* A relatively large camber for a practical airfoil, the NACA 4412 example we used in Chapter 4 was an extreme
case, and it has 4% camber.
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6.7  The Classical Vortex Lattice Method

There are many different vortex lattice schemes. In this section we describe the “classical”

implementation. Knowing that vortices can represent lift from our airfoil analysis, and that one

approach is to place the vortex and then satisfy the boundary condition using the “1/4 - 3/4 rule,”

we proceed as follows:

1. Divide the planform up into a lattice of quadrilateral panels, and put a horseshoe
vortex on each panel.

2. Place the bound vortex of the horseshoe vortex on the 1/4 chord element line of
each panel.

3. Place the control point on the 3/4 chord point of each panel at the midpoint in the
spanwise direction (sometimes the lateral panel centroid location is used) .

4. Assume a flat wake in the usual classical method.

5. Determine the strengths of each Γn required to satisfy the boundary conditions by
solving a system of linear equations. The implementation is shown schematically
in Fig. 6-15.

y

x

X

X

X

X

X
X

X

X
X

Trailing vortices extend to infinity

bound vortices

control points

Figure 6-15. The horseshoe vortex layout for the classical vortex lattice method.

Note that the lift is on the bound vortices. To understand why,  consider the vector statement

of the Kutta-Joukowski Theorem, F = ρV ×Γ . Assuming the freestream velocity is the primary

contributor to the velocity, the trailing vortices are parallel to the velocity vector and hence the

force on the trailing vortices are zero. More accurate methods find the wake deformation

required to eliminate the force in the presence of the complete induced flowfield.
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Next, we derive the mathematical statement of the classical vortex lattice method described

above. First, recall that the velocity induced by a single horseshoe vortex is

Vm = Cm,nΓn . (6-60)

This is the velocity induced at the point m due to the nth horseshoe vortex, where Cm,n is a

vector, and the components are given by Equations 6-54, 6-58 and 6-59.

The total induced velocity at m due to the 2N vortices (N on each side of the planform) is:

Vmind
= umind

i + vmind
j+ wmind

k = Cm,nΓn
n=1

2 N

∑ . (6-83)

The solution requires the satisfaction of the boundary conditions for the total velocity, which

is the sum of the induced and freestream velocity. The freestream velocity is (introducing the

possibility of considering vehicles at combined angle of attack and sideslip):

V∞ = V∞ cosα cosβi − V∞ sin βj + V∞ sinα cosβ k (6-84)

so that the total velocity at point m is:

Vm = (V∞ cosα cosβ + umind
) i+ −V∞ sin β + vmind( )j + (V∞sinα cos β + wmind

)k . (6-85)

The values of the unknown circulations, Γn, are found by satisfying the non-penetration

boundary condition at all the control points simultaneously. For steady flow this is

V ⋅n = 0 (6-1)

where the surface is described by

F(x, y,z) = 0. (6-86)

Equation (6-1) can then be written:

V ⋅
∇F

∇F
= V ⋅∇F = 0 . (6-87)

This equation provides freedom to express the surface in a number of forms. The most general

form is obtained by substituting Eqn. (6-85) into Eqn. (6-87) using Eqn. (6-83). This can be

written as:

(V∞ cosα cosβ + umind
)i + −V∞ sinβ + vmind( )j + (V∞ sinα cosβ + wmind

)k[ ]⋅

∂F

∂ x
i +

∂F

∂y
j +

∂F

∂ z
k

 
  

 
  = 0

(6-88)

or:
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(V∞ cosα cos β + Cm,ni
Γn

n=1

2N

∑ )i + −V∞ sinβ + Cm ,n j
Γn

n=1

2N

∑
 

 
  

 

 
  j + (V∞sinα cosβ + Cm,nk

Γn
n=1

2N

∑ )k
 

 
 
 

 

 
 
 
⋅

∂F

∂ x
i +

∂F

∂y
j +

∂F

∂ z
k

 
  

 
  = 0

(6-89)
 Carrying out the dot product operation and collecting terms:

∂F

∂x
(V∞ cosα cosβ + Cm,ni

Γn
n=1

2N

∑ )+ ∂F

∂ y
−V∞ sin β + Cm,nj

Γn
n=1

2N

∑
 

 
  

 

 
  +

∂F

∂z
(V∞ sinα cosβ + Cm,nkΓn

n=1

2N

∑ ) = 0 . (6-90)

Recall that Eqn. (6-90) is applied to the boundary condition at point m. Next, we collect terms to

clearly identify the expression for the circulation. The resulting expression defines a system of

equations for all the panels, and is the system of linear algebraic equations that is used to solve

for the unknown values of the circulation distribution.  The result is:

∂F

∂x
Cm ,ni +

∂F

∂ y
Cm,nj +

∂F

∂ z
Cm,nk

 
 
 

 
 
 Γn

n=1

2N

∑ =− V∞ cosα cosβ
∂F

∂x
− sinβ

∂F

∂y
+ sinα cos β

∂F

∂z

 
  

 
  

m = 1,...2N  (6-91)

This is the general equation used to solve for the values of the circulation. It is arbitrary,

containing effects of both angle of attack and sideslip (if the vehicle is at sideslip the trailing

vortex system should by yawed to align it with the freestream).

If the surface is primarily in the x-y plane and the sideslip is zero, we can write a simpler

form. In this case the natural description of the surface is

z = f(x , y) (6-92)
and

F(x, y,z) = z − f(x, y) = 0 . (6-93)

The gradient of F becomes

∂F

∂x
= −

∂f

∂x
,

∂F

∂y
= −

∂f

∂y
,

∂F

∂z
= 1. (6-94)

Substituting into the statement of the boundary condition, Eqn. (6-91), we obtain:

Cm,n k −
∂f

∂ x
Cm,n i −

∂f

∂y
Cm ,n j

 
  

 
  Γn

n=1

2N

∑ = V∞ cosα
∂f

∂x
− sinα

 
 
  

 
 , m = 1,...,2N . (6-95)

This equation provides the solution for the vortex lattice problem.
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To illustrate the usual method, consider the simple planar surface case, where there is no

dihedral. Furthermore, recalling the example in the last section and the analysis at the beginning

of the chapter, the thin airfoil theory boundary conditions can be applied on the mean surface,

and not the actual camber surface. We also use the small angle approximations. Under these

circumstances, Eq. (6-95) becomes:

wm = Cm ,nk Γn
n=1

2N

∑ = V∞
dfc
dx

− α 
 
  

 
 

m
. (6-96)

Thus we have the following equation which satisfies the boundary conditions and can be used to

relate the circulation distribution and the wing camber and angle of attack:

Cm,nk

Γn

V∞

 

 
 

 

 
 

n=1

2N

∑ =
dfc
dx

−α 
 
  

 
 

m
m = 1,...,2N . (6-97)

Equation (6-97) contains two cases:

1. The Analysis Problem. Given camber slopes and α, solve for the circulation strengths,
(Γ/V∞) [ a system of 2N simultaneous linear equations].

or

2. The Design Problem. Given  (Γ/V∞), which corresponds to a specified surface
loading, we want to find the camber and α required to generate this loading (only
requires simple algebra, no system of equations must be solved).

Notice that the way dfc/dx and α are combined illustrates that the division between camber,

angle of attack and wing twist is arbitrary (twist can be considered a separate part of the camber

distribution, and is useful for wing design). However, care must be taken in keeping the

bookkeeping straight.

One reduction in the size of the problem is available in many cases. If the geometry is

symmetrical and the camber and twist are also symmetrical, then Γn is the same on each side of

the planform (but not the influence coefficient). Therefore, we only need to solve for N Γ’s, not

2N (this is true also if ground effects are desired, see Katz and Plotkin11). The system of

equations for this case becomes:

Cm,nk left
+ Cm,nk right

 
  

 
  

n=1

N

∑ Γn

V∞

 

 
 

 

 
 =

dfc
dx

−α 
 
  

 
 

m
m = 1,..., N . (6-98)

Note that if an essentially vertical surface is of interest, the form of F is more naturally

F = y - g(x,z),

and this should be used to work out the boundary condition in a similar fashion.
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This is easy. Why not just program it up ourselves? You can, but most of the work is:

A. Automatic layout of panels for arbitrary geometry.  As an example, when considering
multiple lifting surfaces, the horseshoe vortices on each surface must “line up”. The
downstream leg of a horseshoe vortex cannot pass through the control point of
another panel.

and

B. Converting Γn to the aerodynamics values of interest, CL, Cm, etc., and the spanload,
is tedious for arbitrary configurations.

Nevertheless, many people (including previous students in the Applied Computational

Aerodynamics class) have written vlm codes. The method is widely used in industry and

government for aerodynamic estimates for conceptual and preliminary design predictions. The

method provides good insight into the aerodynamics of wings, including interactions between

lifting surfaces.

Typical analysis uses (in a design environment) include
• Predicting the configuration neutral point during initial configuration layout, and

studying the effects of wing placement and canard and/or tail size and location.

• Finding the induced drag, CDi, from the spanload in conjunction with farfield methods.

• With care,  estimating control and device deflection effectiveness (estimates where
viscous effects may be important require calibration. Some examples are shown in the
next section. For example, take 60% of the inviscid value to account for viscous losses,
and also realize that a deflection of δf = 20 - 25° is about the maximum useful device
deflection in practice).

• Investigating the aerodynamics of interacting surfaces.

• Finding the lift curve slope, CLα, approach angle of attack,  etc.

 Typical design applications include:
• Initial estimates of twist to obtain a desired spanload, or root bending moment.
• Starting point for finding a camber distribution in purely subsonic cases.

Before examining how well the method works, two special cases require comments. The first

case arises when a control point is in line with the projection of one of the finite length vortex

segments. This problem occurs when the projection of a swept bound vortex segment from one

side of the wing intersects a control point on the other side. This happens frequently. The

velocity induced by this vortex is zero, but the equation as usually written degenerates into a

singular form, with the denominator going to zero. Thus a special form should be used. In

practice, when this happens the contribution can be set to zero without invoking the special form.

Figure 6-16 shows how this happens. Using the Warren 12 planform and 36 vortices on each side

of the wing, we see that the projection of the line of bound vortices on the last row of the left

hand side of the planform has a projection that intersects one of the control points on the right

hand side.
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Figure 6-16. Example of case requiring special treatment, the intersection of the projection of
a vortex with a control point.

 A model problem illustrating this can be constructed for a simple finite length vortex

segment. The velocity induced by this vortex is shown in Fig. 6-17. When the vortex is

approached directly, x/l = 0.5, the velocity is singular for h = 0. However, as soon as you

approach the axis (h = 0) off the end of the segment (x/l > 1.0) the induced velocity is zero. This

illustrates why you can set the induced velocity to zero when this happens.

This second case that needs to be discussed arises when two or more planforms are used with

this method. This is one of the most powerful applications of the vortex lattice method. However,

care must be taken to make sure that the trailing vortices from the first surface do not intersect

the control points on the second surface. In this case the induced velocity is in fact infinite, and

the method breaks down. Usually this problem is solved by using the same spanwise distribution

of horseshoe vortices on each surface. This aligns the vortex the legs, and the control points are

well removed from the trailing vortices of the forward surfaces.



Aerodynamics of 3D Lifting Surfaces 6 - 31

3/11/98

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.5 1.0 1.5 2.0

Vp

h/l

0.5

1.5

2.0

3.0

  x/l 

h

x

p

l

x=0

Figure 6-17. Velocity induced by finite straight line section of a vortex.
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6.8 Examples of the Use and Accuracy of the vlm Method

How well does the method work? In this section we describe how the method is normally

applied, and present some example results obtained using it. More examples and a discussion of

the aerodynamics of wings and multiple lifting surfaces are given in Section 6.10.

The vortex lattice layout is clear for most wings and wing-tail or wing-canard configurations.

The method can be used for wing-body cases by simply specifying the projected planform of the

entire configuration as a flat lifting surface made up of a number of straight line segments. The

exact origin of this somewhat surprising approach is unknown. The success of this approach is

illustrated in examples given below.

To get good, consistent and reliable results some simple rules for panel layout should be

followed. This requires that a few common rules of thumb be used in selecting the planform

break points: i) the number of line segments should be minimized, ii) breakpoints should line up

streamwise on front and rear portions of each planform, and should line up between planforms,

iii) streamwise tips should be used, iv) small spanwise distances should be avoided by making

edges streamwise if they are actually very highly swept, and v) trailing vortices from forward

surfaces cannot hit the control point of an aft surface. Figure 6-18 illustrates these requirements.

Make edges
streamwise

first planform

second planform

y

x

line up spanwise
breaks on a common
break, and make the
edge streamwise

Model Tips
• start simple
• crude representation
  of the planform is all right
• keep centroids of areas
  the same: actual planform to
  vlm model

Figure 6-18. Example of a vlm model of an aircraft configuration. Note that one side of a
symmetrical planform is shown.
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Examples from three reports have been selected to illustrate the types of results that can be

expected from vortex lattice methods. They illustrate the wide range of uses for the vlm method.

Aircraft configurations examined by John Koegler15

As part of a study on control system design methods, John Koegler at McDonnell Aircraft

Company studied the prediction accuracy of several methods for fighter airplanes. In addition to

the vortex lattice method, he also used the PAN AIR and Woodward II panel methods (see

Chapter 4 for details of the panel methods). He compared his predictions with the three-surface

F-15, which became known as the STOL/Maneuver demonstrator, and the F-18. These

configurations are illustrated in Fig. 6-19.

Three-Surface F-15

F/A-18

Figure 6-19. Configurations used by McDonnell Aircraft to study vlm method accuracy
(Reference 15).
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Considering the F-15 STOL/Maneuver demonstrator first, the basic panel layout is given in

Figure 6-20. This shows how the aircraft was modeled as a flat planform, and the corner points

of the projected configuration were used to represent the shape in the vortex lattice method and

the panel methods. Note that in this case the rake of the wingtip was included in the

computational model. In this study the panel methods were also used in a purely planar surface

mode. In the vortex lattice model the configuration was divided into three separate planforms,

with  divisions at the wing root leading and trailing edges. On this configuration each surface

was at a different height and, after some experimentation, the vertical distribution of surfaces

shown in Figure 6-21 was found to provide the best agreement with wind tunnel data.

Vortex Lattice
233 panels

Woodward
208 panels

Pan Air
162 panels

Figure 6-20. Panel models used for the three-surface F-15 (Ref.15).

Figure 6-21. Canard and horizontal tail height representation (Ref. 15).
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The results from these models are compared with wind tunnel data in Table 6-1. The vortex

lattice method is seen to produce excellent agreement with the data for the neutral point location,

and lift and moment curve slopes at Mach 0.2.

Subsonic Mach number effects are simulated in vlm methods by transforming the Prandtl-

Glauert equation which describes the linearized subsonic flow to Laplace’s Equation using the

Göthert transformation. However, this is only approximately correct and the agreement with

wind tunnel data is not as good at the transonic Mach number of 0.8. Nevertheless, the vlm

method is as good as PAN AIR used in this manner. The vlm method is not applicable at

supersonic speeds. The wind tunnel data shows the shift in the neutral point between subsonic

and supersonic flow. The Woodward method, as applied here, over predicted the shift with Mach

number. Note that the three-surface configuration is neutral to slightly unstable subsonically, and

becomes stable at supersonic speeds.

Figure 6-22 provides an example of the use of the vlm method to study the effects of

moving the canard. Here, the wind tunnel test result is used to validate the method and to provide

an “anchor” for the numerical study (it would have been useful to have to have an experimental

point at -15 inches). This is typical of the use of the vlm method in aircraft design. When the

canard is above the wing the neutral point is essentially independent of the canard height.

However when the canard is below the wing the neutral point varies rapidly with canard height.

M = 0.2

M = 0.8

M = 1.6

Wind Tunnel

Vortex Lattice

Woodward

Pan Air

Wind Tunnel

Vortex Lattice

Pan Air

Wind Tunnel

Woodward

Table 6-1
Three-Surface F-15 Longitudinal 1Derivatives

Neutral 
Point

(% mac)

Cmα
(1/deg)

CLα
(1/deg)

Data Source

from reference 15, Appendix by John Koegler

15.70 .00623 .0670

15.42 .00638 .0666

14.18 .00722 .0667

15.50 .00627 .0660

17.70 .00584 .0800

16.76 .00618 .0750

15.30 .00684 .0705

40.80 -.01040 .0660

48.39 -.01636 .0700
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Figure 6-22. Effect of canard height variation on three-surface F-15 characteristics (Ref. 15).

Control effectiveness is also of interest in conceptual and preliminary design, and the vlm

method can be used to provide estimates. Figure 6-23 provides an apparently accurate example

of this capability for F-15 horizontal tail effectiveness. Both CLδh and Cmδh are presented. The

vlm estimate is within 10% accuracy at both Mach .2 and .8. However, the F-15 has an all

moving horizontal tail to provide sufficient control power under both maneuvering and

supersonic flight conditions. Thus the tail effectiveness presented here is effectively a measure of

the accuracy of the prediction of wing lift and moment change with angle of attack in a non-

uniform flowfield, rather than the effectiveness of a flap-type control surface. A flapped device

such as a horizontal stabilizer and elevator combination will have significantly larger viscous

effects, and the inviscid estimate from a vortex lattice or panel method (or any inviscid method)

will overpredict the control effectiveness. This is shown next for an aileron.

The aileron effectiveness for the F-15 presented in Fig. 6-24 is more representative of

classical elevator or flap effectiveness correlation between vlm estimates and experimental data.

This figure presents the roll due to aileron deflection. In this case the device deflection is subject

to significant viscous effects, and the figure shows that only a portion of the effectiveness

predicted by the vlm method is realized in the actual data. The vlm method, or any method,

should always be calibrated with experimental data close to the cases of interest to provide an

indication of the agreement between theory and experiment. In this case the actual results are

found to be about 60% of the inviscid prediction at low speed.
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Figure 6-23. F-15 horizontal tail effectiveness (Ref. 15).
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Figure 6-24. F-15 aileron effectiveness (Ref. 15).
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The F/A-18 was also considered by Koegler. In this case the contributions to the
longitudinal derivatives by the wing-tip missiles and the vertical tail were investigated (the
vertical tails are canted outward on the F/A-18). The panel scheme used to estimate the effects of
the wing-tip missile and launcher is shown in Figure 6-25. The results are given in Table 6-2.
Here the computational increments are compared with the wind tunnel increments. The vlm
method over predicts the effect of the wing-tip missiles, and under predicts the effects of the
contribution of the vertical tail to longitudinal characteristics due to the cant of the tail (recall
that on the F/A-18 the rudders are canted inward at takeoff to generate an additional nose up
pitching moment) .

Figure 6-25. F/A-18 panel scheme with wing-tip missile and launcher (Ref. 15).
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Table 6-2
F/A-18 Increments Due To Adding Wing-Tip Missiles and 

Launchers, 
and Vertical Tails

Mach 
Number

∆Neutral 
Point

(% mac)

∆CMα
(1/deg)

∆CLα
(1/deg)

from refernce 15, Appendix by John Koegler

0.2 1.10 -0.00077 0.0020

0.8 1.50 -0.00141 0.0030

1.6 -1.60 0.00148 0.0030

0.2 1.48 -0.00121 0.0056

0.8 2.11 -0.00198 0.0082

0.2 1.52 -0.00132 0.0053

0.8 1.77 -0.00180 0.0079

1.6 -0.17 0.00074 0.0022

0.2 1.50 -0.00110 0.0050

0.8 2.00 -0.00202 0.0080

0.2 1.11 -0.00080 0.0022

0.8 1.32 -0.00108 0.0026

Finally, the effects of the number of panels and the way they are distributed is presented in

Figure  6-26. In this case the vlm method is seen to take between 130 to 220 panels to produce

converged results. For the vortex lattice method it appears important to use a large number of

spanwise rows, and a relatively small number of chordwise panels (5 or 6 appear to be enough).
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Figure 6-26. F/A-18 panel convergence study (Ref. 15).

Although this study has been presented last in this section, a study like this should be

conducted before making a large number of configuration parametric studies. Depending on the

relative span to length ratio the paneling requirements may vary. The study showed that from

about 120 to 240 panels are required to obtain converged results. The vortex lattice methods

obtains the best results when many spanwise stations are used, together with a relatively small

number of chordwise panels. In that case about 140 panels provided converged results.
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Slender lifting body results from Jim Pittman16

To illustrate the capability of the vortex lattice method for bodies that are more fuselage-like

than wing-like, we present the lifting body comparison of the experimental and vlm results

published by Jim Pittman of NASA Langley. Figure 6-27 shows the configuration used. Figure

6-28 provides the results of the vortex lattice method compared with the experimental data. In

this case the camber shape was modeled by specifying camber slopes on the mean surface. The

model used 138 vortex panels. The bars at several angles of attack illustrate the range of

predictions obtained with different panel arrangements. For highly swept wings, leading edge

vortex flow effects are included, as we will describe in Section 6.12. The program VLMpc

available for this course contains the option of using the leading edge suction analogy to model

these effects. Remarkably good agreement with the force and moment data is demonstrated in

Fig. 6-28. The nonlinear variation of lift and moment with angle of attack arises due to the

inclusion of the vortex lift effects. The agreement between data and computation breaks down at

higher angles of attack because the details of the distribution of vortex flow separation are not

provided by the leading edge suction analogy. The drag prediction is also very good. The

experimental drag is adjusted by removing the zero lift drag, which contains the drag due to

friction and separation. The resulting drag due to lift is compared with the vlm estimates. The

comparisons are good primarily because this planform is achieving, essentially, no leading edge

suction, and hence the drag is simply CD = CLtanα.

copyrighted figure from the AIAA Journal of Aircraft

 Figure 6-27. Highly swept lifting body type hypersonic concept (Ref. 16).
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copyrighted figure from the AIAA Journal of Aircraft

Figure 6-28. Comparison of CL, Cm, and CD predictions with data (Ref. 16).

Non-planar results from Kalman, Rodden and Giesing,17

All of the examples presented above considered essentially planar lifting surface cases. The

vortex lattice method can also be used for highly non-planar analysis, and the example cases

used at Douglas Aircraft Company in a classic paper17 have been selected to illustrate the

capability. To avoid copyright problems, several of the cases were re-computed using the

Virginia Tech code JKayVLM, and provide an interesting comparison with the original results

from Douglas. Figure 6-29 presents an example of the prediction capability for the pressure

loading on a wing. In this case the geometry is complicated by the presence of a wing fence. The

pressures are compared with data on the inboard and outboard sides of the fence. The agreement

is very good on the inboard side. The comparison is not so good on the outboard side of the

fence. This quality of agreement is representative of the agreement that should be expected using

vortex lattice methods at low Mach numbers in cases where the flow would be expected to be

attached.

Figure 6-30 provides an example of the results obtained for an extreme non-planar case: the

ring, or annular, wing. In this case the estimates are compared with other theories, and seen to be

very good. The figure also includes the estimate of Cmq. Although not included in the present

discussion, Cmq and  Clp can be computed using vlm methods, and this capability is included in

the vortex lattice method provided here, VLMpc.
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copyrighted figure from the AIAA Journal of Aircraft

Figure 6-29. Comparison of ∆Cp loading on a wings with a fence (Ref. 17).

copyrighted figure from the AIAA Journal of Aircraft

Figure 6-30. Example of aerodynamic characteristics of a ring wing (Ref. 17).
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Figure 6-31 provides an example of the effects of the presence of the ground on the
aerodynamics of simple unswept rectangular wings. The lift and pitching moment slopes are
presented for calculations made using JKayVLM and compared with the results published by
Kalman, Rodden and Giesing,17 and experimental data. The agreement between the data and
calculations is excellent for the lift curve slope. The AR = 1 wing shows the smallest effects of
ground proximity because of the three dimensional relief provided around the wing tips. As the
aspect ratio increases, the magnitude of the ground effects increases. The lift curve slope starts to
increase rapidlyi as the ground is approached.
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Figure 6-31. Example of ground effects for a simple rectangular wing (a case from Ref. 17).

The wings also experience a significant change in the pitching moment slope
(aerodynamic center shift), and this is also shown. Note that the predictions start to differ as the
ground is approached. JKayVLM actually rotates the entire surface to obtain another solution to
use in estimating the lift curve slope. The standard procedure used by most methods is to simply
change the slope condition at the mean line, as discussed previously in this chapter. Because of
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the proximity to the ground, this might be a case where the transfer of the boundary condition
may not be accurate. I have not asked Joe Giesing if he remebers how these calculations were
made (nearly 30 years ago!).

Figure 6-32 presents similar information for the effect of dihedral angle on a wing. In this
case the effects of anhedral, where the wing tip approach the ground, are extremely large. The
results of dihedral changes for a wing out of ground effect are shown for comparison. Both
methods agree well with each other, with differences appearing only as the wingtips approach
the ground. Here again, JKayVLM actually rotates the entire geometry, apparently resulting in
an increase in the effects as the tips nearly contact the ground. It also prevents calculations from
being obtained as close to the ground as thepublished results. In making these calculations it was
discovered that the wing panel was rotated and not sheared, so that the projected span decreases
as the dihedral increases, and this produces much more pronounced changes in the lift curve
slope due to the reduction in projected span.
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Figure 6-32. Example of ground effects for a wing with dihedral (a case from Ref. 17).
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6.9  Program VLMpc and the Warren 12 Test Case

This vortex lattice method can be used on personal computers. The version of the Lamar

program described in NASA TN D-79213 fits easily into personal computers, and is available for

student use (students typed this code in from the listing in the TN) as VLMpc. The code and

input instructions are described in Appendix D.6.

This code is still used in advanced design work, and can be used to investigate many ideas in

wing aerodynamics. As shown above, results can be obtained and used before the large time

consuming methods of CFD are used to examine a particular idea in detail.

This section defines one reference wing case that is used to check the accuracy of vortex

lattice codes. It provides a ready check case for the evaluation of any new or modified code, as

well as a check on the panel scheme layout. This wing is known as the Warren 12 planform, and

is defined, together with the “official” characteristics from previous calculations, in Fig. 6-33

below.

1.50

0.50

1.41421

1.91421

Warren-12 Planform

AR = 2 2

Λ LE = 53.54°
Swing = 2 2

CLα = 2.743 / rad

CMα = −3.10 / rad

Figure 6-33. Definition and reference results for the Warren-12 wing.

For the results cited above, the reference chord used in the moment calculation is the average
chord (slightly nonstandard, normally the reference chord used is the mean aerodynamic chord)
and the moment reference point is located at the wing apex (which is also nonstandard).
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6.10  Aerodynamics of Wings

With a three-dimensional method available, we can examine the aerodynamics of wings.

Most of the results presented in this section were computed using VLMpc. One key advantage of

the vortex lattice method compared to lifting line theory is the ability to treat swept wings.

Classical Prandtl lifting line theory is essentially correct for unswept wings, but is completely

erroneous for swept wings. Aerodynamics of unswept wings are closely related to the airfoil

characteristics of the airfoil used in the wing. This relationship is less direct for swept wings.

Many of the most important wing planform-oriented characteristics of wings arise when the

planforms are swept. Even though sweep is used primarily to reduce compressibility effects, the

important aerodynamic features of swept wings can be illustrated at subsonic speeds using the

vlm method.

6.10.1 - Basic Ideas

Wings are designed to satisfy stability and handling characteristics requirements, while

achieving low drag at the design conditions (usually cruise and sustained maneuver). They must

also attain high maximum lift coefficients to meet field performance and maneuver requirements.

Although these requirements might at first appear overwhelming, a small number of key

characteristics can provide a basic physical understanding of the aerodynamics of wings.

Aerodynamic Center: The first key characteristic is the aerodynamic center of the wing,

defined as location at which dCm/dCL = 0. The neutral point of the configuration is the

aerodynamic center for the entire configuration. The vlm method was shown to provide accurate

predictions of the neutral point for many configurations in the previous sections. The location of

the neutral point is important in initial configuration layout to position the wing and any

longitudinal stability and control surfaces at the proper location on the aircraft. Subsequently this

information is fundamental in developing the control system. Wing planform shaping, as well as

positioning, is used to control the location of the configuration neutral point.

Spanload: The next key consideration is the spanload distribution, ccl/ca, where c is the local

chord, ca is the average chord, and cl is the local section lift coefficient. The spanload controls

the location of the maximum section lift coefficient, the induced drag, and the magnitude of the

wing root bending moment. The location and value of the maximum section lift coefficient

determines where the wing will stall first.* If the wing airfoil stalls in front of a control surface,

control will be poor at flight conditions where the control becomes very important. The shape of

the spanload, together with the actual value of the wingspan, determines the value of the induced

                                                
* For a trapezoidal wing with an elliptic spanload the maximum value of the local lift coefficient occurs at η = 1 - λ.
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drag. For a specified span, the performance of the wing is evaluated by finding the value of the

span efficiency factor, e, as described in Chapter 5. Finally, the wing root bending moment

provides an indication of the structural loading requirements that the wing structure must be

designed to accommodate. When considering the total system, the basic aerodynamic efficiency

may be compromised to reduce structural wing weight. The shape of the spanload can be

controlled through a combination of planform selection and wing twist. Typical twist

distributions required to produce good wing characteristics are presented below.

The simplest example of planform shaping is the selection of wing aspect ratio, AR, wing

taper, λ,  and wing sweep, Λ. While the aerodynamicist would like to see high values the aspect

ratio, several considerations limit aspect ratio. Perhaps the most important limitation is the

increase of wing structural weight with increasing aspect ratio. In addition, the lift coefficient

required to maximize the benefits of high aspect ratio wings increases with the square root of the

aspect ratio. Hence, airfoil performance limits can restrict the usefulness of high aspects ratios,

especially for highly swept wings based on airfoil concepts. In recent years advances in both

aerodynamics and structures have allowed aircraft to be designed with higher aspect ratios and

reduced sweep. Table 6-3 provides some key characteristics of transport wings designed to

emphasize efficient cruise while meeting takeoff and landing requirements.

Taper: Several considerations are used in selecting the wing taper. For a straight untwisted,

unswept wing, the minimum induced drag corresponds to a taper ratio of about 0.4.  However, a

tapered wing is more difficult and hence expensive to build than an untapered wing. Many

general aviation aircraft wings are built with no taper (all ribs are the same, reducing fabrication

cost, and the maximum section Cl occurs at the root, well away from the control surface). To

reduce structural weight the wing should be highly tapered, with λ < .4. However, although

highly tapered wings are desirable structurally, the section lift coefficient near the tip may

become high. This consideration limits the amount of taper employed (current jet transports use

taper ratios in the range of 0.2 to 0.3, as well as progressively increasing twist upward from the

tip). As an example, the Aero Commander 500 had an aspect ratio of 9.5 and a taper ratio of 0.5

(it also had -6.5° of twist and the quarter chord of the wing was swept forward 4°).

Sweep: Sweep is used primarily to delay the effects of compressibility and increase the drag

divergence Mach number. The Mach number controlling these effects is approximately equal to

the Mach number normal to the leading edge of the wing, Meff = M∞cosΛ. The treatise on swept

planforms by Küchemann is very helpful in understanding swept wing aerodynamics.18

Aerodynamic performance is based on the wingspan, b. For a fixed span, the structural span

increases with sweep, bs = b/cosΛ, resulting in a higher wing weight. Wing sweep also leads to

aeroelastic problems. For aft swept wings flutter becomes an important consideration. If the wing
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is swept forward, divergence is a problem. Small changes in sweep can be used to control the

aerodynamic center when it is not practical to adjust the wing position on the fuselage (the DC-3

is the most famous example of this approach).

1957

1958

1963

1970

1970

1972

1972

1982

1986

1988

1990

1992

Table 6-3
Typical Planform Characteristics of Major Transport Aircraft

Aircraft W/S AR Λ °(c/4) λ 1st Flight

data courtesy of Nathan Kirschbaum

B707-120 105.6 7.04 35 0.293

DC-8-10 111.9 7.32 30 0.230

B707-320C 110.0 7.06 35 0.250

B747-200B 149.1 6.96 37.5 0.240

L-1011 124.4 8.16 35 0.200

DC-10-30 153.7 7.57 35 0.230

A300 B2 107.9 7.78 28 0.230

A310-100 132.8 8.80 28 0.260

B767-300 115.1 7.99 31.5 0.182

B747-400 149.9 7.61 37.5 0.240

MD-11 166.9 7.57 35 0.230

A330 119.0 9.3 29.74 0.192

To understand the effects of sweep,  the Warren 12 wing is compared with wings of the same

span and aspect ratio, but unswept and swept forward. The planforms are shown in Figure 6-34.

The wing leading edge sweep of the aft swept wing becomes the trailing edge sweep of the

forward swept wing. Figure 6-35 provides the spanload and section lift coefficient distributions

from VLMpc.  The spanload, ccl / ca , is given in Fig. 6-35a, where, c is the local chord, cl is the

local lift coefficient, based on the local chord, and ca is the average chord, S/b. Using this

nomenclature, the area under the curve is the total wing lift coefficient. Note that sweeping the

wing aft increases the spanload outboard, while sweeping the wing forward reduces the spanload

outboard. This follows directly from a consideration of the vortex lattice model of the wing. In

both cases, the portion of the wing aft on the planform is operating in the induced upwash

flowfield of the wing ahead of it, resulting in an increased spanload. Figure 6-35b shows the

corresponding value of the local lift coefficient. Here the effect of sweep is more apparent. The

forward swept wing naturally results in a spanload with a nearly constant lift coefficient. This

means that a comparatively higher wing lift coefficient can be achieved before the wing stall

begins. The program LIDRAG can be used to compare the span e’s associated with these

spanloads (an exercise for the reader).
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Figure 6-34. Comparison of forward, unswept, and aft swept wing planforms, AR = 2.8.
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Figure 6-35. Effects of sweep on planform spanload and lift coefficient distributions, AR = 2.8.
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Similar results are now presented for a series of wings with larger aspect ratios (AR = 8)

than the wings used in the study  given above. Figure 6-36 shows the planforms used for

comparison, and Figure 6-37 presents the results for the spanwise distribution of lift and section

lift coefficient. These results are similar to the previous results. However, the trends observed

above are in fact exaggerated at the higher aspect ratio.

Aerodynamic problems as well as structural penalties arise when using a swept wing.

Because of the high section lift coefficient near the tip, aft swept wings tend to stall near the tip

first. Since the lift at the tip is generated well aft, the pitching moment characteristics change

when the this stall occurs. With the inboard wing continuing to lift, a large positive increase in

pitching moment occurs when the wingtip stalls. This is known as pitchup, and can be difficult to

control, resulting in unsafe flight conditions. Frequently the swept wing pitching moment

characteristics are compounded by the effects of flow separation on the outboard control surface.

Figure 6-38 provides an example of the pitching moment characteristics of an isolated aspect

ratio 10 wing using experimental data.19 The figure also includes the predictions from VLMpc.

The agreement is reasonably good at low angle of attack, but deteriorates at high angle of attack

as viscous effects become important. This is another reason that sweep is minimized.

V∞
Forward
Swept
Wing

Unswept
Wing

Aft
Swept
Wing

Figure 6-36. Comparison of forward, unswept, and aft swept wing planforms, AR = 8.
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Figure 6-37. Effects of sweep on planform spanload and lift coefficient distributions, AR = 8.
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Figure 6-38. Example of isolated wing pitchup: NACA data19 compared with VLMpc.

To control the spanload, the wing can be twisted. Figure 6-39 shows typical twist

distributions for aft and forward swept wings, obtained from John Lamar’s program LamDes.20

(see Chapter 5 for a description). In each case the twist is used to reduce the highly loaded areas,

and increase the loading on the lightly loaded portions of the wing. For an aft swept wing this

means the incidence is increased at the wing root, known as washin, and reduced, known as

washout, at the wing tip. Just the reverse is true for the forward swept wing. The sudden drop in

required twist at the tip for the forward dwept wing case is frequently seen in typical design

methods and attribute to a weakness in the method and “faired out” when the aerodynamicist

gives his design to the lofting group.

Although geometric sweep is used to reduce the effective Mach number of the airfoil, the

geometric sweep is not completely effective. The flowfield resists the sweep. In particular, the

wing root and tip regions tend to effectively unsweep the wing. Aerodynamicists study lines of

constant pressure on the wing planform known as isobars to investigate this phenomenon. Figure

6-40 presents the computed isobars for a typical swept wing,21 using a transonic small

disturbance method.22  The effect is dramatic. The effective sweep may actually correspond to

the isobar line from the wing root trailing edge to the leading edge at the wing tip. To increase

the isobar sweep, in addition to geometric sweep and twist, the camber surface and thickness are

typically adjusted to move the isobars forward at the wing root and aft at the wing tip. This is a

key part of the aerodynamic wing design job, regardless of the computational, methodology used

to obtain the predicted isobar pattern.
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Figure 6-39. Typical twist distribution required to improve spanload on swept wings

(b) Upper Surface Isobars

(a) L51F07 configuration

AR = 4
λ = 0.6

45°

Figure 6-40. Example of the isobar distribution on an untwisted swept wing.22

Using the wing planform and twist, together with a constant chord loading, Fig. 6-41

provides the camber lines required to support the load near the root, the mid-span and the wing

tip. These results were also computed using LamDes.20 At each station a similar chord load is

specified. Here we clearly see the differences in the camber required. This is an explicit

illustration of the modification to an airfoil camberline required to maintain two-dimensional

airfoil-type performance when the airfoil is placed in a swept wing. These modifications

represent the explicit effects of the three dimensionality of the flowfield.
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Figure 6-41. Comparison of camber lines required to develop the same chord load shape at
the root, mid-span and tip region of an aft swept wing. (from LamDes20)

Many other refinements are available to the aerodynamic designer. Insight into both the

human and technical aspects of wing design prior to the introduction of computational

aerodynamics is available in two recent books describing the evolution of the Boeing series of jet

transports.23,24 One interesting refinement of swept wings has been the addition of trailing edge

area at the wing root. Generally known as a “Yehudi flap”, this additional area arises for at least

two reasons. The reason cited most frequently is the need to provide structure to attach the

landing gear at the proper location. However, the additional chord lowers the section lift

coefficient at the root, where wing-fuselage interference can be a problem, and the lower

required section lift makes the design job easier. Douglas introduced this planform modification

for swept wings on the DC-8, while Boeing did not incorporate it until the -320 model of the

707. However, the retired Boeing engineer William Cook, in his book,23 on page 83, says it was

first introduced on the B-29 to solve an interference problem between the inboard nacelle and the

fuselage. The aerodynamic benefit to the B-29 can be found in the paper by Snyder. 25 Cook says,

in a letter to me, that the device got its name because each wind tunnel part needed a name and

there was a popular radio show at the time that featured the continuing punch line “Who’s

Yehudi?” (the Bob Hope Radio show featuring Jerry Colonna, who had the line). Thus, a Boeing

engineer decided to call it a Yehudi flap. This slight extra chord is readily apparent when

examining the B-29, but is very difficult to photograph.
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6.10.2 The Relation Between Airfoils and Swept Wings

Chapter 4 examined the basic aerodynamics of airfoils using panel methods. This chapter has

emphasized the planform shape, and its analysis using vortex lattice methods. The connection

between the airfoil and planform is important. In most cases the integration of the airfoil concept

and the wing planform concept is crucial to the development of a successful configuration.

Simple sweep theory can be used to provide, at least approximately, the connection between the

airfoil and the planform. The typical aerodynamic design problem for an airfoil in a wing is

defined by specifying the streamwise thickness to chord ratio, t/c, the local section lift

coefficient, CLdes, and the Mach number.  This three-dimensional problem is then converted to a

corresponding two-dimensional problem. The desired two dimensional airfoils are then designed

and transformed back to the streamwise section to be used as the wing airfoil section. Examples

of the validity of this technique, together with details on other properties, including the “cosine

cubed” law for profile drag due to lift are available in the NACA report by Hunton.26 The

relations between the streamwise airfoil properties and the chordwise properties (values normal

to the leading edge, as shown in Fig. 6-42) are:

Cn  = Cs cosΛ

Mn  = M∞cosΛ

t/c)n = t/c)s/cosΛ  (6−99)

and

CLs = CLn cos2Λ

C

C

Λ

s

n

Figure 6-42. Swept wing definitions.

These relations demonstrate that the equivalent two-dimensional airfoil is thicker, operates

at a lower Mach number, and at a higher lift coefficient than the three dimensional wing airfoil

section. Taper effects on real wings require the selection of an effective sweep angle. Numerous

approaches have been used to determine the effective angle, where guidance has been obtained

by examining experimental data. The quarter chord sweep or shock sweep are typical choices.
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One good example of airfoil/planform matching is the Grumman X-29. In that case wind tunnel

testing of advanced transonic maneuver airfoil sections on aft swept wing configurations led the

aerodynamicists (Glenn Spacht in particular) to conclude that the proper planform to take

advantage of the advanced airfoil section performance should be swept forward.

6.10.3 - Wing/Tail and Canard/Wing Aerodynamics

Additional lifting surfaces are used to provide control over a wide range of conditions. If

modern advanced control systems are not used, the extra surface is also designed, together with

the rest of the configuration, to produce a stable design. Considering aft tail configurations first,

the problem of pitchup described above for isolated wings must be reconsidered for aft tailled

configurations. In particular, T-tail aircraft can encounter problems when the horizontal tail

interacts with the wake of the wing at stall. Figure 6-43 provides the pitching moment

characteristics of the DC-9.27 The initial abrupt nose-down characteristic is the result of careful

design, before the large pitchup develops. Note that even though pitch-up is a viscous effect,

inviscid calculations clearly show why it happens, and can provide valuable information.

Figure 6-43 shows that a stable trim condition occurs at an angle of attack of 43°. This is an

undesirable equilibrium condition, which could result in the vehicle actually trying to “fly” at

this angle of attack. If adequate control power is not available, it may even be difficult to

dislodge the vehicle from this condition, which is commonly known as a deep or hung stall. This

will result in a rapid loss of altitude due to the very high drag. Although for this configuration

full down elevator eliminates the possibility of getting “trapped” in a trimmed flight condition at

this angle of attack, the amount of pitching moment available may not be sufficient to affect a

rapid recovery from this condition. Examples of pitchup characteristics are not readily available.

Aerodynamic designers do not like to admit that their configurations might have this

characteristic. This aspect of swept wing and wing-tail aerodynamics is an important part of

aerodynamic configuration development.

Even low tail placement cannot guarantee that there will not be a problem. Figure 6-44

shows the pitching moment characteristics for an F-16 type wind tunnel model.28 In this case a

deep stall is clearly indicated, and in fact the allowable angle of attack on the F-16 is limited to

prevent the airplane from encountering this problem. In this case the pitchup arises because of

powerful vortices generated by the strakes, which continue to provide lift as the wing stalls. This

type of flowfield is discussed in Section 6.12.

Canard configurations provide another interesting example of multiple lifting surface

interaction. The downwash from the canard wake, as it streams over the wing, reduces the

effective angle of attack locally, and hence the local lift on the wing behind the canard. Wing



Aerodynamics of 3D Lifting Surfaces 6 - 59

3/11/98

twist is used to counteract this effect. Figure 6-45 illustrates how this interaction occurs. The

relative loading of the surfaces is an important consideration in configuration aerodynamics. The

induced drag is highly dependent on the relative wing loading, which is determined by the

selection of the configuration stability level and the requirement to trim about the center of

gravity. in determining the induced drag. Figure 6-46, also computed using LamDes,20 shows

how the trimmed drag changes with cg position. Three different canard heights are shown for a

range of cg positions, which is equivalent to varying the stability level. Figure 6-47 provides an

example of the wing twist required to account for the effect of the canard downwash. Note that

the forward swept wing twist increment due to the canard acts to reduce the twist required, which

is exactly opposite the effect for the aft swept wing.

a copyrighted figure from the AIAA Journal of Aircraft

Figure 6-43. Pitching moment characteristics of the DC-9.27
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Figure 6-44. Pitching moment characteristics of an F-16 type wind tunnel model.28
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Figure 6-45. Illustration of wing-canard interaction.
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Figure 6-47. Effects of canard on twist requirements. Twist required for minimum drag

using LamDes20 (Note: results depend on configuration details, balance).

6.11 Inverse Design Methods and Program DesCam

Although most of the analysis discussed above corresponds to the analysis problem, the

design problem can also be treated. In this section we provide one example: the determination of

the camber line shape required to obtain a specific chord load in the two dimensional case. We

take the opportunity to illustrate a method due to Lan6 that uses a mathematically based selection

of vortex and and control point placements instead of the 1/4 - 3/4 rule used above.

Recall that a line of vortex singularities induces a vertical velocity on the singularity line

given by (see chapter 4 and Karamcheti13:

w(x) = −
1

2π
γ ( ′ x )

x − ′ x 
0

c
⌠ 
⌡ 
 d ′ x . (6-100)

For thin wing theory the vertical velocity can be related to the slope as shown above in Section

6.2. The vortex strength can be related to the streamwise velocity by γ = u+ - u-. This in turn can

be used to relate the vorticity to the change in pressure, ∆Cp through:

∆Cp = Cpl
− Cpu

= −2u− − 2u+ = 2 u+ − u−( ) (6-101)

which leads to:

∆Cp(x)

2
= γ (x) (6-102)

resulting in the expression for camber line slope in terms of design chord load:

dz

dx
= −

1

4π
∆Cp

x − ′ x 
0

c
⌠ 
⌡ 
 d ′ x . (6-103)
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Here dz/dx includes the slope due to the angle of attack. Note that the integral contains a

singularity, and this singularity introduces the extra complications that require special analysis

for numerical integration. The original Lan theory was used to find ∆Cp (in a slightly different

form), but it can also be used to obtain dz/dx from ∆Cp. To do this, Lan derived a summation

formula to obtain the slope. Once the slope is known, it is integrated to obtain the camber line.

Lan showed that the integral in Eq. (6-100) could be very accurately found from the

summation:

dz

dx i
= −

1

N

∆Cp

4

xk(1− xk )

xi − xkk=1

N

∑ (6-104)

where:

xk =
1

2
1 − cos

2k − 1( )π
2N

 
 
 

 
 
 

 
  

 
  k = 1,2,..., N (6-105)

and:

xi =
1

2
1 − cos

iπ
N

   
   

 
  

 
  i = 0,1,2,..., N . (6-106)

Here N + 1 is the number of stations on the camber line at which the slopes are obtained.

Given dz/dx, the camber line is then computed by integration using the trapezoidal rule

(marching forward starting at the trailing edge):

zi +1 = z i −
xi+1 − x i

2
 
  

 
  

dz

dx i
+

dz

dx i+1

 

 
 

 

 
 . (6-107)

The design angle of attack is then:

αDES = tan−1 z0
(6-108)

The camber line can then be redefined in standard nomenclature, i.e., z(x=0) = z(x=1) = 0.0:

z i = zi − (1 − x i)tan αDES
(6-109)

How well does this work? Program DesCam implements the method described here, and the

user’s manual is provided in App. D.7. Here we compare the results from DesCam with the

analytic formula given in Appendix A.1 for the NACA 6 Series mean line with a = .4. The

results are shown in Figure 6-48 below. Notice that the camber scale is greatly enlarged to
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demonstrate the excellent comparison. Even though the chord load is constructed by two straight

line segments, the resulting required camber line is highly curved over the forward portion of the

airfoil. Note also that thin airfoil theory allows only two possible values for the pressure

differential at the leading edge, zero or infinity. A close examination of the camber line shape

required to produce a finite load reveals a singularity. The slope is infinite. This feature is much

easier to study using the analytic solution, as given in Appendix A. This approach can easily be

extended to three dimensions. Notice that design problem is direct, in that it does not require the

solution of a system of equations.
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Figure 6-48. Example and verification of camber design using DesCam.
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6.12  Vortex Flow Effects and the Leading Edge Suction Analogy

For highly swept wings at even moderate angles of attack, the classical attached flow/trailing

edge Kutta condition flow model we’ve adopted is wrong. Instead of the flow remaining attached

on the wing and leaving the trailing edge smoothly, the flow separates at the leading edge,

forming a well defined vortex.  This vortex plays an important role in the design of highly swept,

or “slender wing” aircraft. The most notable example of this type of configuration is the

Concorde. Sharp leading edges promote this flow phenomena. The basic idea is illustrated in the

sketch from Payne and Nelson29 given here in Fig. 6-49.

An important consequence of this phenomena is the change in the characteristics of the
lift generation as the wing angle of attack increases. The vortex that forms above the wing
provides an additional low pressure force due to the strongly spiraling vortex flow. The low
pressure associated with the centrifugal force due to the vortex leads to the lower pressure on the
wing surface. As the wing increases its angle of attack the vortex gets stronger, further reducing
the pressure on the wing. The resulting increase in lift due to the vortex can be large, as shown in
Fig. 6-50, from Polhamus.30

This is an important flow feature. Slender wings have very low attached flow lift curve

slopes, and without the additional vortex lift it would be impractical to build configurations with

low aspect ratio wings. The low attached flow alone lift curve slope would prevent them from

being able to land at acceptable speeds or angle of attack. Vortex lift made the Concorde

possible. Another feature of the flow is the high angle of attack at which maximum lift occurs,

Vortical flow
abova a delta wing

Primary vortex

Secondary vortex

α

Figure 6-49. Vortex flow development over a delta wing with sharp edges.29
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and typically a very mild lift loss past maximum lift. These features are a direct result of the

leading edge vortex flow structure that occurs on slender wings.

Although the vortex lattice method formulation presented above does not include this effect,
vortex lattice methods are often used as the basis for extensions that do include the leading edge
vortex effects. A remarkable, reasonably accurate, flow model for leading edge vortex flows was
introduced by Polhamus31,32 at NASA Langley in 1966 after examining lots of data. This flow
model is known as the “Leading Edge Suction Analogy.” The concept is quite simple and was
invented for sharp edged wings. The leading edge suction that should exist according to attached
flow theory (see section 5.8) is assumed to rotate 90° and generate a vortex induced force instead
of a suction when leading edge vortex flow exists. Thus the vortex flow force is assumed to be
equal to the leading edge suction force. However, the force now acts in the direction normal to
the wing surface in the direction of lift rather than in the plane of the wing leading edge. The
concept is shown in the Fig. 6-51 from the original Polhamus NASA report.31 Further details on
the effects of vortex flow effects are also available in the reports by Kulfan.33,34

CL

Attached flow

1.2

0.6

0.0
20 40

Subsonic lift

Vortex
flow

Vortex lift

α, deg

ΛL.E. = 75°

0

Figure 6-50. Vortex lift changes the characteristic lift development on wings.30
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Figure 6-51. The Polhamus leading edge suction analogy.

Polhamus developed charts to compute the suction force for simple wing shapes. For a
delta wing with a sharp leading edge, the method is shown compared with the data of Bartlett
and Vidal35 in Figure 6-52. The agreement is quite good (my reconstruction doesn’t show
agreement as good as that presented by Polhamus,31 but it is still impressive).

The figure also shows the large size of the vortex lift, and the nonlinear shape of the lift
curve when large angles are considered. This characteristic was exploited in the design of the
Concorde.

To find the vortex lift using the leading edge suction analogy, an estimate of the leading edge

suction distribution is required. However the suction analogy does not result in an actual

flowfield analysis including leading edge vortices. The Lamar vortex lattice code (VLMpc)

optionally includes a fully developed suction analogy based on Polhamus ideas, with extensions

to treat side edge suction by John Lamar3 also included.

Other approaches have been developed to compute leading edge vortex flows in more detail.

Many of these methods allow vortex filaments, simulating the leading edge vortices, to leave the

leading edge. The location of these vortices, and their effect on the wing aerodynamics as they

roll up are explicitly computed. Mook10 and co-workers are leaders in this methodology.
The area of vortex flows in configuration aerodynamics is fascinating, and an entire

conference was held at NASA Langley36 devoted to the topic. The references cited above were
selected to provide an entry to the literature of these flows. Interest in the area remains strong.
The effects of round leading edges have been investigated by Ericsson and Reding37 and
Kulfan.33 The relation between sweep, vortex lift, and vortex strength has been given recently by
Hemsch and Luckring. 38
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Figure 6-52. Comparison of the leading edge suction analogy with data.

6.13 Alternate and Advanced VLM Methods
Many variations of the vortex lattice method have been proposed. They address both the

improvement in accuracy for the traditional case with a planar wake, and extensions to include

wake position and rollup as part of the solution. Areas requiring improvement include the ability

to predict leading edge suction, the explicit treatment of the Kutta condition, and the

improvement in convergence properties with increasing numbers of panels.8 The traditional

vortex lattice approaches assume that the wing wake remains flat and aligned with the

freestream. This assumption is acceptable for most cases. The effect of the wake on the wing that

generates it is small unless the wing is highly loaded. However, the interaction between the wake

from an upstream surface and a trailing lifting surface can be influenced by the rollup and

position.

In the basic case where the wake is assumed to be flat and at a specified location, the primary

extensions of the method have been directed toward improving the accuracy using a smaller

number of panels. Hough7 demonstrated that improvement in accuracy could be achieved by

using a lattice that was slightly smaller than the true planform area. Basically, he proposed a 1/4

panel width inset from the tips.
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Perhaps the most important revision of the vortex lattice method was proposed by Lan6, and

called the “quasi vortex lattice method.” In this method Lan used mathematical methods, rather

than the more heuristic arguments described above, to find an approximation for the thin airfoil

integral in the streamwise direction. The result was, in effect, a method where the vortex and

control point locations were established from the theory of Chebychev polynomials to obtain an

accurate estimate of the integrals with a small number of panels. The mathematically based

approach also led to an ability to compute leading edge suction very accurately.

The wake rollup and position problem has been addressed by Mook10 among others, and his

work should be consulted for details. A method similar to Mook’s has been presented recently in

the book by Katz and Plotkin.11 They propose a vortex ring method, which has advantages when

vortices are placed on the true surface of a highly cambered shapes.

Unsteady flow extension

Analogous extensions have been made for unsteady flow. For the case of an assumed flat

wake the extension to harmonically oscillating surfaces was given by Albano and Rodden.39

When the vortex is augmented with an oscillating doublet, the so-called doublet-lattice method is

obtained. The doublet-lattice method is widely used for subsonic flutter calculations. Kalman,

Giesing and Rodden17 provide additional details and examples (they also included the steady

flow examples given above).

General unsteady flows calculations, including wake location as well as the incorporation of

leading edge vortices, have been carried out by Mook among others. The resulting codes have

the potential to be used to model time accurate aerodynamics of vehicles in arbitrary

maneuvering flight, including the high angle of attack cases of interest in fighter aerodynamics.

These codes are currently being used in studies where the aircraft aerodynamics is coupled with

advanced control systems. In this case the active control is incorporated and the dynamics of the

maneuver change dramatically due to the incorporation of a stability and control augmentation

system.

To sum up

The summary provided above illustrates the current state of affairs. Vortex lattice methods,

per se, are not being developed. However, they are being used in advanced methods where

several disciplines are being studied simultaneously and an affordable model of the

aerodynamics is required.
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6.14 Exercises
1. Get a copy of VLMpc from the web site.  The detailed instructions for this program are

included in Appendix D.6. Install the program on your personal computer and repeat the
sample case, checking that your output is the same as the sample output files on the web.
Study the output to familiarize yourself with the variety of information generated. Turn in a
report describing your efforts (not the output), including any mods required to make the code
run on your computer.

2. How good is thin airfoil theory? Compare the thin airfoil theory ∆Cp for a 2D flat plate airfoil
with program VLMpc.

Flat plate thin airfoil theory:

                                     ∆CP = 4α
1 − x/c( )

x /c

i.    Pick an aspect ratio 10 unswept wing at α = 3° and 12° and run VLMpc.

ii.   Plot (∆Cp)/α as a function of x/c at the wing root.
iii.  How many panels do you need to get a converged solution from VLM?
iv.  What conclusions do you reach?

3. Compare the validity of an aerodynamic strip theory using VLMpc. Consider an uncambered,
untwisted wing, AR = 4, λ = .4, Λle = 50°, at a lift coefficient of 1. Plot the spanload, and the
∆Cp distribution at approximately the center section, the midspan station, and the 85%
semispan station. Compare your results with a spanload constructed assuming that the wing
flow is approximated as 2D at the angle of attack required to obtain the specified lift. Also
compare the chordloads, ∆Cp, at the three span stations. How many panels do you need to
obtain converged results. Document your results. Do you consider this aerodynamic strip
theory valid based on this investigation? Comment.

4. Compare the wing aerodynamic center location relative to the quarter chord of the mac for the
wing in exercise 3, as well as similar wings. Consider one wing with zero sweep on the
quarter chord, and a forward swept wing with a leading edge sweep of -50°.  Compare the
spanloads. Document and analyze these results. What did you learn from this comparison?

5. For the wings in exercise 4, compare the section lift coefficients. Where would each one stall
first? Which wing appears to able to reach the highest lift coefficient before the section stalls.

6. For the problem in exercise 5, add twist to each wing to obtain near elliptic spanloads.
Compare the twist distributions required in each case.

7. Pick a NASA or NACA report describing wind tunnel results for a simple one or two lifting
surface configuration at subsonic speeds. Compare the lift curve slope and stability level
predicted by VLMpc with wind tunnel data. Submit a report describing your work and
assessing the results.

8. Add a canard to the aft and forward swept wings analyzed in exercise 4. Plot the sum of the
spanloads. How does the canard effect the wing spanload.

9. Consider the wings in exercise 8. How does lift change with canard deflection? Add an
equivalent tail. Compare the effect of tail or canard deflection on total lift and moment. Did
you learn anything? What?

10. Construct a design code using the 1/4 - 3/4 rule and compare with DESCAM.
11. Construct a little 2D code to study ground effects.
12. Compare wing and wing/tail(canard) results for CLα with standard analytic formulas.
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8. Introduction to
Computational Fluid Dynamics

We have been using the idea of distributions of singularities on surfaces to study the

aerodynamics of airfoils and wings. This approach was very powerful, and provided us with

methods which could be used easily on PCs to solve real problems. Considerable insight into

aerodynamics was obtained using these methods. However, the class of effects that could be

examined was somewhat restricted. In particular, practical methods for computing fundamentally

nonlinear flow effects were excluded. This includes both inviscid transonic and boundary layer

flows.

In this chapter we examine the basic ideas behind the direct numerical solution of differential

equations. This approach leads to methods that can handle nonlinear equations. The simplest

methods to understand are developed using numerical approximations to the derivative terms in

the partial differential equation (PDE) form of the governing equations. Direct numerical

solutions of the partial differential equations of fluid mechanics constitute the field of

computational fluid dynamics (CFD). Although the field is still developing, a number of books

have been written.1,2,3,4,5,6 In particular, the book by Tannehill et al,1 which appeared in 1997 as a

revision of the original 1984 text, covers most of the aspects of CFD theory used in current codes

and reviewed here in Chapter 14. Fundamental concepts for solving partial differential equations

in general using numerical methods are presented in a number of basic texts. Smith7 and Ames8

are good references.

The basic idea is to model the derivatives by finite differences. When this approach is used

the entire flowfield must be discretized, with the field around the vehicle defined in terms of a

mesh of grid points. We need to find the flowfield values at every mesh (or grid) point by writing

down the discretized form of the governing equation at each mesh point. Discretizing the

equations leads to a system of simultaneous algebraic equations. A large number of mesh points

is usually required to accurately obtain the details of the flowfield, and this leads to a very large

system of equations. Especially in three dimensions, this generates demanding requirements for

computational resources. To obtain the solution over a complete three dimensional aerodynamic

configuration millions of grid points are required!
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In contrast to the finite difference idea, approximations to the integral form of the governing

equations result in the finite volume approach. A book has been written recently devoted solely to

this approach,9 and we will cover this approach briefly here.

Thus CFD is usually associated with computers with large memories and high processing

speeds. In addition, massive data storage systems must be available to store computed results,

and ways to transmit and examine the massive amounts of data associated with a computed result

must be available. Before the computation of the solution is started, the mesh of grid points must

be established. Thus the broad area of CFD leads to many different closely related but

nevertheless specialized technology areas. These include:

• grid generation
• flowfield discretization algorithms
• efficient solution of large systems of equations
• massive data storage and transmission technology methods
• computational flow visualization

Originally, CFD was only associated with the 2nd and 3rd items listed above. Then the

problem with establishing a suitable mesh for arbitrary geometry became apparent, and the

specialization of grid generation emerged. Finally, the availability of large computers and remote

processing led to the need for work in the last two items cited. Not generally included in CFD

per se, a current limiting factor in the further improvement in CFD capability is development of

accurate turbulence models, discussed in Chapter 10.

This chapter provides an introduction to the concepts required for developing discretized

forms of the governing equations and a discussion of the solution of the resulting algebraic

equations. For the most part, we adopt the viewpoint of solving equilibrium (elliptic) problems.

This in contrast to the more frequent emphasis on solving hyperbolic systems. Although the

basic idea of CFD appears straightforward, once again we find that a successful numerical

method depends on considerable analysis to formulate an accurate, robust, and efficient solution

method. We will see that the classification of the mathematical type of the governing equations

(Sec. 2.8) plays an important role in the development of the numerical methods. Although we

adopt finite difference/finite volume methods to solve nonlinear equations, to establish the basic

ideas we consider only linear equations. Application to nonlinear equations is addressed in

Chapters 10, 11 and 12, where additional concepts are introduced and applied to the solution of

nonlinear equations. Chapter 13 describes the most advanced approaches currently in use.

8.1  Approximations to partial derivatives

There are many ways to obtain finite difference representations of derivatives. Figure 8-1

illustrates the approach intuitively. Suppose that we use the values of f at a point x0 and a point a
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distance ∆x away. Then we can approximate the slope at x0 by taking the slope between these

points. The sketch illustrates the difference between this simple slope approximation and the

actual slope at the point x0. Clearly, accurate slope estimation dependents on the method used to

estimate the slope and the use of suitably small values of ∆x.

f

xx0

∆X

True slope
at X0

Approximate slope
at X0

Figure 8-1. Example of slope approximation using two values of the function.

Approximations for derivatives can be derived systematically using Taylor series

expansions. The simplest approach is to find an estimate of the derivative from a single series.

Consider the following Taylor series:

f (x0 + ∆x) = f(x0) + ∆x
df

dx x0

+
∆x( )2

2

d2f

dx2
x0

+
∆x( )3

6

d3f

dx3
x0

+ . . . (8-1)

and rewrite it to solve for 
df

dx x0

:

df

dx x0

=
f x0 +∆ x( ) − f x0( )

∆x
−∆ x

1

2

d2f

dx2
x0

− . . .

or:

  

df

dx x0

=
f x0 +∆ x( ) − f x0( )

∆x
+ O ∆x( )

Truncation
Error

1 2 3 
(8-2)

where the last term is neglected and called the truncation error. In this case it is O(∆x). The term

“truncation error” means that the error of the approximation vanishes as ∆x goes to zero.* The

                                                
* This assumes that the numerical results are exactly accurate. There is a lower limit to the size of the difference step
in ∆x due to the use of finite length arithmetic. Below that step size, roundoff error becomes important. In most
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form of the truncation error term is frequently important in developing numerical methods. When

the order of the truncation error is O(∆x), the approximation is described as a “first order

accurate” approximation, and the error is directly proportional to ∆x. The other characteristic of

this representation is that it uses only the information on one side of x0, and is thus known as a

one-sided difference approximation. Finally, because it uses information ahead of x0, it’s known

as a forward difference. Thus, Eq.(8-2) is a first order, one sided, forward difference

approximation to the derivative.

We could also write the approximation to the derivative using information prior to the point

of interest. The corresponding first order accurate one sided backward difference approximation

is obtained by expanding the Taylor series to a point prior to the point about which the expansion

is carried out. The resulting expansion is:

f (x0 − ∆x) = f(x0 ) −∆ x
df

dx x0

+
∆x( )2

2

d2f

dx2
x0

−
∆x( )3

6

d3f

dx3
x0

+ . . . . (8-3)

Solving for the first derivative in the same manner we used above, we obtain:

df

dx x0

=
f x0( ) − f x0 −∆ x( )

∆x
+ O ∆x( ) , (8-4)

the first order accurate, one sided, backward difference approximation.

Note from Fig. 8-1 above that one sided differences can lead to a fairly large truncation error.

In many cases a more accurate finite difference representation would be useful. To obtain a

specified level of accuracy, the step size ∆x must be made small. If a formula with a truncation

term of O(∆x)2 is used,* the required accuracy can be obtained with significantly fewer grid

points. A second order, O(∆x)2,  approximation can be obtained by subtracting the Taylor series

expansions, Eq.(8-3) from Eq.(8-1):

f (x0 + ∆x) − f(x0 −∆ x) =+2∆x
df

dx x0

+
∆x( )3

3

d3f

dx3
x0

+ . . . .

Here the O(∆x) terms cancel in the subtraction. When we divide by 2∆x and solve for the first

derivative, we get an expression with a truncation error of O(∆x)2. The resulting expression for

the derivative is:

                                                                                                                                                            
cases the stepsize used for practical finite difference calculations is larger than the limit imposed by roundoff errors.
We can’t afford to compute using grids so finely spaced that roundoff becomes a problem.
* With ∆x small, ∆x2 is much smaller than ∆x
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df

dx x0

=
f x0 +∆ x( ) − f x0 − ∆x( )

2∆x
+ O ∆x( )2 . (8-5)

This is a second order accurate central difference formula since information comes from both

sides of x0. Numerous other approximations can be constructed using this approach. It’s also

possible to write down second order accurate forward and backward difference approximations.

We also need the finite difference approximation to the second derivative. Adding the Taylor

series expressions for the forward and backward expansions, Eq.(8-1) and Eq.(8-3), results in the

following expression, where the odd order terms cancel:

f (x0 + ∆x) + f(x0 − ∆x) = 2 f (x0 ) + ∆x( )2 d2f

dx2
x0

+ O ∆x( )4

Solving for the second derivative yields:

d2 f

dx2
x0

=
f x0 +∆ x( ) − 2 f (x0) + f x0 − ∆x( )

(∆x)2 + O ∆x( )2 . (8-6)

The formulas given above are the most frequently used approximations to the derivatives

using finite difference representations. Other methods can be used to develop finite difference

approximations. In most cases we want to use no more than two or three function values to

approximate derivatives.

Forward and backward finite difference approximations for the second derivative can also be

derived. Note that formally these expressions are only first order accurate. They are:

• a forward difference expression:

d2 f

dx2
x0

=
f x0( ) − 2 f (x0 +∆x) + f x0 + 2∆x( )

(∆x)2 + O ∆x( ) (8-7)

• a backward difference expression:

d2 f

dx2
x0

=
f x0( ) − 2 f (x0 −∆x) + f x0 − 2∆x( )

(∆x)2 + O ∆x( ) . (8-8)

In addition, expressions can be derived for cases where the points are not evenly distributed.

In general the formal truncation error for unevenly spaced points is not as high as for the evenly

spaced point distribution. In practice, for reasonable variations in grid spacing, this may not be a

serious problem. We present the derivation of these expressions here. A better way of handling

non-uniform grid points is presented in the next chapter. The one sided first derivative

expressions Eq.(8-2) and Eq.(8-4) are already suitable for use in unevenly spaced situations. We

need to obtain a central difference formula for the first derivative, and an expression for the
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second derivative. First consider the Taylor expansion as given in Eqs. (8-1) and (8-3). However,

the spacing will be different in the two directions. Use ∆x+ and ∆x−  to distinguish between the

two directions. Eqs. (8-1) and (8-3) can then be rewritten as:

f (x0 + ∆x + ) = f (x0) + ∆x+ df

dx x0

+
∆x +( )2

2

d2f

dx2
x0

+
∆x+( )3

6

d3f

dx3
x0

+ . . . (8-9)

f (x0 − ∆x − ) = f (x0) − ∆x− df

dx x0

+
∆x−( )2

2

d2f

dx2
x0

−
∆x−( )3

6

d3f

dx3
x0

+ . . . (8-10)

Define ∆x+ = α ∆x− . To obtain the forms suitable for derivation of the desired expressions,

replace ∆x+  in Eq. (8-9) with α ∆x− , and multiply Eq. (8-10) by α. The resulting expressions

are:

f (x0 + ∆x + ) = f (x0) + α∆x− df

dx x0

+
α∆x−( )2

2

d2f

dx2
x0

+
α∆x−( )3

6

d3f

dx3
x0

+ . . . (8-11)

αf (x0 − ∆x−) = αf (x0 ) − α∆x− df

dx x0

+α
∆x−( )2

2

d2f

dx2
x0

−α
∆x−( )3

6

d3f

dx3
x0

+ . . . (8-12)

To obtain the expression for the first derivative, subtract Eq ( 8-12) from Eq. (8-11).

f (x0 + ∆x + ) −αf (x0 − ∆x−) = f (x0 ) −αf(x0) + 2α∆x− df

dx x0

+
α∆x−( )2

2
−α

∆x−( )2

2

 

 

 
 
 

 

 

 
 
 

d2f

dx2
x0

+ . . .

(8-13)

and rearrange to solve for df/dx:

df

dx x0

=
f (x0 +∆ x+) + α −1( ) f (x0) − αf(x0 −∆ x−)

2α∆x − + O(∆x − ) (8-14)

To obtain the expression for the second derivative, add (8-11) and (8-12):

f (x0 + ∆x + ) +αf (x0 − ∆x−) = f (x0 ) + αf(x0) +
α∆x−( )2

2
+α

∆x−( )2

2

 

 

 
 
 

 

 

 
 
 

d2f

dx2
x0

+ O(∆x)3 . . .

which is then solved for d2f/dx2:
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d2f

dx2
x0

=
f (x0 +∆ x+) − 1 +α( ) f (x0) +αf(x0 −∆ x−)

α
2

1+ α( ) ∆x−( )2 + O(∆x − ) (8-15)

Note that both Eqs. (8-14) and (8-15) reduce to the forms given in Eq.(8-5) and Eq.(8-6)

when the grid spacing is uniform.

Finally, note that a slightly more sophisticated analysis (Tannehill, et al ,1 pages 61-63) will

lead to a second order expression for the first derivative on unevenly spaced points:

df

dx x0

=
f (x0 +∆ x+) + α2 −1( ) f (x0 ) −α 2 f(x0 − ∆x−)

α α +1( )∆x− + O(∆x− )2 (8-16)

Tannehill, et al ,1 give additional details and a collection of difference approximations using

more than three points and difference approximations for mixed partial derivatives (Tables 3-1

and 3-2 on their pages 52 and 53). Numerous other methods of obtaining approximations for the

derivatives are possible. The most natural one is the use of a polynomial fit through the points.

Polynomials are frequently used to obtain derivative expressions on non-uniformly spaced grid

points.

 These formulas can also be used to represent partial derivatives. To simplify the notation, we

introduce a grid and a notation common in finite difference formulations. Figure 8-2 illustrates

this notation using ∆x = ∆y = const for these examples.

y or "j"

x or "i"

Assume:

∆x = ∆y = const.
x = i∆x
y = j∆x

i,j i+1,j

i,j-1

i-1,j

i,j+1

Figure 8-2. Nomenclature for use in partial differential equation difference expressions.
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In this notation the following finite difference approximations for the first derivatives are:

∂f
∂x

=
fi+1, j − fi, j

∆x
+ O ∆x( ) 1st order forward difference (8 -17)

∂f

∂x
=

fi, j − fi−1, j

∆x
+ O ∆x( ) 1st order backward difference (8 -18)

∂f

∂x
=

fi+1, j − fi−1, j

2∆x
+ O ∆x( )2 2nd order central difference (8 -19)

and the second derivative is:

∂2 f

∂x2 =
fi+1, j − 2 fi, j + fi−1, j

(∆ x)2 + O ∆x( )2 2nd order central difference (8 - 20)

Similar expressions can be written for the y derivatives.  To shorten the expressions, various

researchers have introduced different shorthand notations to replace these expressions. The

shorthand notation is then used in further operations on the difference expressions.

8.2  Finite difference representation of Partial Differential Equations (PDE's)

We can use the approximations to the derivatives obtained above to replace the individual

terms in partial differential equations. The following figure provides a schematic of the steps

required, and some of the key terms used to ensure that the results obtained are in fact the

solution of the original partial differential equation. We will define each of these new terms

below.

Exact
Solution

System
of

Algebraic
Equations

Approximate
Solution

Governing
Partial

Differential
Equation

Discretization

Consistency

Convergence
as ∆x,∆t → 0

Stability?

Steps and Requirements To Obtain a Valid Numerical Solution

Figure 8-3. Overall procedure used to develop a CFD solution procedure.
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Successful numerical methods for partial differential equations demand that the physical

features of the PDE be reflected in the numerical approach. The selection of a particular finite

difference approximation depends on the physics of the problem being studied. In large part the

type of the PDE is crucial, and thus a determination of the type, i.e. elliptic, hyperbolic, or

parabolic is extremely important. The mathematical type of the PDE must be used to construct

the numerical scheme for approximating partial derivatives. Some advanced methods obscure the

relationship, but it must exist. Consider the example given in Fig. 8-4 illustrating how

information in a grid must be used.

i,j i+1,j

i,j-1

i-1,j

i,j+1

i,j i+1,j

i,j-1

i-1,j

i,j+1

subsonic flow supersonic flow

i,j depends on all
neighboring points

(elliptic system)

i,j depends only on the points 
in the zone of dependence

(hyperbolic system)

Note: velocity direction relative to
          the grid becomes important

zone of
dependence

Figure 8-4. Connection between grid points used in numerical method and equation type.

Any scheme that fails to represents the physics correctly will fail when you attempt to obtain

a solution. Furthermore, remember, in this case we were looking at a uniformly spaced cartesian

grid. In actual “real life” applications we have to consider much more complicated non-uniform

grids in non-Cartesian coordinate systems. In this section we use simple uniform Cartesian grid

systems to illustrate the ideas. The necessary extensions of the methods illustrated in this chapter

are outlined in the next chapter.

In Fig. 8-3 above, we introduced several important terms requiring definition and discussion:

• discretization
• consistency
• stability
• convergence
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Before defining the terms, we provide an example using the heat equation:

∂u

∂t
= α

∂ 2u

∂ x2 . (8-21)

We discretize the equation using a forward difference in time, and a central difference in

space following the notation shown in the following sketch:

x

t
n-1 n n+1

i+1

i

i-1

Figure 8-5. Grid nomenclature for discretization of heat equation.

The heat equation can now be written as:

  

∂u

∂t
− α

∂ 2u

∂x 2

PDE
1 2 4 3 4 

=
ui

n+1 − ui
n

∆t
−

α
∆x( )2 ui+1

n − 2ui
n + ui−1

n( )
FDE

1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 
+

  

−
∂2u

∂ t2 i

n
∆t

2
+α

∂4u

∂ x4
i

n
∆x( )2

12
+ ...

 

 
 
 

 

 
 
 

= 0

Truncation Error
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

(8-22)

where we use the superscript to denote time and the subscript to denote spatial location. In Eq.

(8-18) the partial differential equation (PDE) is converted to the related finite difference equation

(FDE). The truncation error is O ∆ t( ) + O ∆ x( )2  or O ∆ t, ∆ x( )2[ ]. An understanding of the

truncation error for a particular scheme is important.

Using the model equation give here, we define the terms in the schematic given above:

discretization

This is the process of replacing derivatives by finite difference approximations. Replace

continuous derivatives with an approximation at a discrete set of points (the mesh). This

introduces an error due to the truncation error arising from the finite difference approximation
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and any errors due to treatment of BC’s.  A reexamination of the Taylor series representation is

worthwhile in thinking about the possible error arising from the discretization process:

  

∂f

∂x
=

f x0 + ∆x( ) − f x0 − ∆x( )
2∆ x

+
∆x2

6

∂3f

∂x3

formally valid for ∆x→0,

but when ∆x = finite, ∂3 f /∂x3

can be big for rapidly changing
solutions (shock wave cases)

1 2 4 3 4 
. (8-5a)

Thus we see that the size of the truncation error will depend locally on the solution. In most

cases we expect the discretization error to be larger than round-off error.

consistency

A finite-difference representation of a PDE is consistent if the difference between the PDE

and its difference representation vanishes as the mesh is refined, i.e.,

lim
mesh→ 0

PDE − FDE( ) = lim
mesh→0

T.E.( ) = 0 (8-23)

When might this be a problem? Consider a case where the truncation error is O(∆t/∆x). In

this case we must let the mesh go to zero just such that:

lim
∆ t,∆x→0

∆t

∆x
 
 
  

 
 = 0 (8-24)

Some finite difference representations have been tried that weren’t consistent. An example

cited by Tannehill, et al,1 is the DuFort-Frankel differencing of the wave equation.

 stability

A stable numerical scheme is one for which errors from any source (round-off, truncation)

are not permitted to grow in the sequence of numerical procedures as the calculation proceeds

from one marching step, or iteration, to the next, thus:

errors grow →  unstable

errors decay →  stable

and
• Stability is normally thought of as being associated with

marching problems.
• Stability requirements often dictate allowable step sizes.
• In many cases a stability analysis can be made to define the

stability requirements.
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convergence

The solution of the FDE’s should approach the solution of the PDE as the mesh is refined. In

the case of a linear equation there is a theorem which proves that the numerical solution to the

FDE is in fact the solution of the original partial differential equation.

Lax Equivalence Theorem1 (linear, initial value problem): For a properly posed
problem, with a consistent finite difference representation, stability is the necessary
and sufficient condition for convergence.

In practice, numerical experiments must be conducted to determine if the solution appears to

be converged with respect to mesh size.* Machine capability and computing budget (time as well

as money) dictate limits to the mesh size. Many, many results presented in the literature are not

completely converged with respect to the mesh.

So far we have represented the PDE by an FDE at the point i,n. The PDE is now a set of

algebraic equations written at each mesh point. If the grid is (in three dimensions) defined by a

grid with IMAX, JMAX and KMAX mesh points in each direction, then we have a grid with

IMAX × JMAX × KMAX  grid points. This can be a very large number. A typical recent case

computed by one of my students was for the flow over a simple aircraft forebody. The

calculation required 198,000 grid points. Thus the ability to carry out aerodynamic analysis using

finite difference methods depends on the ability to solve large systems of algebraic equations

efficiently.

We need to obtain the solution for the values at each grid point. We now consider how this is

actually accomplished. Since the computer requirements and approach are influenced by the

mathematical type of the equation being solved, we illustrate the basic types of approaches to the

solution with two examples.

1st example - typical parabolic/hyperbolic PDEs

Explicit Scheme: Consider the finite difference representation of the heat equation given

above in Eq. (8-18). Using the notation shown in the Fig. 8-6 below, we write the finite

difference representation as:

ui
n+1 − ui

n

∆t
=

α
∆x( )2 ui+1

n − 2ui
n + ui−1

n( ) (8-25)

and the solution at time step n is known. At time n+1 there is only one unknown.

                                                
* This is convergence with respect to grid. Another convergence requirement is associated with the satisfaction of the
solution of a system of equations by iterative methods on a fixed grid.
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x

t
n-1 n n+1

i+1

i

i-1

x

x

x

Figure 8-6. Grid points used in typical explicit calculation.

 We solve for the value of u at i and the n+1 time step:

ui
n+1 = ui

n + α
∆t

∆x( )2

 

 
 

 

 
 ui +1

n − 2ui
n + ui−1

n( ) (8-26)

and thus at each i on n+1 we can solve for ui
n+1 algebraically, without solving a system of

equations. This means that we can solve for each new value explicitly in terms of known values

from the previous time step. This type of algorithm is known as an explicit scheme. It is a very

straight forward procedure. To summarize:

• The algebra is simple.
• The bad news for non-vector computers: stability requirements require very

small steps sizes.
• The good news: this scheme is easily vectorized* and a natural for massively

parallel computation.

Implicit Scheme: Now consider an alternate finite difference representation of the heat

equation given above in Eq. (8-18). Use the notation shown in the Fig. 8-7 below to define the

location of grid points used to define the finite difference representation.

x

t
n-1 n n+1

i+1

i

i-1

x

Figure 8-7. Grid points used in typical implicit calculation.

                                                
* see Chapter 3 for a brief discussion of vectorization.
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Now we write the finite difference representation as:

ui
n+1 − ui

n

∆t
=

α
∆x( )2 ui+1

n+1 − 2ui
n+1 + ui−1

n+1( ) (8-27)

where we use the spatial derivative at time n+1. By doing this we obtain a system where at each i

on n+1, ui
n+1 depends on all the values at n+1.  Thus we need to find the values along n+1

simultaneously.  This leads to a system of algebraic equations that must be solved. For our model

problem this system is linear. We can see this more clearly by rearranging Eq. (8-27). Defining

λ = α
∆t

∆x( )2 (8-28)

we can re-write Eq.(8-27) after some minor algebra as:

−λui−1
n+1 + 1 + 2λ( )ui

n+1 − λui+1
n+1 = ui

n for i = 1,..., N . (8-29)

This can be put into a matrix form to show that it has a particularly simple form:

  

(1 + 2λ ) −λ 0 0 0 0 0

−λ (1 + 2λ) −λ 0 O 0 0

O O O O O O O
O O −λ (1 + 2λ ) −λ O O
O O O O O O O
0 0 O 0 −λ (1+ 2λ) −λ
0 0 0 0 0 −λ (1+ 2λ)

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

u1
n+1

u2
n+1

M
ui

n+1

M
uN −1

n+1

uN
n+1

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

=

u1
n

u2
n

M
ui

n

M
uN−1

n

uN
n

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

(8-30)

Equation (8-30) is a special type of matrix form known as a tridiagonal form. A particularly

easy solution technique is available to solve this form. Known as the Thomas algorithm, the

details are described in Section 8.5 and a routine called tridag is described in Appendix H-1.

Many numerical methods are tailored to be able to produce this form.

The approach that leads to the formulation of a problem requiring the simultaneous solution

of a system of equations is known as an implicit scheme. To summarize:

• The solution of a system of equations is required at each step.
• The good news: stability requirements allow a large step size.
• The not so good news: this scheme is harder to vectorize/parallelize.

A common feature for both explicit and implicit methods for parabolic and hyperbolic

equations:
• A large number of mesh points can be treated, you only need the values at a

small number of marching stations at any particular stage in the solution.
This means you can obtain the solution with a large number of grid points
using a relatively small amount of memory. Curiously, some recent codes
don’t take advantage of this last fact.
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2nd Example - elliptic PDE

We use Laplace’s equation as the model problem for elliptic PDE’s:

φxx +φyy = 0 (8-31)

and consider the grid shown below in Figure 8-8.

y

xi-1 i i+1

j+1

j

j-1

Figure 8-8. Grid points used in a typical representation of an elliptic equation.

Use the second order accurate central difference formulas at i,j:

φxx =
φi+1, j − 2φi, j + φi−1, j

∆x( )2 + O ∆x( )2 (8-32)

and:

φyy =
φi, j+1 − 2φi, j +φ i, j−1

∆y( )2 +O ∆y( )2 , (8-33)

and substitute these expressions into the governing equation:

φi+1, j − 2φi , j + φi−1, j

∆x( )2 +
φi, j+1 − 2φi, j + φi, j−1

∆y( )2 = 0 (8-34)

Solve this equation for φij:

φi, j =
∆y( )2

2 ∆ x( )2 + ∆y( )2[ ] φ i+1, j + φi −1, j( ) +
∆x( )2

2 ∆x( )2 + ∆y( )2[ ] φi, j +1 + φi , j−1( ) (8-35)

where if ∆x = ∆y:

φi, j =
1

4
φi+1, j + φi−1, j +φ i, j+1 + φi, j −1( ) (8-36)
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This expression illustrates the essential physics of flows governed by  elliptic PDE’s:

• φij depends on all the values around it
• all values of φ must be found simultaneously
• computer storage requirements are much greater than those required for

parabolic/hyperbolic PDE’s

Because of the large number of mesh points required to resolve the flowfield details, it is

generally not practical to solve the system of equations arising from applying the above equation

at each mesh point directly. Instead, an iterative procedure is usually employed. In this procedure

an initial guess for the solution is made and then each mesh point in the flowfield is updated

repeatedly until the values satisfy the governing equation. This iterative procedure can be

thought of as having a time-like quality, which has been exploited in many solution schemes to

find the steady flowfield.

A Note on Conservation Form

Care must be taken if the flowfield has discontinuities (shocks). In that case the correct

solution of the partial differential equation will only be obtained if the conservative forms of the

governing equations are used.

8.3  Other approaches, including the finite volume technique

Finite difference methods are the most well known methods in CFD. However other methods

have also proven successful, and one method in particular, the finite volume technique, actually

forms the basis for most current successful codes. The other methods in use are categorized as

finite element and spectral. Each method eventually leads to a large set of algebraic equations,

just as with the finite difference methods. See References 1 and 3 for more details of the latter

two methods. In US aircraft aerodynamics work they don’t currently have an impact.

The finite volume method is important. Instead of discretizing the PDE, select the integral

form of the equations. Recall that each conservation law had both differential and integral

statements. The integral form is more fundamental, not depending on continuous partial

derivatives.

Example of Finite Volume Approach (Fletcher,3 vol. I, pg.105-116, Tannehill, et al,1 pg 71-76)

Consider the general conservation equation (in two dimensions for our example analysis):

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= 0 . (8-37)

Pick the particular form to be conservation of mass:
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q = ρ
F = ρ u

G = ρv

, (8-38)

and recall that this conservation law could also come from the integral statement:

∂
∂t

ρdV∫∫∫ = − ρ V⋅ ndS∫∫ . (8-39)

Introducing the notation defined above and assuming two dimensional flow, the conservation

law can be rewritten as:

∂
∂t

qdV∫∫ + H ⋅ n dS∫ = 0 (8-40)

where

H = F,G( ) = ρV (8-41)

and
Hx = F = ρ u

Hy = G = ρv
. (8-42)

y,  j

x, i

A B

CD

n

n

Figure 8-9. Basic nomenclature for finite volume analysis.

Using the definition of n in Cartesian coordinates, and considering for illustration the

Cartesian system given in Fig. 8-9, we can write:

H ⋅ ndS = H xi + Hyj( )⋅ n dS

= Fi + Gj( )⋅ ndS
(8-43)

along AB, n = -j, dS = dx, and:

H ⋅ ndS = −Gdx (8-44)

along BC, n = i, dS = dy, and:

H ⋅ ndS = F dy (8-45)
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or in general:

H ⋅ ndS = Fdy − Gdx . (8-46)

Using the general grid shown in the Fig. 8-10, our integral statement, Eq. (8-40) can be

written as:

∂
∂ t

Aq j,k( ) + F∆y − G∆x( )
AB

DA

∑ = 0. (8-47)

Here A is the area of the quadrilateral ABCD, and qi,j is the average value of q over ABCD.

y

x

j - 1

j

j + 1

k

k -1

k+1

A B

C

D

cell centered
at j,k

Figure 8-10. Circuit in a general grid system.

Now define the quantities over each face. For illustration consider AB:

∆yAB = yB − yA

∆xAB = xB − xA

FAB = 1
2

Fj,k −1 + Fj,k( )
GAB = 1

2
Gj ,k +1 + Gj ,k( )

, (8-48)

and so on over the other cell faces.
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Assuming A is not a function of time, and combining:

A
∂q j,k

∂ t
+ 1

2
Fj ,k −1 + Fj ,k( )∆yAB − 1

2
Gj ,k −1 + Gj,k( )∆xAB

+ 1

2
Fj,k + Fj+1,k( )∆yBC − 1

2
G j ,k + G j+1,k( )∆xBC

+
1

2
Fj,k + Fj,k+1( )∆yCD −

1

2
G j ,k + G j ,k+1( )∆xCD

+
1

2
Fj−1,k + Fj,k( )∆yDA −

1

2
G j −1,k + Gj,k( )∆xDA

= 0

. (8-49)

Supposing the grid is regular cartesian as shown in Fig. 8-11. Then A = ∆x∆y, and along:

AB: ∆y = 0, ∆xAB = ∆x

BC: ∆x = 0, ∆yBC = ∆y

CD: ∆y = 0, ∆xCD = −∆x

DA: ∆x = 0, ∆yDA =−∆y

. (8-50)

y

x
j - 1 j j + 1

k +1

k

k -1

A B

CD

Figure 8-11. General finite volume grid applied in Cartesian coordinates.

Thus, in Eq. (8-49) we are left with:

∆x∆y
∂q j,k

∂ t
−

1

2
Gj ,k −1 + Gj,k( )∆x +

1

2
Fj,k + Fj+1,k( )∆y

+ 1
2

Gj ,k + Gj ,k +1( )∆x − 1
2

Fj−1,k + Fj,k( )∆y = 0

. (8-51)

Collecting terms:
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∂q j ,k

∂ t
+

Fj+1,k − Fj−1,k

2∆x
+

G j,k+1 − G j ,k−1

2∆y

for this reversion to Cartesian
coordinates the equation just reduces

to simple central differences of the original 
partial differential equation

1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 
= 0 (8-52)

or:

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= 0 . (8-53)

Thus, and at first glance remarkably, the results of the finite volume approach can lead to the

exact same equations to solve as the finite difference method on a simple Cartesian mesh.

However, the interpretation is different:*

• Finite difference: approximates the governing equation at a point

• Finite volume:               "            "         "               "        over a volume

• Finite volume is the most physical in fluid mechanics codes, and is actually used in
most codes.

• Finite difference methods were developed earlier, the analysis of methods is easier
and further developed.

Both the finite difference and finite volume methods are very similar. However, there are

differences. They are subtle but important. We cite three points in favor of the finite volume

method compared to the finite difference method:

• Good conservation of mass, momentum, and energy using integrals when mesh is
finite size

• Easier to treat complicated domains (integral discretization [averaging] easier to
figure out, implement, and interpret)

• Average integral concept much better approach when the solution has shock waves
(i.e. the partial differential equations assume continuous partial derivatives).

Finally, special considerations are needed to implement some of the boundary conditions in

this method. The references, in particular Fletcher,3 should be consulted for more details.

8.4  Boundary conditions

So far we have obtained expressions for interior points on the mesh. However, the actual

geometry of the flowfield we wish to analyze is introduced through the boundary conditions. We

use an elliptic PDE problem to illustrate the options available for handling boundary conditions.

Consider the flow over a symmetric airfoil at zero angle of attack, as shown in Fig. 8-12.

                                                
* Summarized from Professor B. Grossman’s unpublished CFD notes.
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-∞ ∞

∞

X

Y

Figure 8-12. Example of boundary condition surface requiring consideration.

Here, because there is no lift, symmetry allows us to solve only the top half of the region. If φ
is a perturbation potential [see Chap. 2, Eq. (2-123)],

U = U∞ + φx

V = φy
, (8-54)

then far away from the surface,

u = v = 0 (8 − 55)

or

φ → 0 as x2 + y2 → ∞. (8 − 56)

For a lifting airfoil, the farfield potential must take the form of a potential vortex singularity

with a circulation equal to the circulation around the airfoil.

The boundary condition on the surface of primary interest is the flow tangency condition,

where the velocity normal to the surface is specified. In most cases the velocity normal to the

surface is zero.

Consider ways to handle the farfield BC

There are several possibilities:

A. “go out” far enough (?) and set φ = 0 for φ → 0, as the distance from the body goes to

infinity (or v = 0, u = 0 where these are the perturbation velocities, or u = U∞ if it is the

total velocity).

How good is this? This method is frequently used, although clearly it requires

numerical experimentation to ensure that the boundary is “far enough” from the body.

In lifting cases this can be on the order of 50 chord lengths in two-dimensions. In
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addition, this approach leads to excessive use of grid points in regions where we

normally aren’t interested in the details of the solution.

B. Transform the equation to another coordinate system, and satisfy the boundary

condition explicitly at infinity (details of this approach are given in Chap. 9).

Figure 8-13 demonstrates what we mean. In the ξ system the physical distance from 0

to infinity is transformed to the range from 0 to 1. Although this approach may lead to

efficient use of grid points, the use of the resulting highly stretched grid in the physical

plane may result in numerical methods that lose accuracy, and even worse, do not

converge during an iterative solution.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00

ξ

5.00 10.00 15.00 20.00 25.00
X

points evenly spaced in ξ plane

points spaced progressively
further apart in physical plane

x = ∞ is ξ = 1

Figure 8-13. One example of a way to handle the farfield boundary condition.

C. Blocks of Grids are sometimes used, a dense “inner” grid and a “coarse” outer grid. In

this approach the grid points are used efficiently in the region of interest. It is a simple

version of the adaptive grid concept, where the the grid will adjust automatically to

concentrate points in regions of large flow gradients.

 D. Match the numerical solution to an analytic approximation for the farfield boundary

condition.

This is emerging as the standard way to handle the farfield boundary conditions. It

allows the outer boundary to be placed at a reasonable distance from the body, and

properly done, it ensures that the boundary numerical solution reflects the correct

physics at the boundary. This has been found to be particularly important in the solution
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of the Euler equations. Effort is still underway to determine the best way to implement

this approach.

To summarize this discussion on farfield boundary conditions:

• BC’s on the FF boundary are important, and can be especially important for Euler
codes which march in time to a steady state final solution.

• How to best enforce the FF BC is still under study - research papers are still being
written describing new approaches.

Consider ways to handle the nearfield BC

There are are also several ways to approach the satisfaction of boundary conditions on the

surface. Here we discuss three.

A. Use a standard grid and allow the surface to intersect grid lines in an irregular manner.

Then, solve the equations with BC’s enforced between node points. Figure 8-14

illustrates this approach. In the early days of CFD methodology development this

approach was not found to work well, and the approach discussed next was developed.

However, using the finite volume method, an approach to treat boundary conditions

imposed in this manner was successfully developed (primarily by NASA Langley and its

contractors and grantees). It has not become a popular approach, and is considered to lead

to an inefficient use of grid points. Many grid points end up inside the body.

Airfoil placed in simple
rectangular grid

Irregular Intersection of
airfoil surface and grid

Figure 8-14. Surface passing through a general grid.

B. The most popular approach to enforcing surface boundary conditions is to use a

coordinate system constructed such that the surface of the body is a coordinate surface.

An example of this approach is shown in Figure 8-15. This is currently the method of

choice and by far the most popular approach employed in CFD. It works well. However,

it complicates the problem formulation. To use this approach, grid generation became an

area of study by itself. Grid generation is discussed in Chapter 9.
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a. Entire geometry b. Closeup of the trailing edge

Figure 8-15. Body conforming grid for easy application of BCs on curved surfaces.10

C. Another approach is to use thin airfoil theory boundary conditions, as described in detail

in Chapter 6. This eliminates many of the problems associated with the first two

approaches. It is expedient, but at some loss in accuracy (but very likely not that much, as

shown in Chap. 6, Fig. 6-14).

  Apply boundary conditions
  approximately on a grid line

Figure 8-16. Approximate approach to boundary condition specification.

Finite difference representation of the BC's

After defining a coordinate system, the finite difference representation of the boundary

condition must be written down. Using Laplace’s Equation as an example, consider that there are

normally two types of boundary conditions associated with the boundary: 1) the Dirichlet

problem, where φ is specified on the boundary, and 2) the Neumann problem, where ∂φ/∂n is

specified. If the Dirichlet problem is being solved, the value on the boundary is simply specified

and no special difference formulas are required.
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When the solution requires that the gradient normal to the surface be specified, a so-called

“dummy row” is the easiest way to implement the boundary condition. As an example, following

Moran,4 consider a case where the normal velocity, v, is set to zero at the outer boundary. The

boundary is at grid line j = NY. Assume that another row is added at  j = NY + 1, as indicated in

Fig. 8-17.

j = NY + 1

j = NY 

j = NY - 1

i

Figure 8-17. Boundary condition at farfield.

The required boundary condition at j = NY is:

∂φ
∂ n

= 0 =
φi,NY +1 −φ i,NY−1

YNY +1 − YNY−1
+ O ∆Y( )2 (8-57)

and to ensure that the boundary condition is satisfied, simply define:

φi,NY +1 ≡ φ i,NY−1 . (8-58)

The equations are then solved up to YNY, and whenever you need φ at NY+1, simply use the

value at NY-1.

Now, we present an example demonstrating the application of thin airfoil theory boundary

conditions at the surface. Recall that the boundary condition is:

v =
∂φ
∂y

= U∞
df

dx
(8-59)

where yfoil = f(x). Assuming that in the computer code v has been nondimensionalized by U∞,

the boundary condition is:

∂φ
∂y

=
df

dx
(8-60)

and the grid near the surface is defined following Fig. 8-18.
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j = 3

j = 2 (surface) 

j = 1

i

Figure 8-18. Boundary condition at surface.

Writing the derivative in terms of central differences at j =2,

φi,3 − φ i,1

Y3 − Y1
=

df

dx
(8-61)

we solve for φi,1:

φi,1 = φ i,3 − Y3 − Y1( ) df

dx
. (8-62)

Note that since j = 1 is a dummy row, you can select the grid spacing such that the spacing is

equal on both sides of j = 2, resulting in second order accuracy. Thus, as in the previous example,

anytime we need φi,1 we use the value given by Eq. (8-62). Using these boundary condition

relations, the boundary conditions are identically satisfied. Note also that this approach is the

reason that in many codes the body surface corresponds to the second grid line, j = 2.

Imposition of boundary conditions is sometimes more difficult than the analysis given here

suggests. Specifically, both the surface and farfield boundary conditions for the pressure in the

Navier-Stokes and Euler equations can be tricky.

8.5  Solution of Algebraic Equations

We now know how to write down a representation of the PDE at each grid point. The next

step is to solve the resulting system of equations. Recall that we have one algebraic equation for

each grid point. The system of algebraic equations may, or may not, be linear. If they are

nonlinear, the usual approach is to form an approximate linear system, and then solve the system

iteratively to obtain the solution of the original nonlinear system. The accuracy requirement

dictates the number of the grid points required to obtain the solution. Previously, we assumed

that linear equation solution subroutines were available, as discussed in Chapter 3. However, the

development of CFD methods requires a knowledge of the types of algebraic systems of

equations.
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Recall that linear algebraic equations can be written in the standard form:

Ax = b . (8-63)

For an inviscid two-dimensional solution, a grid of 100 x 30 is typical. This is 3000 grid points,

and results in a matrix 3000 x 3000. In three dimensions, 250,000 ∼ 300,000 grid points are

common, 500,000 points are not uncommon, and a million or more grid points are often

required. Clearly, you can’t expect to use classical direct linear equation solvers for systems of

this size.

Standard classification of algebraic equations depends on the characteristics of the elements

in the matrix A. If A:

1. contains few or no zero coefficients, it is called dense,

2. contains many zero coefficients, it is called sparse,

3. contains many zero coefficients, and the non-zero coefficients are close to
the main diagonal: the A matrix is called sparse and banded.

Dense Matrix

For a dense matrix direct methods are appropriate. Gauss elimination is an example of the

standard approach to these systems. LU decomposition11 is used in  program PANEL, and is an

example of a standard method for solution of a dense matrix. These methods are not good for

large matrices (> 200-400 equations). The run time becomes huge, and the results may be

susceptible to round-off error.

Sparse and Banded

Special forms of Gauss elimination are available in many cases. The most famous banded

matrix solution applies to so-called tridiagonal systems:
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(8-64)

The algorithm used to solve Eq. (8-64) is known as the Thomas algorithm. This algorithm is very

good and widely used. The Thomas algorithm is given in detail in the sidebar, and a sample

subroutine, tridag,  is described in App H-1.
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Solution of tridiagonal systems of equations

The Thomas Algorithm is a special form of Gauss elimination that can be used to solve

tridiagonal systems of equations. When the matrix is tridiagonal, the solution can be

obtained in O(n) operations, instead of O(n3/3). The form of the equation is:

  aixi−1 + bixi + cixi+1 = di i = 1,K,n

where a1 and cn are zero. The solution algorithm12 starts with k = 2,....,n:

m =
ak

bk −1

bk = bk − mck −1

dk = dk − mdk−1

.

Then:

xn =
dn

bn
and finally, for k = n - 1,...1:

xk =
dk − ck xk+1

bk
.

In CFD methods this algorithm is usually coded directly into the solution procedure,

unless machine optimized subroutines are employed on a specific computer.

General Sparse

These matrices are best treated with iterative methods. In this approach an initial estimate of

the solution is specified (often simply 0), and the solution is then obtained by repeatedly

updating the values of the solution vector until the equations are solved. This is also a natural

method for solving nonlinear algebraic equations, where the equations are written in the linear

equation form, and the coefficients of the A matrix are changed as the solution develops during

the iteration. Many methods are available.

There is one basic requirement for iterative solutions to converge. The elements on the

diagonal of the matrix should be large relative to the values off the diagonal. The condition can

be give mathematically as:

aii ≥ aij
j=1
j≠i

n

∑ (8-65)

and for at least one row:
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aii > aij
j=1
j≠i

n

∑ (8-66)

A matrix that satisfies this condition is diagonally dominant, and, for an iterative method to

converge, the matrix must be diagonally dominant. One example from aerodynamics of a matrix

that arises which is not diagonally dominant is the matrix obtained in the monoplane equation

formulation for the solution of the lifting line theory problem.

One class of iterative solution methods widely used in CFD is “relaxation.” As an example,

consider Laplace’s Equation. Start with the discretized form, Eq.(8-31). The iteration proceeds

by solving the equation at each grid point i,j at an iteration n+1 using values found at iteration n.

Thus the solution at iteration n+1 is found from:

φi, j
n+1 =

1

4
φ i+1, j

n + φi −1, j
n + φi, j+1

n + φi, j −1
n[ ] . (8-67)

The values of φ are computed repeatedly until they are no longer changing. The “relaxation” of

the values of φ to final converged values is roughly analogous to determining the solution for an

unsteady flow approaching a final steady state value, where the iteration cycle is identified as a

time-like step.  This is an important analogy. Finally, the idea of “iterating until the values stop

changing” as an indication of convergence is not good enough. Instead, we must check to see if

the finite difference representation of the partial differential equation using the current values of

φ actually satisfies the partial differential equation. In this case, the value of the equation should

be zero, and the actual value of the finite difference representation is know as the residual. When

the residual is zero, the solution has converged. This is the value that should be monitored during

the iterative process. Generally, as done in THINFOIL, the maximum residual and its location

in the grid, and the average residual are computed and saved during the iterative process to

examine the convergence history.

Note that this method uses all old values of φ to get the new value of φ. This approach is

known as point Jacoby iteration. You need to save all the old values of the array as well as the

new values. This procedure converges only very slowly to the final converged solution.

A more natural approach to obtaining the solution is to use new estimates of the solution as

soon as they are available. Figure 8-19 shows how this is done using a simply programmed

systematic sweep of the grid. With a conventional sweep of the grid this becomes:

φi, j
n+1 =

1

4
φ i+1, j

n + φi −1, j
n+1 + φi , j+1

n + φi, j−1
n+1[ ] . (8-68)
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This scheme is called the point Gauss-Seidel iteration. It also elliminates the need to store all

the old iteration values as well as all the new iteration results, which was required with the point

Jacoby method.

sweep up each line, and
then move to the next,
starting at the bottom

X
X

X
X

value to be found here

old values availablenew values
available

Figure 8-19. Grid sweep approach to implement the Gauss-Seidel solution iteration scheme.

The point Gauss-Seidel iteration procedure also converges slowly. One method of speeding

up the convergence is to make the change to the value larger than the change indicated by the

normal Gauss-Seidel iteration. Since the methods that have been described are known as

relaxation methods, the idea of increasing the change is known as successive over-relaxation, or

SOR. This is implemented by defining an intermediate value:

ˆ φ i, j
n+1 =

1

4
φ i+1, j

n + φi −1, j
n+1 + φi , j+1

n + φi, j−1
n+1[ ] (8-69)

and then obtaining the new value as:

φi, j
n+1 = φi , j

n + ω ˆ φ i, j
n+1 −φ i, j

n( ). (8-70)

The parameter ω is a relaxation parameter. If it is unity, the basic Gauss-Seidel method is

recovered. How large can we make it? For most model problems, a stability analysis (presented

in the next section) indicates that ω < 2 is required to obtain a converging iteration. The best

value of ω depends on the grid and the actual equation. For most cases of practical interest the

best values of ω must be determined through numerical experimentation. Figure 8-20 presents an

example of the manner in which the solution evolves with iterations. The value of φ after 2000

iterations is approached very gradually. The figure also illustrates the time-like nature of the

iteration.
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• solution of Laplace's equation
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• ω=1.5
• surface value at .2c

value at 2000 iterations

Figure 8-20. Typical variation of φ during solution iteration.

Another way to speed up the iteration is to sweep the flowfield a “line” at a time rather than a

point at a time. Applying over-relaxation to this process, the so-called successive line over-

relaxtion, or SLOR, process is obtained. In this method a system of equations must be solved at

each line. Figure 8-21 illustrates this approach. The method is formulated so that the system of

equations is tridiagonal, and the solution is obtained very efficiently. This approach provides a

means of spreading the information from new values more quickly than the point by point sweep

of the flowfield. However, all of these approaches result in a very slow approach to the final

value during the iterations.

The effect of the value of the over relaxation parameter is shown in Figure 8-22. Here, the

convergence level is compared for various values of ω. Notice that as convergence requirements

are increased, the choice of ω becomes much more important. Unfortunately, the choice of ω
may not only be dependent on the particular numerical method, but also on the particular

problem being solved.

Mathematically, the convergence rate of an iterative process depends on the value of the so-

called spectral radius of the matrix relating the value of the unknowns at one iteration to the

values of the unknowns at the previous iteration. The spectral radius is the absolute value of the

largest eigenvalue of the matrix. The spectral radius must be less than one for the iterative

process to converge. The smaller the value of the spectral radius, the faster the convergence.



8 - 32 Applied Computational Aerodynamics

3/17/98

starting upstream, move downstream, solving a line at a time.

X

X

X

values to be
found here old values availablenew values available

X
X

X
X

X

X

Figure 8-21. Solution approach for SLOR.
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Figure 8-22. Effect of the value of ω on the number of iterations required to achieve
various levels of convergence.13

Another way to spread the information rapidly is to alternately sweep in both the x and y

direction. This provides a means of obtaining the final answers even more quickly, and is known
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as an alternating direction implicit or ADI method. Figure 8-23 illustrates the modification to the

SLOR method that is used to implement an ADI scheme. Several different methods of carrying

out the details of this iteration are available. The traditional approach for linear equations is

known as the Peaceman-Rachford method, and is described in standard textbooks, e.g., Ames8

and Isaacson and Keller.14 This approach is also known as an approximate factorization or “AF”

scheme. It is known as AF1 because of the particular approach to the factorization of the

operator. A discussion of ADI including a computer program is given in the first edition of the

Numerical Recipes book.15

Another approach has been found to be more robust for nonlinear partial differential

equations, including the case of mixed sub- and supersonic flow. In this case the time-like nature

of the approach to a final value is used explicitly to develop a robust and rapidly converging

iteration scheme. This scheme is known as AF2. This method was first proposed for steady flows

by Ballhaus, et al,16 and Catherall17 provided a theoretical foundation and results from numerical

experiments. A key aspect of ADI or any AF scheme is the use of a sequence of relaxation

paramters rathers a single value, as employed in the SOR and SLOR methods. Typically, the

sequence repeats each eight to eleven iterations.

Holst10 has given an excellent review and comparison of these methods. Figure 8-24, from

Holst,10 shows how the different methods use progressively “better” information at a point to find

the solution with the fewest possible iterations. The advantage is shown graphically in Figure 8-

25, and is tabulated in Table 8-1 (also from Holst10). Program THINFOIL, described in Section

8.7, uses these methods and App. G-1 contains a description of the theoretical implementation of

these methods. Further details are given in Chapter 11, Transonic Aerodynamics.

first sweep along vertical lines
from upstream to downstream

next, sweep across the
grid in the other direction

Figure 8-23. ADI Scheme solution approach.
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SLOR

Point Jacoby Point Gauss-Seidel SOR Line Jacoby

Line Gauss-Seidel ADI

Current value to be found, and new information used
Old information used

Figure 8-24. Stencil of information (Holst10)

In addition to these methods, solutions can be obtained more rapidly by using so-called

multigrid methods. These methods accelerate the convergence iterative procedures by using a

sequence of grids of different densities and have become one of the most important techniques

used to solve field problems of all types. The overall levels of the solution are established by the

solution on a crude grid, while the details of the solution are established on a series of finer grids.

Typically, one iteration is made on each successively finer grid, until the finest grid is reached.

Then, one iteration is made on each successively courser grid. This process is repeated until the

solution converges. This procedure can reduce the number of fine grid iterations from possibly

thousands, as shown above, to from 10 to 30 iterations.

This approach to the solution of partial differential equations was highly developed by

Jameson18 for the solution of computational aerodynamics problems. He used the multigrid

approach together with an alternating direction method in an extremely efficient algorithm for

the two-dimensional transonic flow over an airfoil.

The details of the multigrid method are, as they say, beyond the scope of this chapter, and the

reader should consult the standard literature for more details. This includes the original treatise

on the subject by Brandt19 (which includes an example FORTRAN program), another tutorial

which includes a FORTRAN code,20 and more recent presentations by Briggs21 and Wesseling.22

The most recent Numerical Recipes11 book also includes a brief description and sample program.
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Figure 8-25. Comparison of convergence rates of various relaxation schemes (Holst10). This is
the number of iterations estimated to be required to reduce the residual by one order of
magnitude

Table 8-1
Convergence rate estimates for various relaxation schems (Holst10)

Algorithm

Number of iterations required
for a one order-of-magnitude

reduction in error

Point - Jacobi 2 / ∆
2

Point - Gauss -Seidel 1 / ∆
2

SOR 1 / (2∆)

Line - Jacobi 1 / ∆
2

Line - Gauss- Seidel 1 / (2∆
2 )

SLOR 1 / (2 2∆)

ADI − log(∆ / 2) / 1.55
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To carry out the solution to large systems of equations, the standard numerical procedures

require that the approach be generalized slightly from the one given above. Specificaly, we

define an operator, such that the partial differential equation is written (continuing to use

Laplace’s equation as an example):

Lφ = 0 (8-71)

where

L =
∂ 2

∂ x2 +
∂2

∂ y2
. (8-72)

To solve this equation, we re-write the iteration scheme expressions given above in Equation.

(8-70) as:

  

N Ci, j
n

nth  iteration
correction

{
+ ω Lφ i, j

n

nth  iteration
residual, = 0

when converged
 solution is achieved

1 2 3 
= 0. (8-63)

This form is known as the standard or delta form. C is given by

Ci, j
n = φ1, j

n+1 − φ1, j
n . (8-64)

The actual form of the N operator depends on the specific scheme chosen to solve the problem.

8.6  Stability Analysis

The analysis presented above makes this approach to solving the governing equations for

flowfields appear deceptively simple. In many cases it proved impossible to obtain solutions.

Frequently the reason was the choice of an inherently unstable numerical algorithm. In this

section we present one of the classical approaches to the determination of stability criteria for use

in CFD. These types of analysis provide insight into grid and stepsize requirements (the term

stepsize tends to denote time steps, whereas a grid size is thought of as a spatial size). In

addition, this analysis is directly applicable to a linear equation. Applications in nonlinear

problems are not as fully developed.

Fourier or Von Neumann Stability Analysis

Consider the heat equation used previously,

∂u

∂t
= α

∂ 2u

∂x2
(8-17)

and examine the stability of the explicit representation of this equation given by Eq. (8-21).

Assume at t = 0, that an error, possibly due to finite length arithmetic, is introduced in the form:
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u(x ,t)
"error"  is
introduced

1 2 3 = ψ (t) e jβx

actually could be a series,
take one term here

{ (8-75)

where:

β − a real constant

j = −1
.

Here we restate the explicit finite difference representation,

u(x ,t + ∆t) − u(x,t)

∆t
= α

u x +∆ x,t( ) − 2u x ,t( ) + u x − ∆x,t( )
∆x( )2 . (8-21)

Substitute Eq. (8-75) into this equation, and solve for ψ(t + ∆t). Start with

ψ (t + ∆t)e jβx − ψ(t)e jβx

∆t
= α

ψ (t)

∆x( )2 e jβ x +∆x( ) − 2e jβx + e jβ x −∆x( ){ } (8-76)

and collecting terms:

  

ψ (t + ∆t)e jβx = ψ(t)e jβx +α
∆t

∆x( )2 ψ (t)e jβx e jβ∆x − 2 + e− jβ∆x{ }
−2+e jβ∆x +e− jβ∆x

2cosβ∆x
1 2 4 4 3 4 4 

1 2 4 4 4 3 4 4 4 
(8-77)

Note that the e jβx  term cancels, and Eq. (8-77) can be rewritten:

  

ψ (t + ∆t) = ψ(t) 1 +α ∆t

∆x( )2 −2 + 2 cosβ∆x( )
 

 
 

 

 
 

= ψ (t) 1 − 2α
∆t

∆x( )2 1 − cosβ∆x
double angle formula

=1−2sin2 β
∆x

2

1 2 4 3 4 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

(8-78)

which reduces to:

ψ (t + ∆t) = ψ(t) 1 + 2α ∆t

∆x( )2 1 −1+ 2sin2 β ∆x
2

 
 
  

 
 

 

 
 

 

 
 

= ψ (t) 1 − 4α
∆t

∆x( )2 sin2 β
∆x

2

 

 
 

 

 
 

. (8-79)

Now look at the ratio of ψ (t + ∆t)  to ψ (t) , which is defined as an amplification factor G,
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G =
ψ (t + ∆t)

ψ (t)
= 1 − 4α

∆t

∆x( )2 sin2 β
∆x

2

 

 
 

 

 
 . (8-80)

For stability the requirement is clearly:

G <1 , (8-81)

which means that the error introduced decays. For arbitrary β, what does this condition mean?

Observe that the maximum value of the sine term is one. Thus, the condition for stability will be:

  

1− 4α
∆t

∆x( )2

λ
1 2 4 3 4 

<1 (8-82)

and the limit will be:
1− 4λ =1 . (8-83)

The largest λ that can satisfy this requirement is:

1− 4λ = −1

or

−4λ = −2

and

λ = 1
2

. (8-84)

Thus, the largest λ for |G| < 1 means

λ = α
∆t

∆x( )2 <
1

2
(8-85)

or:

α
∆t

∆x( )2 <
1

2
. (8-86)

This sets the condition on ∆t and ∆x for stability of the model equation. This is a real

restriction. It can be applied locally for nonlinear equations by assuming constant coefficients.

An analysis of the implicit formulation, Eq. (8-23), demonstrates that the implicit formulation is

unconditionally stable.

Is this restriction on ∆t and ∆x real? Rightmyer and Morton23 provided a dramatic example

demonstrating this criteria. Numerical experiments can quickly demonstrate how important this

condition is. Figure 8-26 repeats the analysis of Rightmyer and Morton,23 demonstrating the

validity of the analysis. The initial and boundary conditions used are:
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u(x ,0 = ϕ(x) (given) for0 ≤ x ≤ π
u(0,t) = 0, u(π ,t) = 0 for t > 0

Figure 8-26a presents the development of the solution and shows the particular choice of

initial value shape, ψ, using a value of λ < 1/2: 5/11. Figure 8-26b-d provide the results for a

value of  λ  > 1/2: 5/9. Theoretically, this stepsize will lead to an unstable numerical method, and

the figure demonstrates that this is, in fact, the case.

Our model problem was parabolic. Another famous example considers a hyperbolic equation.

This is the wave equation, where c is the wave speed:

∂2u

∂t2 − c
∂ 2u

∂x2 = 0 . (8-87)

This equation represents one-dimensional acoustic disturbances. The two-dimensional small
disturbance equation for the potential flow can also be written in this form for supersonic flow.
Recall,

1 − M∞
2( )φxx + φyy = 0 (8-88)

or when the flow is supersonic:

φxx −
1

M∞
2 − 1( ) φyy = 0 (8-89)

and we see here that x is the timelike variable for supersonic flow.

Performing an  analysis similar to the one above, the stability requirement for Eq. (8-87) is

found to result in a specific parameter for stability:

ν = c
∆t

∆x
(8-90)

which is known as the Courant number. For many explicit schemes for hyperbolic equations, the

stability requirement is found to be

ν ≤ 1. (8-91)

This requirement is known as the CFL condition, after its discoverers: Courant, Friedrichs,

and Levy. It has a physical interpretation. The analytic domain of influence must lie within the

numerical domain of influence.

Recalling that the evolution of the solution for an elliptic system had a definite time-like

quality, a stability analysis for elliptic problems can also be carried out. For the SOR method,

that analysis leads to the requirement that the over-relaxation factor, ω, be less than two.
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a) numerical solution using a theoretically stable stepsize.
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b) numerical solution using a theoreticaly unstable stepsize, 
α t

∆x( )2  = 5.

Figure 8-26. Demonstration of the step size stability criteria on numerical solutions.
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Figure 8-26. Demonstration of the step size stability criteria on numerical solutions (concluded).
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8.7  Program THINFOIL

An example of the solution of Laplace’s Equation by finite differences is demonstrated in the

program THINFOIL. This program offers the users options of SOR, SLOR, AF1 and AF2 to

solve the system of algebraic equations for the flow over a biconvex airfoil at zero angle of

attack. An unevenly spaced grid is used to concentrate grid points near the airfoil. The program

and the theory are described in Appendix G-1. It can be used to study the effects of grid

boundary location, number of grid points, and relaxation factor, ω.

Figure 8-27 provides the convergence history for the case for which the comparison with the

exact solution is given below. Using SOR, this shows that hundreds of iterations are required to

reduce the maximum change between iteration approximately three orders of magnitude. This is

about the minimum level of convergence required for useful results. A check against results

converged further should be made. The reader should compare this with the other iteration

options.

10-4
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10-1

100

101

102

103

0 100 200 300 400 500 600

• 5% Thick Biconvex Airfoil
• 74 x 24 grid
• SOR ω=1.80
• AF 2 factor: 1.333

Maximum
Residual

Iteration

SOR

AF2

Figure 8-27. Convergence history during relaxation solution.

The convergence history presented above is actually the maximum residual of φ at each

iteration. The solution is assumed to have converged when the residual goes to zero. Typical
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engineering practice is to consider the solution converged when the residual is reduced by 3 or 4

orders of magnitude. However, a check of the solution obtained at a conventional convergence

level with a solution obtained at much smaller residual (and higher cost) level should be made

before conducting an extensive analysis for a particular study.

The solution for a 5% thick biconvex airfoil obtained with THINFOIL is presented in

Figure 8-28, together with the exact solution. For this case the agreement with the exact solution

is excellent. The exact solution for a biconvex airfoil is given by Milton Van Dyke,24 who cites

Milne-Thompson25 for the derivation.
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(THINFOIL uses thin airfoil theory BC's)

X/C

Cp

74 x 24 grid

Figure 8-28. Comparison of numerical solution with analytic solution for a biconvex airfoil.

The material covered in this chapter provides a very brief introduction to an area which has been

the subject of an incredible amount of research in the last thirty years. Extensions to include

ways to treat flows governed by nonlinear partial differential equations are described after some

basic problems in establishing geometry and grids are covered in the next chapter.
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8.8  Exercises

1. How accurate are finite difference approximations? Over one cycle of a sine wave,
compare first and second order accurate finite difference approximations of the 1st
derivative and the second order accurate 2nd derivative of the shape with the exact values.
How small does the step size have to be for the numerical results to accurate to 2
significant figure? 4 figures? 6? What conclusions about step size can you make?

2. Get some experience with the solution of Laplace’s Equation using finite differences.

i)   Download a copy of THINFOIL from the web page
ii)   Make it run on your PC.
iii)  Study the program to understand the procedure.

Pick as a baseline case: Xmin=-2.2, Xmax=3.2, Ymax=2.4, and NUP=14, NDOWN=14,
NON=30, NABOVE=18

iv) Run SOR with ω = 1.6 and see how many iterations to “convergence”

v) Run with ω = 1.0, 1.50, 1.75, 1.90, 1.99  (400 iterations max)

vi) Plot the convergence history as a function of iteration for each ω. Note that it is
standard procedure to plot the log of the residual. See examples in the text.

vii) For one ω, increase the number of grid points and compare (watch dimensions)

- convergence rate with the same ω case above
- the surface pressure distribution results for the two grids

viii) Draw conclusions about SOR as a numerical method for solving PDE's.
ix) Repeat the studies using SLOR, AF1 and AF2. What do you conclude about the

relative convergence times and solution accuracy?

3. Examine the effect of the number of grid points on the solution obtained using program
THINFOIL. How many grid points are required for a grid converged solution?

4. Examine the effect of the location of the farfield boundary condition on the solution
obtained using program THINFOIL. What do you conclude?

5. Change the farfield boundary condition to set φ = 0, instead of ∂φ/∂n = 0. How does this
affect the solution? the convergence rate?

6. Modify program THINFOIL to obtain the solution to the flow over an NACA 4-Digit
airfoil thickness shape. Address the following issues:

i) store the boundary condition values before the calculation begins instead of
recomputing each time the BC needs the value

ii) recognizing that the slope at the leading edge is infinite,  assess two methods of
avoiding numerical problems

• place the leading edge between grid points

• use Riegels’ factor to modify the slope boundary condition, replacing df/dx by

df /d x

1 + df /d x( )2
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Appendix A Geometry for Aerodynamicists
Aerodynamicists control the flowfield through geometry definition, and are always interested in
possible geometric shapes that would be useful in design. This appendix provides the detailed
definition of many of the classic shapes frequently specified in aerodynamics. It is not
encyclopedic. Section A.1.1 gives some other sources for airfoils.

 A.1 Airfoil Geometry

 The NACA Airfoils

The NACA airfoils were designed during the period from 1929 through 1947 under the direction
of Eastman Jacobs at the NACA’s Langley Field Laboratory. Most of the airfoils were based on
simple geometrical descriptions of the section shape, although the 6 and 6A series were
developed using theoretical analysis and don’t have simple shape definitions. Although a new
generation of airfoils has emerged as a result of improved understanding of airfoil performance
and the ability to design new airfoils using computer methods, the NACA airfoils are still useful
in many aerodynamic design applications. A number of references have been included to allow
the reader to study both the older NACA literature and the new airfoil design ideas. Taken
together, this literature provides a means of obtaining a rather complete understanding of the
ways in which airfoils can be shaped to obtain desired performance characteristics.

The NACA airfoils are constructed by combining a thickness envelope with a camber or mean
line. The equations which describe this procedure are:

xu = x − yt x( )sinθ
yu = yc x( ) + yt x( )cosθ

(A-1)

and
xl = x + yt x( )sinθ
yl = yc x( ) − yt x( )cosθ

(A-2)

where yt(x) is the thickness function, yc(x) is the camber line function, and

θ = tan −1 dyc

dx
 
 
  

 
 (A-3)

is the camber line slope. It is not unusual to neglect the camber line slope, which simplifies the
equations and makes the reverse problem of extracting the thickness envelope and mean line for
a given airfoil straightforward.

The primary reference volume for all the NACA subsonic airfoil studies remains:

Abbott, I.H., and von Doenhoff, A.E., Theory of Wing Sections, Dover, 1959.

The following paragraphs provide a brief history of the development of the NACA Airfoils.
Appendix B provides references to the development of the NASA advanced airfoils, which were
developed from 1966- approx. 1977.



A-2 Applied Computational Aerodynamics

10/23/97

Primary
    Evolution of the NACA airfoils        NACA Report        Authors        Date    

1. The 4-digit foils: According to Abbott,     R-460 Jacobs, Ward 1933
Pinkerton found that the thickness and Pinkerton
distribution of the Clark Y and Gottingen 398
airfoils were similar, and Jacobs selected
a function to describe this thickness distribution.
The mean lines were selected to be described
by two parabolic arcs which were tangent
at the position of maximum camber.

2. The 4-digit modified foils: The camber     R-492 Stack and 1934
lines were identical to the 4-digit series, von Doenhoff
and a more general thickness distribution
was defined, which allowed variations in
the leading edge radius and position of
maximum thickness to be investigated.

3. The 5-digit foils: The thickness distribution     R-537 Jacobs, 1935
was kept identical to the 4-digit series, and     R-610 Pinkerton and 1937
a new camber line was defined which Greenberg
allowed for camber to be concentrated near
the leading edge. A reflexed camber line was
designed to produce zero pitching moment,
but has generally not been used. These foils
were derived to get good high lift with
minimum Cm0.

4. The 6-series foils: The foils were designed     R-824* Abbott, 1945
to maintain laminar flow over a large von Doenhoff
portion of the chord by delaying the adverse and Stivers
pressure gradient. The thickness envelope
was obtained using exact airfoil theory,
and no simple formulas are available to describe
the shapes. The camber lines were designed
using thin airfoil theory and simple formulas are
available which describe their shape.

5. The 6A-series foils:To improve the trailing edge     R-903* Loftin 1948
structurally, the foils were designed to provide
sections with simple (nearly straight) surface
geometry near the trailing edge, while maintaining
the same general properties as the 6-series foils.
The camber line can be described by a simple
alteration of the standard 6-series mean line.

Historical accounts of the NACA airfoil program are contained in:

Abbott, I.H., “Airfoils,” Evolution of Aircraft Wing Design, AIAA Dayton Section
Symposium, March 1980, AIAA Paper 80-3033.

                                                
* Additional section data is contained in NASA R-84, 1958, by Patterson and Braslow.
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and

Jones, R.T., “Recollections From an Earlier Period in American Aeronautics,” Annual
Review of Fluid Mechanics, Vol. 9, pp. 1-11, 1977.

NASA has published two reports describing computer programs that produce the NACA airfoil
ordinates:

Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for the NACA 4-Digit, 4-Digit Modified, 5-Digit, and 16-Series Airfoils,” NASA
TM X-3284, November 1975.

Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for the NACA 6- and 6A-Series Airfoils,” NASA TM X-3069, September 1974.
This program is included in the utility programs described in App. E, as LADSON. It is not
extremely accurate for sections less than 6% thick or greater than 15% thick.

An extensive and excellent survey of the older airfoils is contained in the German book
(available in English translation):

Riegels, Airfoil Sections, Butterworths, London, 1961. (English language version)

NASA supercritical airfoil development is described in the following references:

Whitcomb, “Review of NASA Supercritical Airfoils,” ICAS Paper 74-10, August 1974
(ICAS stands for International Council of the Aeronautical Sciences)

Harris, C.D., “NASA Supercritical Airfoils,” NASA TP 2969, March 1990.

Becker, J.V., “The High-Speed Airfoil Program,” in The High Speed Frontier, NASA SP-
445, 1980.

The NACA 4-Digit Airfoil

The numbering system for these airfoils is defined by:

NACA MPXX

where XX is the maximum thickness, t/c, in percent chord.

M is the maximum value of the mean line in hundredths of chord,

P is the chordwise position of the maximum camber in tenths of the chord.

Note that although the numbering system implies integer values, the equations can provide 4
digit foils for arbitrary values of M, P, and XX.

An example: NACA 2412 • a 12% thick airfoil,
• a max value of the camber line of 0.02, at x/c = 0.4.

The NACA 4-digit thickness distribution is given by:

yt

c
=

t

c
 
 
  

 
 a0 x/c − a1 x/c( ) − a2 x/c( )2 + a3 x/c( )3 − a4 x/c( )4[ ] (A-4)

where:
a0 = 1.4845 a2 = 1.7580 a4 = 0.5075
a1 = 0.6300 a3 = 1.4215
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The maximum thickness occurs at  x/c = 0.30, and the leading edge radius is

rLE

c
 
 
  

 
 = 1.1019

t

c
 
 
  

 
 

2
(A-5)

The included angle of the trailing edge is:

δTE = 2tan−1 1.16925
t

c
 
 
  

 
  

 
 

 
 
 

(A-6)

It is important to note that the airfoil has a finite thickness at the trailing edge.

The camber line is given by:

yc

c
= M

P2 2P x/c( ) − x/c( )2[ ]
dyc

dx
=

2M

P2 P − x/c( )( )

 

 
  

 
 
 

x

c
 
 
  

 
 < P (A-7)

and

yc

c
=

M

1 − P( )2 1 − 2P + 2P x/c( ) − x/c( )2[ ]
dyc

dx
=

2M

1 − P( )2 P − x/c( )( )

 

 
  

 
 
 

x

c
 
 
  

 
 ≥ P (A-8)

The camber line slope is found from (A-3) using (A-7) and (A-8), and the upper and lower
surface ordinates resulting from the combination of thickness and camber are then computed
using equations (A-1) and (A-2).

The NACA 5-Digit Airfoil

This airfoil is an extension of the 4 digit series which provides additional camber lines. The
numbering system for these airfoils is defined by:

NACA LPQXX

where XX is the maximum thickness, t/c, in percent chord.

L is the amount of camber; the design lift coefficient is 3/2 L, in tenths

P is the designator for the position of maximum camber, xf, where xf = P/2,
and P is given in tenths of the chord

Q = 0; standard 5 digit foil camber
= 1; “reflexed” camber
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An example: NACA 23012, is a 12% thick airfoil, the design lift coefficient is 0.3, the position
of max camber is located at x/c = 0.15,  and the “standard” 5 digit foil camber line is used.

The thickness distribution is the same as the NACA 4 digit airfoil thickness distribution
described above in equation (A-4).

The standard five-digit series camber line is given by:

yc

c
= K1

6
x / c( )3 − 3m x/ c( )2 + m2 3 − m( ) x / c( )[ ]

dyc

dx
=

K1

6
3 x /c( )2 − 6m x/ c( ) + m 2 3 − m( )[ ]

 

 
 

 
 

0 ≤ x / c( ) ≤ m

(A-9)

and
yc

c
= K1

6
m3 1 − x/ c( )[ ]

dyc

dx
= −

K1

6
m3

 

 
 

 
 

m < x / c( ) ≤ 1

(A-10)

where m is not the position of maximum camber, but is related to the maximum camber position
by:

x f = m 1 −
m

3

 

 
 

 

 
 (A-11)

and m is found from a simple fixed point iteration for a given xf. K1 is defined to avoid the
leading edge singularity for a prescribed Cli and m:

K1 =
6Cl i

Q
(A-12)

where:

Q =
3m − 7m2 + 8m3 − 4m4

m 1− m( )
−

3

2
1 − 2m( ) π

2
− sin−1 1− 2m( ) 

  
 
  

(A-13)

Note that K1 is a linear function of Cli and the K1’s were originally tabulated for Cli  = .3.
The tabulated K1’s are multiplied by (Cli/.3) to get values at other Cli. To compute the
camber line, the values of Q and K1 must be determined. In some cases the computed values
of K1 and Q differ slightly from the official tabulated values (remember these were computed
in the 1930s). The tabulated values should be used to reproduce the official ordinates. The
following table illustrates the differences.
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 K1
Mean           m                using             using
    Line      x      f      tabulated       computed               tabulated           tabulated         m          computed         m     

210 0.05 0.0580 0.0581 361.4 351.56 350.332
220 0.10 0.1260 0.1257 51.65 51.318 51.578
230 0.15 0.2025 0.2027 15.65 15.955 15.920
240 0.20 0.2900 0.2903 6.643 6.641 6.624
250 0.25 0.3910 0.3913 3.230 3.230 3.223

Once the camberline parameters are chosen, the airfoil is constructed using the equations given

above.

Camber lines designed to produce zero pitching moment.

The reflexed mean line equations were derived to produce zero pitching moment about the

quarter chord.

yc

c
=

K1

6
x / c( ) − m{ }3 −

K2

K1
1− m( )3 x / c( ) − m3 x / c( ) + m3 

 
 

 

 
 0 ≤ x /c( ) ≤ m (A-14)

=
K1

6

K2

K1
x / c( ) − m{ }3 −

K2

K1
1− m( )3 x / c( ) − m3 x / c( ) + m3 

 
 

 

 
 m < x / c( ) ≤ 1 (A-15)

where

K2

K1
=

3 m − x f( )2
− m3

1 − m( )3
(A-16)

The parameters are defined as follows: i) given xf , find m to give Cmc/4 = 0 from thin airfoil
theory; ii) given xf and  m, calculate K1 to give Cli = 0.3.

The tabulated values for these camber lines are:

Mean (P/2)
    Line      x      f        m         K        1        K        1       /K        2    
211 .05    -  - -
221 .10 0.1300 51.99 0.000764
231 .15 0.2170 15.793 0.006770
241 .20 0.3180 6.520 0.030300
251 .25 0.4410 3.191 0.135500
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The NACA Modified 4-Digit Airfoil

This airfoil is an extension of the 4-digit series to allow for a variation of leading edge radius and
location of maximum thickness. The numbering system is defined by:

NACA MPXX-IT

where MPXX is the standard 4-digit designation and the IT appended at the end describes the
modification to the thickness distribution. They are defined as:

 I - designation of the leading edge radius
T - chordwise position of maximum thickness in tenths of chord

rle
c

=1.1019
I

6
⋅
t

c
 
 
  

 
 

2
      for I ≤ 8 (A-17)

and

rle
c

= 3 x 1.1019
t

c
 
 
  

 
 

2
      for I = 9 (A-18)

I = 6 produces the leading edge radius of the standard 4-digit airfoils.

An example: NACA 0012-74 denotes an uncambered 12% thick airfoil, with a maximum
thickness at x/c = 0.40 and a leading edge radius of 0.0216, which is 36% larger than the
standard 4-digit value.

The NACA 16 series is a special case of the modified 4-digit airfoil with a leading edge radius
index of I = 4 and the maximum thickness located at x/c = 0.5 (T = 5). As an example, the
NACA 16-012 is equivalent to an NACA 0012-45.

The thickness distribution is given by:

yt

c
= 5

t

c
 
 
  

 
 a0

x

c
+ a1

x

c
 
 
  

 
 + a2

x

c
 
 
  

 
 

2
+ a3

x

c
 
 
  

 
 

3 

 
 

 

 
 0 <

x

c
< T (A-19)

and

yt

c
= 5

t

c
 
 
  

 
 .002 + d1 1 −

x

c
 
 
  

 
 + d2 1−

x

c
 
 
  

 
 

2
+ d3 1 −

x

c
 
 
  

 
 

3 

 
 

 

 
 T <

x

c
≤ 1 (A-20)

The coefficients are determined by solving for the d’s first, based on the trailing edge slope and
the condition of maximum thickness at x/c = T. Once these coefficients are found, the a’s are
found by relating a0 to the specified leading edge radius, the maximum thickness at x/c = T, and
the condition of continuity of curvature at x/c = T. These constants are all determined for t/c =
0.2, and then scaled to other t/c values by multiplying by 5(t/c). The value of d1 controls the
trailing edge slope and was originally selected to avoid reversals of curvature. In addition to the
tabulated values, Riegels has provided an interpolation formula.
The official (tabulated) and Riegels approximate values of d1 are given in the following table.
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    T        Tabulated        d        1         Approximate       d        1

0.2 0.200 0.200
0.3 0.234 0.234
0.4 0.315 0.314
0.5 0.465 0.464
0.6 0.700 0.722

where the Riegels approximation is given by:

d1 ≅
2.24 − 5.42T + 12.3T2( )

10 1 − 0.878T( )
(A-21)

Once the value of d1 is known, d2 and d3 are found from the relations given by Riegels:

d2 =
0.294 − 2 1− T( )d1

1− T( )2
(A-22)

and

d3 =
−0.196 + 1− T( )d1

1 − T( )3
(A-23)

With the d’s determined, the a’s can be found. a0 is based on the leading edge radius:

a0 = 0.296904 ⋅ χ LE
(A-24)

where

χLE =
I

6
for I ≤ 8

= 10.3933 for I = 9

(A-25)

Defining:

ρ1 =
1

5
 
 
  

 
 1 − T( )2

0.588 − 2d1 1 − T( )[ ]
(A-26)

the rest of the a’s can be found from:

a1 =
0.3

T
−

15

8
⋅

a0

T
−

T

10ρ1

(A-27)

a2 = −
0.3

T2 +
5

4
⋅

a0

T3/ 2 +
1

5ρ1

(A-28)

a3 =
0.1

T3 −
0.375a0

T 5/ 2 −
1

10ρ1T
(A-29)

The camber lines are identical to the standard 4-digit airfoils described previously. The upper
and lower ordinates are then computed using the standard equations.
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The NACA 6 and 6A-Series Mean Lines*

The 6-series mean lines were designed using thin airfoil theory to produce a constant loading
from the leading edge back to x/c = a, after which the loading decreases linearly to zero at the
trailing edge. Theoretically, the loading at the leading edge must be either zero or infinite within
the context of thin airfoil theory analysis. The violation of the theory by the assumed finite
leading edge loading is reflected by the presence of a weak singularity in the mean line at the
leading edge, where the camber line has an infinite slope. Therefore, according to Abbott and
von Doenhoff, the 6-series airfoils were constructed by holding the slope of the mean line
constant in front of x/c = 0.005, with the value at that point. For round leading edges the
camberline values are essentially not used at points ahead of the origin of the leading edge
radius. The theory is discussed by Abbott and von Doenhoff on pages 73-75, 113, and 120.
Tabulated values are contained on pages 394-405. The derivation of this mean line is a good
exercise in thin airfoil theory.

By simply adding various mean lines together, other load distributions can be constructed.
From Abbott and von Doenhoff: “The NACA 6-series wing sections are usually designated

by a six-digit number together with a statement showing the type of mean line used. For
example, in the designation NACA 65,3-218, a = 0.5, the 6 is the series designation. The 5
denotes the chordwise position of minimum pressure in tenths of the chord behind the leading
edge for the basic symmetrical section at zero lift. The 3 following the comma (sometimes this is
a subscript or in parenthesis) gives the range of lift coefficient in tenths above and below the
design lift coefficient in which favorable pressure gradients exist on both surfaces. The 2
following the dash gives the design lift coefficient in tenths. The last two digits indicate the
thickness of the wing section in percent chord. The designation a = 0.5 shows the type of mean
line used. When the mean-line is not given, it is understood that the uniform-load mean line (a =
1.0) has been used.”

The 6A series airfoils employed an empirical modification of the a = 0.8 camberline to allow
the airfoil to be constructed of nearly straight line segments near the trailing edge. This
camberline is described by Loftin in NACA R-903.

Basic Camberline Equations

When a = 1 (uniform loading along the entire chord):

y

c
= −

Cli

4π
1−

x

c
 
 
  

 
 ln 1 −

x

c
 
 
  

 
 +

x

c
ln

x

c
 
 
  

 
  

  
 
  (A-30)

and
dy

dx
=

Cli

4π
ln 1 −

x

c
 
 
  

 
 − ln

x

c
 
 
  

 
  

  
 
  (A-31)

                                                
* Only the mean lines have analytical definitions. The thickness distributions are the result of
numerical methods which produced tabulated coordinates. In addition to the values tabulated in
the NACA reports, the closest approximation for the thickness distributions is available in
program LADSON, see App. E.
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where Cli is the “ideal” or design lift coefficient, which occurs at zero angle-of-attack.
For a < 1,

 
y

c
=

Cli

2π 1+ a( )

1

1 − a

1
2

a − x
c

 
 
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2
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− 1

2
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2
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+
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4
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 

2
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1

4
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x
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 

2
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(A-32)

with

g =
−1

1 − a( ) a2 1

2
ln a −

1

4
 
 
  

 
 +

1

4

 
  

 
  (A-33)

h = 1− a( ) 1

2
ln 1 − a( ) −

1

4
 
  

 
  + g (A-34)

and
dy

dx
=

Cli

2π 1+ a( )
1

1− a
1−

x

c
 
 
  

 
 ln 1 −

x

c
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 

 
 
 

(A-35)

The associated angle-of-attack is:

αi =
Cli h

2π 1 + a( )
(A-36)

a = .8 (modified), the 6A-series mean line

For 0 < x/c < .87437, use the basic a = .8 camberline, but with a modified value of the ideal
lift coefficient, Climod = Cli/1.0209. For .87437 < x/c < 1, use the linear equation:

yc/c

Cli

= 0.0302164 − 0.245209
x

c
− 0.87437

 
 
  

 
 (A-37)

and
dy

dx
= −0.245209Cli

(A-38)

Note that at x/c = 1, the foregoing approximate relation gives y/c = -0.000589, indicating an
α shift of .034° for Cli = 1.
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Other airfoil definition procedures

Interest in defining airfoils by a small number of parameters for use in numerical
optimization has led to several recent proposed parametric representations that might be useful.
In particular, the  work by August and co-workers at McDonnell Douglas in St. Louis, MO, uses
Chebyshev functions to obtain functions with can represent very general airfoil shapes with from
5 to 20 coefficients required. This work is described in AIAA Papers 93-0099 and 93-0100, “An
Efficient Approach to Optimal Aerodynamic Design,” Parts 1 and 2.

Another approach using Bezier methods frequently used in CAD surface representation
software has been used by Ventkataraman. This approach uses 14 design variables to represent
the airfoil, and is described in AIAA Paper 95-1875, “A New Procedure for Airfoil Definition,”
and AIAA Paper 95-1876, “Optimum Airfoil Design in Viscous Flows.” Smith and co-workers
at NASA Langley have used  a similar approach based on non-uniform rational B-splines
(NURBS). A description of their approach appears in AIAA Paper 93-0195, “Grid and Design
Variables Sensitivity Analysis for NACA Four-Digit Wing-Sections.”
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A.1.1. Tabulated Airfoil Definition and the Airfoil Library

Most modern airfoils are not described by equations, but are defined by a table of
coordinates. Frequently, these coordinates are the results of a computational aerodynamic design
program, and simple algebraic formulas can not be used to define the shape (this was the case
with the NACA 6-series airfoils described above). The following table provides a list of the
tabulated airfoils currently available on the class disk.. The subsequent tables  provide a guide to
these airfoils. A standard 2F10 format (the Jameson input format) is used with each set of
coordinates, in the form used as input in PANELv2. See App. D.2 for an exact description.

Airfoil Library Disk Files:
   file name      comments   

NACA 4 digit airfoils

NACA 0010 N0010.DAT
NACA 0010-35 N001035.DAT (Abbott & VonDoenhoff)
NACA 0012 N0012.DAT
NACA 4412 N44122.DAT

NACA 6 & 6A airfoils

NACA 63(2)-215 N632215.DAT NASA TM 78503
NACA 63(2)-215 mod B N632215m.DAT
NACA 64A010 N64A010.DAT
NACA 64A410 N64A410.DAT
NACA 64(3)-418 N643418.DAT
NACA 65(1)-012 N651012.DAT
NACA 65(1)-213 N651213.DAT
NACA 65(1)A012 N65A012.DAT

N658299M.DAT
N658299R.DAT

NACA 65(2)-215 N652215.DAT
NACA 66(3)-018 N663018.DAT

NASA General Aviation Series

LS(1)-0417 GAW1.DAT originally known as: GA(W)-1
LS(1)-0417 mod LS10417M.DAT
LS(1)-0413 GAW2.DAT originally known as: GA(W)-2
LS(1)-0013 LS10013.DAT

NASA Medium Speed Series

MS(1)-0313 MS10313.DAT
MS(1)-0317 MS10317.DAT

NASA Laminar Flow Series

NLF(1)-1215F NL11215F.DAT
NLF(1)-0414F NL10414F.DAT
NLF(1)-0416 NL10416.DAT
NLF(1)-0414Fmod NL0414FD.DAT drooped le
NLF(2)-0415 NL20415.DAT
HSNLF(1)-0213 HSN0213.DAT
HSNLF(1)-0213mod HSN0213D.DAT drooped le
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NASA Supercrtical Airfoils

SC(2)-0402 SC20402.DAT
SC(2)-0403 SC20403.DAT
SC(2)-0503 SC20503.DAT
SC(2)-0404 SC20404.DAT
SC(2)-0406 SC20406.DAT
SC(2)-0606 SC20606.DAT
SC(2)-0706 SC20706.DAT
SC(2)-1006 SC21006.DAT
SC(2)-0010 SC20010.DAT
SC(2)-0410 SC20410.DAT
SC(2)-0610 SC20610.DAT
SC(2)-0710 SC20710.DAT also known as Foil 33
SC(2)-1010 SC21010.DAT
SC(2)-0012 SC20012.DAT
SC(2)-0412 SC20412.DAT
SC(2)-0612 SC20612.DAT
SC(2)-0712 SC20712.DAT
SC(3)-0712(B) SC20712B.DAT
SC(2)-0414 SC20414.DAT
SC(2)-0614 SC20614.DAT
SC(2)-0714 SC20714.DAT Raymer, Ref. NASA TP 2890
SC(2)-0518 SC20518.DAT
FOIL31 FOIL31.DAT
SUPER11 SUPER11.dat 11% thick, from ICAS paper
SUPER14 SUPER14.dat 14% thick, NASA TM X-72712

NYU Airfoils

82-06-09 K820609.DAT
79-03-12 K790312.DAT
72-06-16 K720616.DAT
71-08-14 K710814.DAT
70-10-13 K701013.DAT
65-14-08 K651408.DAT
65-15-10 K651510.DAT
75-06-12            KORN.DAT the “Korn” Airfoil
75-07-15 K750715.DAT

Miscellaneous Transonic Airfoils

CAST 7 CAST7.DAT
DSMA 523 DSMA523.DAT from AIAA Papre 75-880
NLR HT 731081 NLRHT73.DAT from AGARD AR-138
ONERA M6 ONERAM6.DAT
RAE 2822 RAE2822.DAT
WILBY A WILBYA.DAT
WILBY B WILBYB.DAT
WILBY C WILBYC.DAT
WILBY R WILBYR.DAT
SUPER10 NASA10SC.DAT AGARD AR-138

MBB-A3.DAT AGARD AR-138
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Eppler Airfoils

EPPLER 662               EPP662.DAT Raymer’s book, ref NASA CP 2085
EPPLER 746               EPP746.DAT Raymer’s book, ref NASA CP 2085

Wortman Airfoils

FX-63-137-ESM FX63137.DAT
FX-72-MS-150A FX72M15A.DAT
FX-72-MS-150B FX72M15B.DAT

Miscellaneous Foils

ClarkY CLARKY.DAT
Early Liebeck High Lift RHLHILFT.DAT
NLR-1 NLR1.DAT Rotorcraft airfoil (NASA CP 2046, Vol. II)
RAE 100 RAE100.DAT
RAE 101 RAE101.DAT
RAE 102 RAE102.DAT
RAE 103 RAE103.DAT
RAE 104 RAE104.DAT

VariEze Airfoils

VariEze wing bl23 VEZBL32.DAT
VariEze winglet root VEZWLTR.DAT
VariEze winglet tip VEZWLTT.DAT
VariEze canard VEZCAN.DAT

Human powered aircraft airfoils

DAE 11 DAE11.DAT Daedalus airfoils (Mark Drela)
DAE 21 DAE21.DAT
DAE 31 DAE31.DAT
DAE 51 DAE51.DAT (propeller foil?)
Lissaman 7769 LISS769.DAT Gossamer Condor airfoil

Other airfoils are available on the world wide web, check App. F for sources. In particular,
the Applied Aerodynamics group at the University of Illinois, under the direction of Prof.
Michael Selig has established a massive online source for airfoil definitions and includes data
from wind tunnel tests on the airfoils. Their focus is directed toward airfoils designed for low
speeds and low Reynolds numbers. Finally, Richard Eppler has published an entire book of his
airfoils, Airfoil design and data, Springer-Verlag, 1990.
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The NASA low and medium speed airfoil program:

GA(W)-1

LS(1)-0417mod

GA(W)-2

mod

?

LS(1)-0013

MS(1)-0313

MS(1)-0317

mod

NLF(1)-0215F

NLF(1)-0414F

NLF(1)-0416

NLF(1)-0414F 
drooped L.E.

NLF(2)-0415

HSNLF(1)-0213

HSNLF(1)-0213
mod

NASA Low Speed, Medium Speed, and Natural Laminar Flow Airfoil Chart

Design
Lift

Design 
Thickness

Design
Mach Test?

Ordinates in 
Airfoil 
Library?

Ref. Comment
Airfoil 

Designation

.4/1.0 .17 TN D-7428 Low Speed

.17

.13 TM X-72697 "

.13 TM X-74018 "

.21 TM 78650 "

.13 TM-4003 "

.13 TP-1498 Medium 
Speed

.30 .17 .68 TP-1786 "

.17 TP-1919 "

.20 ? .15 ? Raymer's 
Book

Natural 
Laminar Flow

.40 ? .15 ? ? Raymer's 
Book "

.20 ? .13 ? ? TM-87602 "
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The NASA Phase 2 supercritical airfoils are listed in the following chart.

SC(2)-0402

SC(2)-0403

SC(2)-0503

SC(2)-0404

SC(2)-0406

SC(2)-0606

SC(2)-0706

SC(2)-1006

SC(2)-0010

SC(2)-0410

SC(2)-0610

SC(2)-0710

SC(2)-1010

SC(2)-0012

SC(2)-0412

SC(2)-0612

SC(2)-0712

SC(2)-0414

SC(2)-0614

SC(2)-0714

SC(2)-0518

NASA Supercritical Airfoils - Phase 21

Design
Lift

Design 
Thickness

Design
Mach

Test
?

Ordinates in 
Airfoil 
Library?

Ref. Comment
Airfoil 

Designation

1 Tabulated in NASA TP 2969, March 1990, by Charles D. Harris

0.40 .02

0.40 .03

0.50 .03

0.40 .04

0.40 .06 unpubl.

0.60 .06

0.70 .06 .795 unpubl.

1.00 .06 unpubl.

0.00 .10

0.40 .10 .785

0.60 .10 .765

0.70 .10 .755 TM X-72711 Airfoil 33

1.00 .10 .700

0.00 .12 ? TM-89102

0.40 .12

0.60 .12

0.70 .12 .735 ? TM-86370 TM-86371

0.40 .14

0.60 .14

0.70 .14 .715 (Raymers) TM X-72712 Low Speed 
TM-81912

1.00 .18
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Several transonic airfoils were developed at New York University by a group led by Paul
Garabedian. The following table provides a list of the airfoils they published.

79-03-12

72-06-16

71-08-14

70-10-13

65-14-08

65-15-10

82-06-09

75-06-12

75-07-15

Garabedian and Korn Airfoil Chart

Design
Lift

Design 
Thickness

Design
Mach Test?

Ordinates in 
Airfoil 
Library?

Pages in Ref.
Korn II Book Comment

Airfoil 
Designatio

n

.293 .123 .790 37,41-43

.609 .160 .720 48,52-54

.799 .144 .710 55,59-61

.998 .127 .700 62,66-68

1.409 .083 .650 73,77-79

1.472 .104 .650 80,84-86

0.590 .092 .820 91,95

0.629 .117 .750 96,99-101 "The Korn"

0.668 .151 .750 102,106

Their airfoils are included in:

Bauer, F., Garabedian, P., and Korn, D., A Theory of Supercritical Wing Sections with
Computer Programs and Examples, Lecture Notes in Economics and Mathematical Systems,
Vol. 66, Springer-Verlag, 1972.

Bauer, F., Garabedian, P., Jameson, A. and Korn, D., Supercritical Wing Sections II, A
Handbook, Lecture Notes in Economics and Mathematical Systems, Vol. 108, Springer-
Verlag, 1975.

Bauer, F., Garabedian, P., and Korn, D., Supercritical Wing Sections III, Lecture Notes in
Economics and Mathematical Systems, Vol. 150, Springer-Verlag, 1977.
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A.2 Classic Bodies of Revolution

Bodies of revolution form the basis for a number of shapes used in aerodynamic design and
are also often used in comparing computational methods. The bodies defined in this section are
generally associated with supersonic aerodynamics.

a. Summary of Relations

The body radius r is given as a function of x, r/l = f(x/l). Once r  is known, a number of other
values characterizing the shape can be determined.

The cross-sectional area and derivatives are:

 S(x) = πr2 (A-39)

   
dS

dx
= 2πr

dr

dx
(A-40)

d2S

dx2 = 2π
dr

dx
 
 
  

 
 

2
+ r

d2r

dx2

 

 
 

 

 
 (A-41)

Basic integrals are:

Volume,

V = S(x) dx
0

l

∫ (A-42)

Surface area,

Swet = 2π r(x)dx
0

l

∫ (A-43)

Length along the contour,

p(x ) = 1 +
dr

dx
 
 
  

 
 

2
dx

0

l

∫ (A-44)

Note that the incremental values can be found by changing the lower limit of the integrals.
The local longitudinal radius of curvature is given by:

R(x) =
1 +

dr

dx
 
 
  

 
 

2 

 
 

 

 
 

d2r

dx2

3/ 2

(A-45)

Several simple shapes are also of interest in addition to those presented in detail. They are:

Parabolic Spindle:
r

l
= 4

rmid

l

x

l
1 −

x

l
 
 
  

 
 (A-46)
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Ellipsoid of revolution:

r

l
= 2

rmid

l

x

l
1 −

x

l
 
 
  

 
 (A-47)

and the power law body:

r

l
=

r0
l

x

xN

 

 
 

 

 
 

n
(A-48)

where xN is the nose length, and r0 is the radius at x = xN. The nose is blunt for 0 < n < 1.

Another common shape is the spherical nose cap, and is discussed in detail in the reference
by Krasnov. References that discuss geometry of bodies of revolution are:

Krasnov, N.F., Aerodynamics of Bodies of Revolution, edited and annotated by D.N.
Morris, American Elsevier, New York, 1970.

Handbook of Supersonic Aerodynamics, Volume 3,  Section 8, “Bodies of
Revolution, NAVWEPS Report 1488, October 1961.

b). Tangent/Secant Ogives

The tangent or secant ogives are frequently used shapes in supersonic aerodynamics. The
nomenclature is illustrated in the following sketch.

x

r

r0

xn

x = l

R

δr

δN

Note that the ogive is actually the arc of a circle and when δr = 0 the ogive ends tangent to
the body, so that δr = 0 represents the tangent ogive body. If δr = δN, the cone-cylinder is
recovered. If δr = 0 and δN = 90°, the spherical cap case is obtained.
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The expression for the radius r is determined using three basic constants for a particular case:

A =
r0
l

cosδN

cosδr − cosδN

 

 
 

 

 
 (A-49)

B = 2
r0
l

sinδN

cosδr − cosδN

 

 
 

 

 
 (A-50)

and

C =
r0
l

(A-51)

The radius is then given by:

r

l
= A2 + B

x

l
 
 
  

 
 −

x

l
 
 
  

 
 

2
− A 0 <

x

l
<

xN

l

= C
xN
l

< x
l

<1

(A-52)

where xN is found as follows.
For a tangent ogive (δr = 0), the ogive can be defined by specifying either xN/r0 or δN. The

other value can then be found using:
Given δN,

xN

r0
=

sinδ N

1− cosδN

(A-53)

Or given xN/r0,

δN = cos−1

xN

r0
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 

(A-54)

For the secant ogive, the simplest analytical procedure is to define the ogive in terms of δN
and δr, and then find xN/l from:

xN

l
=

r0
l

sinδN − sinδr

cosδr − cosδN

 

 
 

 

 
 (A-55)

If xN/l is not satisfactory, δN and δr can be adjusted by trial and error to obtain the desired
nose length. A program can be set up to handle this process quite simply.

The first and second derivatives are then given by:

d r / l( )
d x/ l( ) =

B − 2 x / l( )
2 r / l( ) + A[ ]

(A-56)

and
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d2 r / l( )
d x/ l( )2 = −

B − 2 x /l( )[ ]
4 r / l( ) + A[ ]3

2

−
1

r /l( ) + A[ ]
(A-57)

The relationships between radius and area derivatives given in section a) are then used to
complete the calculation.

c) The von Kármán Ogive

The shape that produces minimum wave drag for a specified base area and length, according
to slender body theory. This ogive has a very slightly blunted nose, and is described by Ashley
and Landahl, Aerodynamics of Wings and Bodies, Addison-Wesley, 1965, pp. 178-181.

In this case it is convenient to work with the cross-sectional area and a new independent
variable:

θ = cos−1 2
x

xN

 

 
 

 

 
 − 1

 

 
 

 

 
 (A-58)

or
x

xN
=

1

2
1 + cosθ( ) (A-59)

where the nose is at θ = π, and the base is located at θ = 0.
Here we use xN to denote the “nose length” or length of the ogive, and allow this shape to be

part of an ogive-cylinder geometry.
The shape is then given as:

S(x)

l2
=

SB

l2 1 −
θ
π

+
sin2θ

2π
 
  

 
  

(A-60)

and

r

l
=

S / l2

π
(A-61)

where SB is the prescribed base area and l is the total length.

Defining

S =
S

l2 , x =
x

l , (A-62)

We have
dS 

dθ
= −

S B
π

1− cos2θ[ ] (A-63)

d2S 

dθ 2 = −
2

π
S B sin 2θ (A-64)

and



A-22 Applied Computational Aerodynamics

10/23/97

dS 
dx 

= ′ S = 4
π

l
xN

 
 
 

 
 
 S B sinθ

d2S 

dx 2
= ′ ′ S = −

8

π
l

xN

 
 
 

 
 
 

2
S B

tanθ

(A-65)

The radius derivatives are then computed by:

dr 

dx 
=

′ S 

2πr 
,

d2r 

dx 2
=

′ ′ S 

2πr 
−

′ r 2

r 
(A-66)

d) The Sears-Haack Body

This is the minimum wave drag shape for a given length and volume according to slender
body theory. The body is closed at both ends and has a very slightly blunted nose, and is
symmetric about the mid-point. It  is described by Ashley and Landahl, Aerodynamics of Wings
and Bodies, Addison-Wesley, 1965, pp. 178-181.

Although the notation used in section c) for the von Kármán Ogive section could be used, it
is more common to describe the Sears-Haack body in the manner presented below. This form
uses the fineness ratio, f = l/dmax to scale the shape. However, it is important to realize that the
Sears-Haack shape is the minimum drag body for a specified volume and length, not for a
specified fineness ratio. The minimum drag body for a specified fineness ratio is described below
in section e) below.

Defining

ς = 1− 2
x

l
 
 
  

 
 , (A-67)

the Sears-Haack body is defined as

r

l
=

1

2 f
1− ς 2( )3/ 4

. (A-68)

The derivatives are given by:

d r / l( )
d x/ l( ) =

3ς
1− ς2

r

l
 
 
  

 
 (A-69)

and

d2 r / l( )
d x/ l( )2 = −

1

1 −ς 2

 

 
 

 

 
 ς

d r / l( )
d(x/ l)

+ 6
r

l
 
 
  

 
 

 
  

 
  . (A-70)

The fineness ratio is related to the length and volume by:

f =
3π2

64

l3

V
. (A-71)
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In terms of f and either V or l, the other value can be found from the following:

Given f and l:

V =
3π2

64

l3

f2 . (A-72)

Given f and V:

l = V
64

3π2 f 2 
  

 
  
1/ 3

. (A-73)

The relationships between radius and area derivatives given in Section a) are then used to
complete the calculation.

e) The Haack-Adams Bodies

The Haack-Adams bodies define a number of minimum drag shapes, as described by M.C.
Adams in “Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag,”
NACA TN 2550, November 1951. These bodies correspond to the following cases:

I. Given length, base area, and contour passing through a specifically located radius.
II. Given length, base area, and maximum area.
III. Given length, base area, and volume.

In case I, the specified radius will not necessarily be the maximum radius.
The notation used in TN 2550 is employed in the equations, leading to the following

definitions:

S = 4
S (x)

l2
, B = 4

SBASE

l2
, A = 4

SA

l2 , V = 8
V 

l3
 
 
 

 
 
 (A-74)

where S(x) is the area, SA corresponds to either the specified area at a given location, or the
maximum area, and V is the volume. The independent variable is defined with its origin at the
body mid-point:

ς = 2
x

l
 
 
  

 
 − 1 (A-75)

and the location of the specified radius (Case I) and maximum radius (Case II) is designated C
and given in ζ coordinates. When referred to the x coordinate, this value is designated Cx.

The equation for each case can be written in a standard form:

Case I — Given SBASE, SA, Cx:

πS

B
= πA

B
− cos−1(−c) 

  
 
  

1 − ς2 (1− cς)

1 − c2( )3/ 2 +
1 − ς 2 ς − c( )

(1 − c2 )

+
πA

B
− cos−1(c) − c 1 − c2 

  
 
  

ς − c( )2

1 − c( )2 ln N + cos−1(−ς )

(A-76)
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where

N =
1 − cς − 1 − c2 1 −ς 2

ς − c
. (A-77)

Case II — Given SBASE,  SMAX:

First find the location of the maximum thickness from the implicit relation

f (c) = 0 =
πA

B
c − 1 − c2 − c cos−1(−c). (A-78)

Use Newton’s iteration

c i+1 = ci −
f (ci )

′ f (ci )
(A-79)

where

′ f (c) =
πA

B
− cos−1(−c) . (A-80)

An initial guess of c = 0 is sufficient to start the iteration. Given c, the relation for the area is:

πS

B
=

1 − ς 2

c
+

ς − c( )2

c 1− c2
ln N + cos−1(−ς) (A-81)

where N is the same function as given in Case I.

Case III — Given SBASE and V:

πS

B
=

8

3

V

B
−1

 
  

 
  1− ς 2( )3/ 2

+ ς 1 − ς2 + cos−1(−ς ) (A-82)

The maximum thickness for this case is located at:

e =
1

4(V / B − 1)
(A-83)

and in x coordinates

ex =
1

2
1 + e( ) (A-84)

Note that if SBASE = 0, the Sears-Haack body is recovered.
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A.3 Cross-Section Geometries for Bodies

The axisymmetric bodies described above can be used to define longitudinal lines for
aerodynamic bodies. However, many aerodynamic bodies are not axisymmetric (the fuselage
cross section is not round). In this section we define a class of cross section shapes that can be
used to develop more realistic aerodynamic models. In particular, they have been used to study
geometric shaping effects on forebody aerodynamic characteristics using an analytical forebody
model with the ability to produce a wide variation of shapes. This generic model makes use of
the equation of a super-ellipse to define cross sectional geometry. The super-ellipse, used
previously to control flow expansion around wing leading edges, can recover a circular cross
section, produce elliptical cross sections and can also produce chine-shaped cross sections. Thus
it can be used to define a variety of different cross sectional shapes.

The super-ellipse equation for a cross section is:

z

b
 
 
  

 
 

2+n
+

y

a
 
 
  

 
 

2+m
=1  (A-85)

where n and m are adjustable coefficients that control the surface slopes at the top and bottom
plane of symmetry and chine leading edge. The constants a and b correspond to the maximum
half-breadth (the maximum width of the body) and the upper or lower centerlines respectively.
Depending on the value of n and m, the equation can be made to produce all the shapes described
above. The case n = m = 0 corresponds to the standard ellipse. The body is circular when a = b.

When n = -1 the sidewall is linear at the maximum half breadth line, forming a distinct crease
line. When n < -1 the body cross section takes on a cusped or chine-like shape. As n increases,
the cross-section starts to become rectangular.

The derivative of z / b with respect to y / a is:

dz 

dy 
= −

2 + m

2 + n
 
 
  

 
 

1− y 2+m( )[ ]
1+n

2+n
 
 
  

 
 

(A-86)

where z = z / b and y = y /a. As y → 1, the slope becomes :

dz 

dy 
=

∞ n > −1

0 n < −1

− 2 + m( )y 1+m n = −1

 

 
 

 
 

(A-87)

The following sketch shows a quadrant of the cross section for various values of n ranging from
a chine to a rectangle.
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n = 0 is a circular or elliptic cross section

Different cross sections can be used above and below the maximum half-breadth line. Even
more generality can be provided by allowing n and m to be functions of the axial distance x. The
parameters a and b can also be functions of the planform shape and varied to study planform
effects. Notice that when n = -1 the value of m can be used to control the slope of the sidewall at
the crease line. Also, observe that large positive values of n drives the cross section shape to
approach a rectangular or square shape.

Connecting various cross section shapes is part of the subject of lofting, described here in
Chapter 9. One of the few other textbook discussions is contained in Raymer, Aircraft Design: A
Conceptual Approach, published by the AIAA, in Chapter 7. Dan Raymer worked at North
American Aviationn, where Liming literally wrote the book on the analytic definition of aircraft
lines.
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A.4 Planform Analysis

Several local and integral planform properties are of interest in aerodynamic analysis. They
are summarized in this section. (Note: Biplanes use the total area of both wings as the reference
area). For a more complete presentation see DATCOM.

The local values are the leading and trailing edge locations, xLE(y) and xTE(y), the local
chord, c(y), and the leading and trailing edge sweep angles: ΛLE(y) and ΛTE(y). The following
sketch illustrates the standard nomenclature.

y

x

c

c

x

b
2

T

R
LE

x
TE

LE
Λ

ΛTE

The integral properties are (assuming the planform is symmetric):

1. Planform Area, S

S = 2 c(y) dy
0

b / 2
∫ (A-88)

2. Mean aerodynamic chord, mac

c =
2

S
c2(y) dy

0

b / 2

∫ (A-89)

3. X position of centroid of area, xcen

xcen =
2

S
c(y) xLE(y) +

c(y)

2
   

   dy

0

b / 2
⌠ 
⌡ 
 (A-90)
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4. Spanwise position of mac

ymac =
2

S
yc(y) dy

0

b / 2
∫ (A-91)

5. Leading edge location of mac.

xLEmac
=

2

S
xLE(y)c(y) dy

0

b / 2
∫ (A-92)

In addition, the following derived quantities are often of interest:

Aspect Ratio:

AR =
b2

Sref

(A-93)

Average Chord:

cA =
Sref

b
(A-94)

Taper Ratio:

λ =
cT

cR

(A-95)

Sref is usually chosen to be equal to the area of a basic reference trapezoidal planform, and
thus the actual planform area, S, may not equal Sref.

When considering two areas, recall that the centroid of the combined surfaces is:

S x = S1x 1 + S2x 2
S y = S1y 1 + S2y 2

. (A-96)

For a standard trapezoidal wing it is convenient to collect the following formulas, where the
sketch shows the nomenclature:

y

x

c
T

LE
Λ

x
0

c
R

b
2
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xLE(y) = xLE0
+ y tanΛ LE(y)

xTE(y) = xTE0
+ y tanΛTE(y)

(A-97)

and the local chord is:

c y( )
cR

=1 − 1− λ( )η (A-98)

where:

y =
b

2
η or η =

y

b 2
     and    λ =

cT

cR
.    (A-99)

The sweep at any element line can be found in terms of the sweep at any other by:

tan Λn = tanΛm −
4

AR
n − m( ) 1 − λ

1 + λ
 
 
  

 
 

 
  

 
  (A-100)

where n, m are fractions of the local chord. An alternate formula is available using the trailing
edge sweep angle:

tan Λn = (1 − n) tanΛ LE + n tanΛTE (A-101)

The integral and other relations are given by:

S =
b

2
cR 1 + λ( )

cave =
S

b

c 
cR

= 2
3

1 + λ + λ2

1 + λ

 

 
 

 

 
 

AR =
b2

S
=

b 2

cR

4

1 + λ
 
 
  

 
 

            

ymac = b
6

1 + 2λ
1 + λ

 
 
  

 
 

xLEmac

cR
=

xLE0

cR
+

1 + 2λ
12

 
 
 

 
 
 AR tanΛLE

xcen = xLEmac
+

c 

2

AR =
b2

S
=

b 2

cR

4

1+ λ
 
 
  

 
 

(A-102)
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When computing the projected planform area of an entire configuration, the following
formula is useful:

S = yk+1 + yk( )
k=1

k= N

∑ xk +1 − xk( ) (A-103)

where the sketch below defines the nomenclature.

At k = N, yk+1,xk+1 refer to the initial points y1,x1. For normal planforms,yn+1 = y1 = 0, so
that the summation can be terminated at N-1. This formula assumes planform symmetry and
provides the total planform area with only one side of the planform used in the computation.

y
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3 4

5
6

7

8

9

10N

A.5 Conical Camber

An important class of camber distributions is associated with the planform, and not the
airfoil. Conical camber has been widely used. Many forms have been used, however the NACA
defined a specific type of conical camber that is known as NACA conical camber. The most
recent example of NACA conical camber is the F-15 wing. It improves the drag characteristics of
wings in the subsonic and transonic flow region even though it was developed to reduce the drag
at supersonic speeds!

The key references are:

Hall, C.F., “Lift, Drag, and Pitching Moment of Low Aspect Ratio Wings at Subsonic
and Supersonic Speeds,” NACA RM A53A30, 1953.

This report provided the original mathematical definition of NACA conical camber.
It also provided a large range of test conditions for which the camber was effective.
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Boyd, J.W., Migotsky,E., and Wetzel, B.E., “A Study of Conical Camber for Triangular
and Swept Back Wings,” NASA RM A55G19, Nov. 1955.

This report provided more details of the derivation of the formulas for NACA conical
camber, and corrected errors in the equations presented in the first report. Additional
experimental results were also presented.

A.6 Three-Dimensional Wing Geometry

Wing geometry is often defined by interpolating between airfoil section-specified at particular
spanwise stations. Some care some be taken to interpolate properly. See Chapter 9, Geometry
and Grids for a discussion of wing lofting. Program WNGLFT is described in App. E, Utility
Codes. This program provides an example of a lofting scheme to provide wing ordinates at any
desired location. It can be used to provide wing ordinates for a wide class of wings. It in fact will
produce a very good approximation to the wing design employed by a successful Navy airplane.
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Appendix C    Preparation of Written Material

Effective engineering requires good communication skills. Documentation and presentation of

results are two important aspects of computational aerodynamics. This requires good use of both

text and graphics. This appendix provides guidelines for student aerodynamicists. The first

impression you make on the job is extremely important. Learn and practice good written

communication. That is the way bosses “up-the-line” will see your work. You cannot do good

written work without practice. This is especially true in aerodynamics, where good plots are

crucial. You can’t play in the band or on the basketball team without developing skills through

practice. It is even more important to a career to develop good graphics skills while you are in

school.

Text: Analysis and calculations must be documented with enough detail to settle any question

that arises long after the calculations are made. This includes defining the precise version of the

code used, the configuration geometric description, grid details, program input and output. Often

questions arise (sometimes years later) where the documentation is insufficient to figure out with

certainty exactly what happened. Few of us can remember specific details even after a few

months, and particularly when being grilled because something doesn’t “look right” (this is the

situation when the flight test data arrives). Two personal examples from wind tunnel testing

include inadequate documentation of the exact details of transition fixing and the sign

convention for deflection of surfaces (at high angle-of-attack it may not be at all obvious what

effect a “plus” or “minus” deflection would produce on the aerodynamic results). Good

documentation is also crucial since a typical set of computations might cost many hundreds of

thousands of dollars, and the results might be examined for effects that weren’t of specific

interest when the initial calculations were made. An unfortunate, but frequent, occurrence in

practice is that the time and budget expire before the reporting is completed. Since the report is

done last, budget overruns frequently result in poor final documentation. It is best if the

documentation can be put together while the computations are being conducted. Computational

aerodynamics work should copy wind tunnel test procedures and maintain a test notebook. This

approach can minimize the problem.

When writing a memo describing the results be accurate, neat and precise. In a page or two,

outline the problem, what you did to resolve it, and your conclusion. What do the results mean?

What are the implications for your organization? Provide key figures together with the

description of how you arrived at your conclusion. Additional details should be included in an

appendix, possibly with limited distribution. When writing your memo or report provide

specifics, not generalities, i.e., rather than “greater than,” say “12% greater than.” What do the

results mean? When writing the analysis, do not simply provide tables of numbers and demand
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that the reader do the interpretation. You must tell the reader exactly what you think the results

mean. The conclusion to be drawn from the each figure must be precisely stated. Providing

computer program output and expecting someone else (your boss or your teacher) to examine

and interpret the results is totally unacceptable. This is the difference between an engineer and

an engineering aide.

Plots and Graphs: To make good plots using the computer, you must understand how a plot

is supposed to be made. Hand plotting defines the standards. When plotting by hand use real

graph paper. For A size (8 1/2 x 11) plots this means K&E* Cat. No. 46 1327 for 10x10 to the

half inch, and an equivalent type for 10x10 to the centimeter. There is an equivalent catalog

number for B size paper.** This is Albanene tracing paper. It is the paper that was actually used

in engineering work, and it’s expensive. The University Bookstore will stock this graph paper

until it’s no longer available (I think they keep it separated, stored under my name). You should

use it carefully, and not waste it. With high quality tracing paper, where the grid is readily visible

on the back side, you plot on the back. This allows you to make erasures and produces a better

looking plot. Orange graph paper is standard, and generally works better with copy machines,

especially when you plot on the back. Before computer data bases were used, tracing paper

allowed you to keep reference data on a set of plots and easily overlay other results for

comparison (remembering to allow for overlay comparisons by using the same scale for your

graphs).

Always draw the axis well inside the border, leaving room for labels inside the border of the

paper. Labels should be well inside the page margins. In reports, figure titles go on the bottom.

For overhead presentations, the figure titles go on the top. Data plots should contain at least:

• Reference area,  reference chord and span as appropriate (include units).
• Moment reference center location.
• Reynolds number, Mach number, and transition information.
• Configuration identification.

If the plots are not portrait style, and must be turned to use landscape style, make sure that

they are attached properly. This means placing the bottom of the figure on the right hand side of

the paper. This is exactly opposite the way output for landscape plots is output from printers.

However, this is the way it must be done.

Use proper scales: Use of “Bastard Scales” is grounds for bad grades in class and much,

much worse on the job.  This means using the “1,2, or 5 rule”. It simply says that the smallest

division on the axis of the plot must be easily read. Major ticks should be separated by an
                                                
* This paper is very high quality paper. With computers replacing hand plotting, this paper is being
discontinued by K&E. Most art supplies stores (sometimes erroneously also claiming to be engineering
supply stores) don’t stock good graph paper. Cheap paper will not be transparent, preventing easy tracing
from one plot to another.
** Wind tunnel data, especially drag polars, are often plotted on B size paper (11 x 17).
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increment that is an even multiple of 1, 2 or 5. For example, 10, 0.2, 50 and 0.001 are all good

increments between major ticks because it makes interpolation between ticks easy. Increments of

40, 25, 0.125 and 60 are poor choices of increments, and don’t obey the 1,2, or 5 rule. The

Boeing Scale Selection Rules chart illustrates the rule, and our version of it* is included as Fig.

C-1. Label plots neatly and fully. Use good line work. In putting lines on the page, use straight

edges and ship’s curves to connect points, no freehand lines. Ship’s curves and not French

curves are used by aeronautical engineers when working with force and moment data. Some

engineering supply catalogs call them aeronautical engineering curves. Today, pressure

distributions are usually plotted directly by computer software because of the density of data.

The University Bookstore stocks at least the most common size ship’s curve. As a young

engineer, I was told that if the wind tunnel data didn’t fit the ship’s curve, the data were wrong.

More often than not this has indeed turned out to be the case!

Drag polars are traditionally plotted with CD on the abscissa or X-axis, and CL on the

ordinate or Y-axis. Moment curves are frequently included with the CL-α curve. Figure C-2

provides an example of typical force and moment data plots. The moment axis is plotted from

positive to negative, also shown in the figure. This allows the engineer to rotate the graph and

examine Cm-Cl in a “normal” way to see the slope. Study the scales on the plot. Also, the drag,

moment, and lift results typically require the use of different scales.

The traditional way to plot data and results of calculations was to use symbols for data, and a

solid line for calculated results. Recently, and very unfortunately, this style has been reversed

when comparing force and moment data. Experimental data may be much more detailed than the

computations, which may have been computed at only one or two angles of attack. Nevertheless,

I object to using lines for data, and believe that the actual data points should be shown. When

comparing pressure distributions, calculations should always be represented by lines, and the

experimental data shown as symbols. Also, recall that in aeronautics Cp is plotted with the

negative scale upward. Figure C-3 provides a typical example of a Cp plot. When connecting

data with curves, they must pass through the data points. Connect complicated data with straight

lines, as shown in Fig. C-4. If the data points are dense, or a theory is used to compare with data,

you don’t need to draw lines between points (curves that don’t go through data points are

assumed to be theoretical results).

More comments on proper plots and graphs are contained in the engineering graphics text, by

Giesecke, eat al. (Ref. C-1). The engineer traditionally puts his initials and date in the lower right

hand corner of the plot. One problem frequently arises with plot labeling. In reports, the figure

titles go on the bottom. On view graphs and slides the figure titles go on the top. Many graphics

                                                
* This “improvement” was conceived by Joel Grassmeyer. It still requires some study.
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packages are oriented toward placing the titles on the top. This is unacceptable in engineering

reports. Finally, tables are labeled on the top for both reports and presentations.

Engineering plots made using your computer must be of engineering quality. To do this you

have to understand the requirements given above for hand plots, and should have made enough

graphs by hand to be able to identify problems in the computer generated graphs. For force and

moment data it is often easier to make plots by hand than to figure out how to get your plotting

package to do a good job. Typical problems include poor scale selection, poor quality printout,

not being to invert the axis direction, and inability to print the experimental data as symbols and

the theory as lines. Another problem that arises is the use of color. While color is important, it

presents a major problem if the report is going to be copied for distribution. Most engineering

reports don’t make routine use of color— yet (electronic reports will make color much easier to

distribute).

Reference

C-1 Giesecke, F.E., Mitchell, A., Spencer, H.C., Hill, I.L., Loving, R.O., and Dygdon, J.T.,
Principles of Engineering Graphics, Macmillan Publishing Cop., 1990, pap. 591-613.

Scale selection rules for engineering graphs

Originally devised by H.C. Higgins, The Boeing Company, re-interpreted for these notes.

1

1

1

This is a "5"

This is a "2"

This is a "1" Acceptable

Unacceptable

This is a "4"

1

Minor subdivisions of 1, 2, or 5 allow easy interpolation, and are the only
acceptable values. A minor division of 4, for example, is very difficult to use.

2 3 4 5

2

0

0

0

0

Figure C-1. Boeing scale selection chart
(based on a figure in the AIAA Student Journal, April, 1971)
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from Grumman Aero Report No. 393-82-02, April, 1982, “Experimental Pressure Distributions and
Aerodynamic Characteristics of a Demonstration Wing for a Wing Concept for Supersonic Maneuvering,”
by W.H. Mason

-0
.2

-0
.1

0

0.
1

0.
2

0.
3

0.
4

0.
5 -2

°
0°

2°
4°

6°
8°

10
°

12
°

14
°

R
un

 2
3

C L

α

M
 =

 1
.6

2

R
e/

ft
 =

 2
 x

 1
0

6
cb

ar
 =

 1
4.

74
7 

in

Sr
ef

 =
 3

42
.1

1 
in

2

Xm
om

 r
ef

 =
 1

6.
70

1 
in

 f
ro

m
 w

in
g 

ap
ex

tr
an

si
st

io
n 

fi
xe

d
B

as
el

in
e 

L
E

-0
.0

4
-0

.0
2

0

0.
02

C M

a) lift and moment

Figure C-2. Examples of wind tunnel data plots.
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from Grumman Aero Report No. 393-82-02, April, 1982, “Experimental Pressure Distributions and
Aerodynamic Characteristics of a Demonstration Wing for a Wing Concept for Supersonic Maneuvering,”
by W.H. Mason
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from Grumman Memo EG-ARDYN-86-051, 1986.
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D.1 PANEL

This is an interactive program directly from Moran, with modifications to improve computa-

tional speed for multiple angle of attack cases. A sample output that can be used to verify that the

program is working properly is given below.

    MORAN:   PROGRAM PANEL

INPUT NLOWER,NUPPER

30,30

INPUT NACA NUMBER

4412

     BODY SHAPE

    I         X         Y

    1      1.00000   0.00000
    2      0.99721  -0.00002
    3      0.98887  -0.00009
    4      0.97509  -0.00022
    5      0.95603  -0.00041
    6      0.93193  -0.00069
    7      0.90307  -0.00108
    8      0.86980  -0.00162
    9      0.83250  -0.00233
   10      0.79162  -0.00325
   11      0.74760  -0.00441
   12      0.70097  -0.00583
   13      0.65223  -0.00751
   14      0.60193  -0.00942
   15      0.55061  -0.01152
   16      0.49883  -0.01372
   17      0.44715  -0.01592
   18      0.39616  -0.01798
   19      0.34711  -0.02015
   20      0.29972  -0.02250
   21      0.25444  -0.02479
   22      0.21167  -0.02679
   23      0.17183  -0.02825
   24      0.13529  -0.02895
   25      0.10242  -0.02869
   26      0.07358  -0.02732
   27      0.04909  -0.02469
   28      0.02925  -0.02070
   29      0.01432  -0.01529
   30      0.00451  -0.00839
   31      0.00000   0.00000
   32      0.00096   0.00949
   33      0.00753   0.01960
   34      0.01969   0.03019
   35      0.03736   0.04105
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   36      0.06039   0.05187
   37      0.08856   0.06233
   38      0.12157   0.07207
   39      0.15904   0.08074
   40      0.20054   0.08799
   41      0.24556   0.09354
   42      0.29354   0.09715
   43      0.34387   0.09866
   44      0.39593   0.09797
   45      0.44833   0.09541
   46      0.50117   0.09150
   47      0.55392   0.08637
   48      0.60599   0.08018
   49      0.65679   0.07312
   50      0.70577   0.06538
   51      0.75240   0.05719
   52      0.79617   0.04877
   53      0.83663   0.04036
   54      0.87334   0.03220
   55      0.90594   0.02452
   56      0.93409   0.01756
   57      0.95751   0.01152
   58      0.97597   0.00661
   59      0.98928   0.00298
   60      0.99731   0.00075

INPUT ALPHA IN DEGREES:

2.

PRESSURE DISTRIBUTION

   I          X         Y         CP
   1       0.9986    0.0000     0.38467
   2       0.9930   -0.0001     0.30343
   3       0.9820   -0.0002     0.25675
   4       0.9656   -0.0003     0.22763
   5       0.9440   -0.0006     0.20840
   6       0.9175   -0.0009     0.19523
   7       0.8864   -0.0014     0.18587
   8       0.8512   -0.0020     0.17886
   9       0.8121   -0.0028     0.17317
  10       0.7696   -0.0038     0.16801
  11       0.7243   -0.0051     0.16280
  12       0.6766   -0.0067     0.15713
  13       0.6271   -0.0085     0.15077
  14       0.5763   -0.0105     0.14373
  15       0.5247   -0.0126     0.13638
  16       0.4730   -0.0148     0.12985
  17       0.4217   -0.0170     0.12807
  18       0.3716   -0.0191     0.12602
  19       0.3234   -0.0213     0.11687
  20       0.2771   -0.0236     0.10199
  21       0.2331   -0.0258     0.08422
  22       0.1917   -0.0275     0.06568
  23       0.1536   -0.0286     0.04878
  24       0.1189   -0.0288     0.03693
  25       0.0880   -0.0280     0.03573
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  26       0.0613   -0.0260     0.05561
  27       0.0392   -0.0227     0.11840
  28       0.0218   -0.0180     0.27208
  29       0.0094   -0.0118     0.60051
  30       0.0023   -0.0042     0.98725
  31       0.0005    0.0047     0.62389
  32       0.0042    0.0145    -0.17221
  33       0.0136    0.0249    -0.59380
  34       0.0285    0.0356    -0.77475
  35       0.0489    0.0465    -0.86631
  36       0.0745    0.0571    -0.92155
  37       0.1051    0.0672    -0.95698
  38       0.1403    0.0764    -0.97726
  39       0.1798    0.0844    -0.98317
  40       0.2231    0.0908    -0.97429
  41       0.2696    0.0953    -0.94986
  42       0.3187    0.0979    -0.90860
  43       0.3699    0.0983    -0.84568
  44       0.4221    0.0967    -0.76754
  45       0.4747    0.0935    -0.69391
  46       0.5275    0.0889    -0.62775
  47       0.5800    0.0833    -0.56419
  48       0.6314    0.0766    -0.50177
  49       0.6813    0.0692    -0.43979
  50       0.7291    0.0613    -0.37777
  51       0.7743    0.0530    -0.31529
  52       0.8164    0.0446    -0.25196
  53       0.8550    0.0363    -0.18742
  54       0.8896    0.0284    -0.12130
  55       0.9200    0.0210    -0.05316
  56       0.9458    0.0145     0.01760
  57       0.9667    0.0091     0.09212
  58       0.9826    0.0048     0.17280
  59       0.9933    0.0019     0.26569
  60       0.9987    0.0004     0.38467

    AT ALPHA =   2.000

     CD = -0.00078    CL =  0.73347    CM = -0.28985

 Another angle of attack? (Y/N):
n

STOP
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D.2 PANELV2  User's Manual

This manual describes the input for program PANELV2, an extended version of program
PANEL from Moran.

This program allows input of arbitrary airfoils for analysis, modification of airfoil shapes using
“bumps,” and output of a file for plotting or other analysis. The program runs interactively. The
input file for arbitrary airfoils is given below. (the disk with the program includes sample files,
identified by ending in “.pan”)

INPUT DESCRIPTION    (all numeric input is in 2F10.5 format)

Card Field Variable Description
1    1      Title Up to 80 characters describing the data set/case (A79)

2 1 FNUP number of X,Y pairs describing upper surface
2 FNLOW    "                       "          "           lower    "

3 dummy card (used for descriptor in input data)

4 1 X the upper surface airfoil x/c input station
2 Y the y/c value of the upper surface at this x/c

************ CARD 4 is repeated FNUP times ************

5 dummy card (used for descriptor in input data)

6 1 X the lower surface airfoil x/c input station
2 Y the y/c value of the lower surface at this x/c

************ CARD 6 is repeated FNLOW times ************

Notes:

1. Airfoils are input from leading edge to trailing edge.

2. The leading edge point must be input twice: once for the upper surface and once for the
lower surface descriptions.

OUTPUT FILE FORMAT

Card 1. TITLE
2. Heading for output
3. 4 fields: 4F10.4, this card contains

i) angle of attack, in degrees
ii) lift coefficient
iii) moment coeficient (about the quarter chord)
iv) drag coefficient from surface pressure integration (should be zero)

4. Number of points in 
5. Heading for output
6. 4 fields: 4F20.7  Note: this card is repeated for each control point

i) x/c, airfoil ordinate
ii) y/c, airfoil ordinate
iii) Cp, pressure coefficient
iii) Ue/Uinf, the surface velocity at x/c, y/c
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A sample input file illustrating the format:

GAW1 - THEORETICAL ORDINATES
   38.      38.
  X         Y    (UPPER SURFACE)
 0.0       0.0
 0.00200   0.01300
 0.00500   0.02035
 0.01250   0.03069
 0.02500   0.04165
 0.03750   0.04974
 0.05000   0.05600
 0.07500   0.06561
 0.10000   0.07309
 0.12500   0.07909
 0.15000   0.08413
 0.17500   0.08848
 0.20000   0.09209
 0.25000   0.09778
 0.30000   0.10169
 0.35000   0.10409
 0.40000   0.10500
 0.45000   0.10456
 0.50000   0.10269
 0.55000   0.09917
 0.57500   0.09674
 0.60000   0.09374
 0.62500   0.09013
 0.65000   0.08604
 0.67500   0.08144
 0.70000   0.07639
 0.72500   0.07096
 0.75000   0.06517
 0.77500   0.05913
 0.80000   0.05291
 0.82500   0.04644
 0.85000   0.03983
 0.87500   0.03313
 0.90000   0.02639
 0.92500   0.01965
 0.95000   0.01287
 0.97500   0.00604
 1.00000  -0.00074
 LOWER SURFACE
 0.0       0.0
 0.00200  -0.00974
 0.00500  -0.01444
 0.01250  -0.02052
 0.02500  -0.02691
 0.03750  -0.03191
 0.05000  -0.03569
 0.07500  -0.04209
 0.10000  -0.04700
 0.12500  -0.05087
 0.15000  -0.05426
 0.17500  -0.05700
 0.20000  -0.05926
 0.25000  -0.06265
 0.30000  -0.06448
 0.35000  -0.06517
 0.40000  -0.06483
 0.45000  -0.06344
 0.50000  -0.06091
 0.55000  -0.05683
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 0.57500  -0.05396
 0.60000  -0.05061
 0.62500  -0.04678
 0.65000  -0.04265
 0.67500  -0.03830
 0.70000  -0.03383
 0.72500  -0.02930
 0.75000  -0.02461
 0.77500  -0.02030
 0.80000  -0.01587
 0.82500  -0.01191
 0.85000  -0.00852
 0.87500  -0.00565
 0.90000  -0.00352
 0.92500  -0.00248
 0.95000  -0.00257
 0.97500  -0.00396

 1.00000  -0.00783
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A sample output from PANELv2:

    PROGRAM PANELv2
    Revised version of Moran code
    modifications by W.H. Mason

    INPUT NLOWER,NUPPER 
    (nupper and nlower MUST be equal, and nupper + nlower MUST be less than 100)
40,40

 for internally generated ordinates,    enter 0
 to read an external file of ordinates, enter 1
1

 Enter name of file to be read: gaw1.pan

 Input file name:gaw1.pan                
File title:: GAW1 - THEORETICAL ORDINATES                                             
      

  NU =  38     NL =  38

   Upper surface ordinates

     index         X/C          Y/C
      38        0.000000      0.000000
      39        0.002000      0.013000
      40        0.005000      0.020350
      41        0.012500      0.030690
      42        0.025000      0.041650
      43        0.037500      0.049740
      44        0.050000      0.056000
      45        0.075000      0.065610
      46        0.100000      0.073090
      47        0.125000      0.079090
      48        0.150000      0.084130
      49        0.175000      0.088480
      50        0.200000      0.092090
      51        0.250000      0.097780
      52        0.300000      0.101690
      53        0.350000      0.104090
      54        0.400000      0.105000
      55        0.450000      0.104560
      56        0.500000      0.102690
      57        0.550000      0.099170
      58        0.575000      0.096740
      59        0.600000      0.093740
      60        0.625000      0.090130
      61        0.650000      0.086040
      62        0.675000      0.081440
      63        0.700000      0.076390
      64        0.725000      0.070960
      65        0.750000      0.065170
      66        0.775000      0.059130
      67        0.800000      0.052910
      68        0.825000      0.046440
      69        0.850000      0.039830
      70        0.875000      0.033130
      71        0.900000      0.026390
      72        0.925000      0.019650
      73        0.950000      0.012870
      74        0.975000      0.006040
      75        1.000000     -0.000740
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   Lower surface ordinates

     index         X/C          Y/C
      38        0.000000      0.000000
      37        0.002000     -0.009740
      36        0.005000     -0.014440
      35        0.012500     -0.020520
      34        0.025000     -0.026910
      33        0.037500     -0.031910
      32        0.050000     -0.035690
      31        0.075000     -0.042090
      30        0.100000     -0.047000
      29        0.125000     -0.050870
      28        0.150000     -0.054260
      27        0.175000     -0.057000
      26        0.200000     -0.059260
      25        0.250000     -0.062650
      24        0.300000     -0.064480
      23        0.350000     -0.065170
      22        0.400000     -0.064830
      21        0.450000     -0.063440
      20        0.500000     -0.060910
      19        0.550000     -0.056830
      18        0.575000     -0.053960
      17        0.600000     -0.050610
      16        0.625000     -0.046780
      15        0.650000     -0.042650
      14        0.675000     -0.038300
      13        0.700000     -0.033830
      12        0.725000     -0.029300
      11        0.750000     -0.024610
      10        0.775000     -0.020300
       9        0.800000     -0.015870
       8        0.825000     -0.011910
       7        0.850000     -0.008520
       6        0.875000     -0.005650
       5        0.900000     -0.003520
       4        0.925000     -0.002480
       3        0.950000     -0.002570
       2        0.975000     -0.003960
       1        1.000000     -0.007830

    internally generated estimate of leading edge point

    X(IN)=   0.00200     Y(IN)=  -0.00974      IN= 37
    XC=      0.02136     YC=     -0.00069
    leading edge radious, RN =    0.02137

     Airfoil shape after interpolation in slopy2

    I         X         Y        dY/dX

    1      1.00000  -0.00783  -0.20440
    2      0.99846  -0.00752  -0.19879
    3      0.99384  -0.00664  -0.18137
    4      0.98618  -0.00537  -0.15044
    5      0.97553  -0.00401  -0.10315
    6      0.96194  -0.00300  -0.05058
    7      0.94550  -0.00248  -0.01697
    8      0.92632  -0.00246   0.01577
    9      0.90451  -0.00325   0.05653
   10      0.88020  -0.00513   0.09610
   11      0.85355  -0.00808   0.12293
   12      0.82472  -0.01195   0.14645
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   13      0.79389  -0.01694   0.17692
   14      0.76125  -0.02265   0.17042
   15      0.72700  -0.02893   0.18827
   16      0.69134  -0.03538   0.17927
   17      0.65451  -0.04188   0.17160
   18      0.61672  -0.04809   0.15625
   19      0.57822  -0.05356   0.12693
   20      0.53923  -0.05789   0.09288
   21      0.50000  -0.06091   0.06366
   22      0.46077  -0.06300   0.04346
   23      0.42178  -0.06436   0.02638
   24      0.38328  -0.06506   0.01022
   25      0.34549  -0.06515  -0.00540
   26      0.30866  -0.06467  -0.02049
   27      0.27300  -0.06366  -0.03711
   28      0.23875  -0.06203  -0.05922
   29      0.20611  -0.05976  -0.07942
   30      0.17528  -0.05703  -0.09830
   31      0.14645  -0.05381  -0.12751
   32      0.11980  -0.05011  -0.14721
   33      0.09549  -0.04621  -0.17860
   34      0.07368  -0.04179  -0.23093
   35      0.05450  -0.03693  -0.27172
   36      0.03806  -0.03210  -0.34047
   37      0.02447  -0.02667  -0.44665
   38      0.01382  -0.02131  -0.58795
   39      0.00616  -0.01569  -0.99951
   40      0.00154  -0.00864  -2.62162
   41      0.00000   0.00000 -51.15408
   42      0.00154   0.01144  51.67010
   43      0.00616   0.02240   3.61813
   44      0.01382   0.03207   1.65629
   45      0.02447   0.04126   1.02313
   46      0.03806   0.05005   0.74407
   47      0.05450   0.05796   0.55767
   48      0.07368   0.06517   0.42184
   49      0.09549   0.07186   0.33808
   50      0.11980   0.07794   0.27773
   51      0.14645   0.08346   0.22582
   52      0.17528   0.08852   0.19111
   53      0.20611   0.09289   0.15839
   54      0.23875   0.09666   0.12792
   55      0.27300   0.09978   0.10354
   56      0.30866   0.10221   0.07915
   57      0.34549   0.10394   0.05769
   58      0.38328   0.10485   0.03569
   59      0.42178   0.10497   0.01334
   60      0.46077   0.10429  -0.00698
   61      0.50000   0.10269  -0.02859
   62      0.53923   0.10007  -0.05335
   63      0.57822   0.09639  -0.08013
   64      0.61672   0.09138  -0.11084
   65      0.65451   0.08525  -0.14833
   66      0.69134   0.07818  -0.17759
   67      0.72700   0.07051  -0.20459
   68      0.76125   0.06248  -0.22600
   69      0.79389   0.05445  -0.24141
   70      0.82472   0.04651  -0.25101
   71      0.85355   0.03888  -0.26228
   72      0.88020   0.03173  -0.26695
   73      0.90451   0.02517  -0.26948
   74      0.92632   0.01929  -0.26948
   75      0.94550   0.01409  -0.27014
   76      0.96194   0.00961  -0.27205
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   77      0.97553   0.00590  -0.27349
   78      0.98618   0.00300  -0.27251
   79      0.99384   0.00092  -0.27123
   80      0.99846  -0.00032  -0.27057
   81      1.00000  -0.00074  -0.27028

  do you want to modify this airfoil? (Y/N):
y

  do you want to add a bump to this airfoil? (Y/N):
y

  upper (1) or lower(0) surface?
1

  input begining, middle and end of bump
.05,.5,.9

  input size of bump:

      + adds to thickness
      - subtracts from thickness
.03

    Airfoil modification

      I           X/C       Y/C baseline    delta Y/C        Y/C
     41         0.00000       0.00000       0.00000       0.00000
     42         0.00154       0.01144       0.00000       0.01144
     43         0.00616       0.02240       0.00000       0.02240
     44         0.01382       0.03207       0.00000       0.03207
     45         0.02447       0.04126       0.00000       0.04126
     46         0.03806       0.05005       0.00000       0.05005
     47         0.05450       0.05796       0.00000       0.05796
     48         0.07368       0.06517       0.00003       0.06520
     49         0.09549       0.07186       0.00021       0.07208
     50         0.11980       0.07794       0.00070       0.07864
     51         0.14645       0.08346       0.00168       0.08514
     52         0.17528       0.08852       0.00330       0.09183
     53         0.20611       0.09289       0.00566       0.09854
     54         0.23875       0.09666       0.00874       0.10540
     55         0.27300       0.09978       0.01243       0.11221
     56         0.30866       0.10221       0.01649       0.11870
     57         0.34549       0.10394       0.02059       0.12453
     58         0.38328       0.10485       0.02434       0.12920
     59         0.42178       0.10497       0.02736       0.13234
     60         0.46077       0.10429       0.02932       0.13361
     61         0.50000       0.10269       0.03000       0.13269
     62         0.53923       0.10007       0.02914       0.12922
     63         0.57822       0.09639       0.02669       0.12308
     64         0.61672       0.09138       0.02297       0.11435
     65         0.65451       0.08525       0.01848       0.10372
     66         0.69134       0.07818       0.01376       0.09194
     67         0.72700       0.07051       0.00935       0.07986
     68         0.76125       0.06248       0.00566       0.06813
     69         0.79389       0.05445       0.00292       0.05737
     70         0.82472       0.04651       0.00119       0.04770
     71         0.85355       0.03888       0.00031       0.03920
     72         0.88020       0.03173       0.00003       0.03176
     73         0.90451       0.02517       0.00000       0.02517
     74         0.92632       0.01929       0.00000       0.01929
     75         0.94550       0.01409       0.00000       0.01409
     76         0.96194       0.00961       0.00000       0.00961
     77         0.97553       0.00590       0.00000       0.00590

D-12 Applied Computational Aerodynamics

Tuesday, January 21, 1997



     78         0.98618       0.00300       0.00000       0.00300
     79         0.99384       0.00092       0.00000       0.00092
     80         0.99846      -0.00032       0.00000      -0.00032

  do you want to deflect the trailing edge? (Y/N):
y

  What is the x/c of the start of the deflection?
.8

  what is the deflection, in degrees?
15.

   Lower Surface deflected

     i       x(i)       y-old      delta y      y-new
     1     1.00000    -0.00783     0.05359    -0.06142
     2     0.99846    -0.00752     0.05318    -0.06070
     3     0.99384    -0.00664     0.05194    -0.05858
     4     0.98618    -0.00537     0.04989    -0.05526
     5     0.97553    -0.00401     0.04703    -0.05105
     6     0.96194    -0.00300     0.04339    -0.04639
     7     0.94550    -0.00248     0.03899    -0.04147
     8     0.92632    -0.00246     0.03385    -0.03630
     9     0.90451    -0.00325     0.02800    -0.03125
    10     0.88020    -0.00513     0.02149    -0.02662
    11     0.85355    -0.00808     0.01435    -0.02243
    12     0.82472    -0.01195     0.00662    -0.01858

   Upper Surface deflected

     i       x(i)       y-old      delta y      y-new
    70     0.82472     0.04770     0.00662     0.04108
    71     0.85355     0.03920     0.01435     0.02485
    72     0.88020     0.03176     0.02149     0.01027
    73     0.90451     0.02517     0.02800    -0.00283
    74     0.92632     0.01929     0.03385    -0.01455
    75     0.94550     0.01409     0.03899    -0.02489
    76     0.96194     0.00961     0.04339    -0.03378
    77     0.97553     0.00590     0.04703    -0.04114
    78     0.98618     0.00300     0.04989    -0.04689
    79     0.99384     0.00092     0.05194    -0.05102
    80     0.99846    -0.00032     0.05318    -0.05350
    81     1.00000    -0.00074     0.05359    -0.05433

   setting up coefficient matrix - takes some time

   Computing LU decomposition - may take awhile

  input alpha in degrees
2.

   Pressure and Velocity distributions

   I          X         Y          CP         U/Ue
   1       0.9992   -0.0611     0.41670     -0.7637
   2       0.9962   -0.0596     0.51302     -0.6978
   3       0.9900   -0.0569     0.60839     -0.6258
   4       0.9809   -0.0532     0.63092     -0.6075
   5       0.9687   -0.0487     0.60386     -0.6294
   6       0.9537   -0.0439     0.57453     -0.6523
   7       0.9359   -0.0389     0.57245     -0.6539
   8       0.9154   -0.0338     0.57498     -0.6519

report typos and errors to W.H. Mason Appendix D: Programs  D-13

Tuesday, January 21, 1997



   9       0.8924   -0.0289     0.57777     -0.6498
  10       0.8669   -0.0245     0.59221     -0.6386
  11       0.8391   -0.0205     0.63641     -0.6030
  12       0.8093   -0.0178     0.67164     -0.5730
  13       0.7776   -0.0198     0.58930     -0.6409
  14       0.7441   -0.0258     0.53214     -0.6840
  15       0.7092   -0.0322     0.47252     -0.7263
  16       0.6729   -0.0386     0.41531     -0.7646
  17       0.6356   -0.0450     0.35948     -0.8003
  18       0.5975   -0.0508     0.30927     -0.8311
  19       0.5587   -0.0557     0.27221     -0.8531
  20       0.5196   -0.0594     0.25583     -0.8627
  21       0.4804   -0.0620     0.25355     -0.8640
  22       0.4413   -0.0637     0.25645     -0.8623
  23       0.4025   -0.0647     0.26273     -0.8586
  24       0.3644   -0.0651     0.27258     -0.8529
  25       0.3271   -0.0649     0.28574     -0.8451
  26       0.2908   -0.0642     0.30098     -0.8361
  27       0.2559   -0.0628     0.32177     -0.8235
  28       0.2224   -0.0609     0.35146     -0.8053
  29       0.1907   -0.0584     0.38532     -0.7840
  30       0.1609   -0.0554     0.42540     -0.7580
  31       0.1331   -0.0520     0.47686     -0.7233
  32       0.1076   -0.0482     0.52766     -0.6873
  33       0.0846   -0.0440     0.59616     -0.6355
  34       0.0641   -0.0394     0.68317     -0.5629
  35       0.0463   -0.0345     0.76489     -0.4849
  36       0.0313   -0.0294     0.87733     -0.3502
  37       0.0191   -0.0240     0.96586     -0.1848
  38       0.0100   -0.0185     0.99394      0.0779
  39       0.0038   -0.0122     0.71924      0.5299
  40       0.0008   -0.0043     0.00089      0.9996
  41       0.0008    0.0057    -0.84325      1.3577
  42       0.0038    0.0169    -1.79413      1.6716
  43       0.0100    0.0272    -2.45163      1.8579
  44       0.0191    0.0367    -2.56550      1.8883
  45       0.0313    0.0457    -2.52528      1.8776
  46       0.0463    0.0540    -2.36679      1.8349
  47       0.0641    0.0616    -2.11734      1.7656
  48       0.0846    0.0686    -1.89645      1.7019
  49       0.1076    0.0754    -1.71369      1.6473
  50       0.1331    0.0819    -1.57093      1.6034
  51       0.1609    0.0885    -1.49116      1.5783
  52       0.1907    0.0952    -1.45244      1.5660
  53       0.2224    0.1020    -1.45256      1.5661
  54       0.2559    0.1088    -1.49447      1.5794
  55       0.2908    0.1155    -1.56755      1.6024
  56       0.3271    0.1216    -1.66552      1.6326
  57       0.3644    0.1269    -1.77142      1.6648
  58       0.4025    0.1308    -1.86810      1.6935
  59       0.4413    0.1330    -1.94601      1.7164
  60       0.4804    0.1331    -1.99347      1.7302
  61       0.5196    0.1310    -1.98282      1.7271
  62       0.5587    0.1261    -1.89361      1.7011
  63       0.5975    0.1187    -1.71802      1.6486
  64       0.6356    0.1090    -1.49638      1.5800
  65       0.6729    0.0978    -1.27652      1.5088
  66       0.7092    0.0859    -1.09776      1.4484
  67       0.7441    0.0740    -0.99374      1.4120
  68       0.7776    0.0628    -1.12848      1.4589
  69       0.8093    0.0492    -0.82110      1.3495
  70       0.8391    0.0330    -0.48770      1.2197
  71       0.8669    0.0176    -0.31486      1.1467
  72       0.8924    0.0037    -0.20068      1.0958
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  73       0.9154   -0.0087    -0.11007      1.0536
  74       0.9359   -0.0197    -0.04075      1.0202
  75       0.9537   -0.0293     0.01110      0.9944
  76       0.9687   -0.0375     0.03867      0.9805
  77       0.9809   -0.0440     0.04913      0.9751
  78       0.9900   -0.0490     0.09990      0.9487
  79       0.9962   -0.0523     0.23071      0.8771
  80       0.9992   -0.0539     0.41671      0.7637
   I          X         Y          CP         U/Ue

    AT ALPHA =   2.000

     CL =  1.82147    CM(l.e.) = -0.76764    Cm(c/4) = -0.31257
     CD = -0.00344 (theoretically zero)

 send output to a file? (Y/N):
y

 enter file name: gaw1.out

 enter file title: GAW 1 airfoil with upper surface mod and trailing edge deflected

 Another angle of attack? (Y/N):
n

STOP 

The output disk file generated from the above is given here (for a 44,44 panel case):

GAW 1 airfoil with upper surface mod and trailing edge deflected  
     Alpha    CL        cmc4      CD
    2.0000    1.8253   -0.3139   -0.0034
          90.0000000
              X/C                 Y/C                  Cp                 U/UE
           1.0000000          -0.0614198           0.4218349          -0.7603717
           0.9987261          -0.0608210           0.4894220          -0.7145474
           0.9949107          -0.0590636           0.5828183          -0.6458961
           0.9885734          -0.0562688           0.6198552          -0.6165588
           0.9797465          -0.0526529           0.6121694          -0.6227604
           0.9684749          -0.0485395           0.5824285          -0.6461977
           0.9548160          -0.0441873           0.5709316          -0.6550332
           0.9388395          -0.0396023           0.5742147          -0.6525223
           0.9206268          -0.0348995           0.5779232          -0.6496744
           0.9002706          -0.0303699           0.5814999          -0.6469159
           0.8778748          -0.0262270           0.5949170          -0.6364613
           0.8535534          -0.0224278           0.6267794          -0.6109178
           0.8274304          -0.0189073           0.7059953          -0.5422220
           0.7996389          -0.0159320           0.6026480          -0.6303586
           0.7703204          -0.0211078           0.5561817          -0.6661969
           0.7396245          -0.0265297           0.4989320          -0.7078615
           0.7077075          -0.0324513           0.4452444          -0.7448192
           0.6747321          -0.0383475           0.3940417          -0.7784333
           0.6408663          -0.0441870           0.3435679          -0.8102050
           0.6062826          -0.0496877           0.2998845          -0.8367290
           0.5711573          -0.0544341           0.2689947          -0.8549885
           0.5356696          -0.0582109           0.2556977          -0.8627295
           0.5000000          -0.0609100           0.2539230          -0.8637575
           0.4643304          -0.0628407           0.2562625          -0.8624022
           0.4288425          -0.0641589           0.2613289          -0.8594598
           0.3937173          -0.0649298           0.2692938          -0.8548135
           0.3591337          -0.0651852           0.2802141          -0.8484020
           0.3252679          -0.0649567           0.2932411          -0.8406895
           0.2922925          -0.0642823           0.3083775          -0.8316385
           0.2603754          -0.0631488           0.3301547          -0.8184408
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           0.2296796          -0.0614624           0.3589480          -0.8006572
           0.2003612          -0.0592899           0.3902262          -0.7808802
           0.1725696          -0.0567585           0.4273256          -0.7567526
           0.1464466          -0.0538145           0.4750733          -0.7245182
           0.1221252          -0.0504530           0.5206525          -0.6923493
           0.0997294          -0.0469538           0.5783747          -0.6493268
           0.0793732          -0.0430568           0.6562179          -0.5863293
           0.0611605          -0.0387003           0.7307052          -0.5189362
           0.0451840          -0.0343281           0.8209081          -0.4231924
           0.0315251          -0.0296737           0.9181719          -0.2860562
           0.0202535          -0.0247229           0.9870794          -0.1136685
           0.0114266          -0.0198401           0.9721012           0.1670296
           0.0050893          -0.0145438           0.6358421           0.6034549
           0.0012739          -0.0078949          -0.0395444           1.0195805
           0.0000000           0.0000000          -0.8027386           1.3426610
           0.0012739           0.0104299          -1.6840084           1.6382943
           0.0050893           0.0205191          -2.3751559           1.8371598
           0.0114266           0.0295006          -2.5661790           1.8884330
           0.0202535           0.0379599          -2.5584900           1.8863961
           0.0315251           0.0461391          -2.4712462           1.8631281
           0.0451840           0.0537536          -2.2740183           1.8094249
           0.0611605           0.0606522          -2.0435944           1.7445900
           0.0793732           0.0671033          -1.8532349           1.6891521
           0.0997294           0.0732909          -1.6915706           1.6406007
           0.1221252           0.0792271          -1.5635967           1.6011236
           0.1464466           0.0851389          -1.4915837           1.5784751
           0.1725696           0.0912161          -1.4534186           1.5663393
           0.2003612           0.0973116          -1.4457374           1.5638853
           0.2296796           0.1035252          -1.4751878           1.5732729
           0.2603755           0.1097611          -1.5325123           1.5913869
           0.2922925           0.1158108          -1.6132200           1.6165457
           0.3252679           0.1214624          -1.7096776           1.6461098
           0.3591337           0.1263813          -1.8051412           1.6748556
           0.3937174           0.1302163          -1.8901043           1.7000307
           0.4288426           0.1327159          -1.9578166           1.7198304
           0.4643304           0.1336181          -1.9988899           1.7317303
           0.5000000           0.1326900          -1.9909948           1.7294493
           0.5356696           0.1296440          -1.9168615           1.7078822
           0.5711575           0.1243886          -1.7714504           1.6647674
           0.6062827           0.1169697          -1.5728503           1.6040107
           0.6408663           0.1077561          -1.3658797           1.5381416
           0.6747321           0.0973867          -1.1803569           1.4766032
           0.7077075           0.0864435          -1.0399497           1.4282681
           0.7396246           0.0755168          -0.9781721           1.4064751
           0.7703204           0.0650848          -1.1870403           1.4788646
           0.7996388           0.0555373          -0.7750797           1.3323212
           0.8274304           0.0395294          -0.4784321           1.2159079
           0.8535534           0.0248468          -0.3243269           1.1507940
           0.8778748           0.0115267          -0.2185851           1.1038954
           0.9002706          -0.0005504          -0.1328125           1.0643367
           0.9206268          -0.0114915          -0.0640643           1.0315349
           0.9388395          -0.0212971          -0.0094062           1.0046921
           0.9548160          -0.0299273           0.0304447           0.9846600
           0.9684749          -0.0373215           0.0494097           0.9749822
           0.9797465          -0.0434152           0.0697593           0.9644899
           0.9885734          -0.0481765           0.1362851           0.9293627
           0.9949107          -0.0515903           0.2603474           0.8600306
           0.9987261          -0.0536442           0.4218340           0.7603723
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D.3 Program LIDRAG

This program computes the span e for a single planar lifting surface given the spanload. It uses
the spanload to determine the “e” using a Fast Fourier Transform. Numerous other methods
could be used. For reference, note that the “e” for an elliptic spanload is 1.0, and the “e” for a tri-
angular spanload is .72. The code is in the file LIDRAG.F. The sample input is also on the disk
and is called B2LDG.INP. The program prompts the user for the name of the input file.

 The program was written by Dave Ives, and entered the public domain through the code
contained in AFFDL-TR-77-122, “An Automated Procedure for Computing the Three
Dimensional Transonic Flow over Wing-Body Combinations, Including Viscous Effects,” Feb.
1978.

The input is the spanload obtained from any method. The output is the Trefftz plane induced
drag e and the integral of the spanload, which produces the CL.  This is the “span” e. You should
include a point at η = 0 and at η = 1 you should include a point with zero spanload. See the sam-
ple input for an example.

The input instruction:

Card Field Columns Variable Description

1 1 1-10 FSPN Number of spanwise stations of input
2 1 1-10 ETA The spanwise location of input, y/(b/2).
2 1 1-20 CCLCA The spanload, ccl/ca (the local chord times

the local lift coefficient divided by the 
average chord)

Note: card 2 is repeated FSPN times

Sample input: (from the output of the VLMpc sample case for the B-2, and in the file
B2LDG.INP on the disk))

  20.
 0.0       0.58435
 0.01805   0.58435
 0.06388   0.57919
 0.11943   0.56800
 0.17664   0.55739
 0.23385   0.54709
 0.30271   0.52459
 0.37158   0.48623
 0.42713   0.44590
 0.48269   0.40097
 0.53925   0.36490
 0.59581   0.34718
 0.65137   0.33280
 0.70693   0.31865
 0.76248   0.30225
 0.81804   0.27971
 0.86735   0.24229
 0.91667   0.18494
 0.97222   0.09480
 1.000     0.000
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D.4 LAMDES User’s Manual

This is the Lamar design program, LamDes2.f. It can be used as a non-planar LIDRAG to get
span e for multiple lifting surface cases when user supplies spanload. It has also been called the
Lamar/Mason optimization code. It finds the spanload to minimize the sum of the induced and
pressure drag, including canards or winglets. It also provides the associated camber distribution
for subsonic flow. Since two surfaces are included, it can find the minimum trimmed drag while
satisfying a pitching moment constraint.

The program will prompt you for the input file name. A sample input file called lamdes.inp is on
the disk, and the output obtained from this case is included here.

References:

J.E. Lamar, “A Vortex Latice Method for the Mean Camber Shapes of Trimmed Non-Coplanar
Planforms with Minimum Vortex Drag,” NASA TN D-8090, June, 1976.

W.H. Mason, “Wing-Canard Aerodynamics at Transonic Speeds - Fundamental Considerations
on Minimum Drag Spanloads,” AIAA Paper No. 82-0097, January 1982.

Input Instructions:

The program assumes the load distribution is constant chordwise until a designated chordwise lo-
cation (XCFW on the first surface and XCFT on the second surface). The loading then decreases
linearly to the trailing edge. This corresponds to a 6 & 6A series camber distribution (the value
for the 6A series is usually 0.8). If airfoil polars are used to model the effects of viscosity, the po-
lars are input in a streamwise coordinate system. The user is responsible for adjusting them from
2D to 3D.

This program uses an input file that is very similar to, but not the same as, the VLMpcv2 code. It
is based on the same geometry and coordinate system ideas. Section D.6 should be consulted for
a discussion of the geometry system.

Card # Format Field Name Remarks

1 Literal DATA Title card for the data set

2 8F10.6 1 PLAN Number of lifting surfaces for the
configuration; use 1 or 2.

2 XMREF c.g. shift from origin of input planform 
coordinate system (the program originally

 trimmed the configuration about the input
 planform origin).

 + is a c.g. shift forward
  - is a c.g. shift aft

3 CREF reference chord of the configuration, 
used only to nondimensionalize the
pitching moment coefficients.

4 SREF reference area of the configuration
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5 TDKLUE minimization clue
= 0 - minimize induced drag only
= 1 - minimize induced plus pressure drag

6 CASE options for the drag polar 
= 0, model polar, same a, CLmin, CD0 
        for each surface(see note 3 below).
= 1, model polar, each surface has its 
        own a, CLmin, CD0
= 2, one general polar for entire config.
= 3, one general polar for each surface

7 SPNKLU spanload clue
= 0 spanload is internally computed using

        the minimization
= 1, no minimization is done, spanload is

         read in, and e and pressure drag are
        computed.

Geometric/Planform Data - see the VLMpc section (D.6) for more details

Card # Format Field Name Remarks

1-P 8F10.6 1 AAN(IT) # of straight lines defining this surface

2 XS(IT) = 0. (not used in this code)
 

3 YS(IT) = 0. (not used in this code)

4 RTCDHT(IT) root chord height ( - is “higher”)

5 PDRG1(IT) CLmin

6 PDRG2(IT) “a”

7 PDRG3(IT) CD0

2-P 8F10.6 1 XREG X point of line segment
(positive is forward)

2 YREG Y point of line segment
 (positive is forward)

3 DIH dihedral angle of line

4 AMCD sweep wing move code, set = 1 for this
program

Note: 1.  Card 2-P is read in AAN + 1 times. Surface description starts at forward 
centerline and works outboard and around, returning to the aft centerline 
of the surface.

2. Cards 1-P and 2-P are read in as a set for each lifting surface 
(see VLM4997 for clarification)

3. The model polar is given by: Cd = a (Cl - Clmin)2 + CD0 
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Control Data (corresponding to “Group Two” data in Lamar’s nomenclature)

Card # Format Field Name Remarks
1-C 6F5.3,2F10.6 1 CONFIG arbitrary configuration number or ID

(may include up to four digits)

2 SCW Number of chordwise horseshoe vortices
to be used to represent the wing; 
a maximum of 20 may be used,
do not set to zero.

3 VIC nominal number of spanwise rows at
 which chordwise horseshoe may be 

located; a maximum of 50 may be used.
 The product of SCW and SSW cannot 

exceed 400 (see VLM4997 chapter for 
details of vortex layout).

4 XMCH Mach number, used to apply Prandtl-
Glauert comressibility correction factor.

5 CLDES design lift coefficient for lifting system

6 XITMAX Maximum number of iterations allowed in
 finding the solution for minimum +
 pressure drag with arbitrary polars input.
 Must be less than 50. 20 is sufficient for
 most cases.

7 EPSMAX The convergence criteria for the general
 polar case.A value of .0005 appears to be
 reasonable.

2-C 6F10.4 1 XCFW The chord fraction “a” at which the chord 
load shape changes from rooftop to a 

  linear decrease to zero at the trailing edge 
on the first planform. See the introduction 
to this section for more discussion.

2 XCFT Same as XCFW, except applies to the 
second planform.

3 FKON Clue for constraints
= 0 body moment constraint
= 1 no constraints
= 2 root bending moment constraint
= 3 both moment anf root bending 
       moment constraints.

4 CMB The design wing CM when FKON = 0

5 FICAM Camber computation clue.
= 0, no cambers computed
= 1, wing cambers computed

report typos and errors to W.H. Mason Appendix D: Programs  D-21

Tuesday, January 21, 1997



6 PUNCH clue to punch cambers out
= 0 - no punch file created
= 1 - cards output (unit 7)

7 CRBMT Design root bending moment
for FKON = 2.

3-C 8F10.6 1 RELAX The under-relaxation factor for the 
general polar solution. RELAX = .03 to .3

 is satisfactory for most applications.

2 FIOUTW Output clue.
= 0 - full iteration history is output
= 1 - only final results are output

3 CD0 Basic drag coefficient that will be added to
 the drag computed by summing the 

induced drag and the profile drag 
contained in the input polars.

Arbitrary Polar Input (the following cards are read only if CASE ≥ 2.)

Card # Format Field Name Remarks
1-D Literal TITLE The identifying title for the input drag
 polar for this surface.

2-D 8F10.5 1 FNCLCD The number of CL,CD pairs used to 
define the input polar.

3-D 8F10.5 1 FQCL The value of streamwise lift coefficient 
for this pooint on the drag polar.

2 FQCD The value of streamwise drag coefficient
 for the given lift coefficient.

Note: 1. Card 3-D is read FNCLCD times
2. Cards 1-D, 2-D and 3-D are read for each planform if CASE = 3.

Spanload Input (the following cards are read only if SPNKLU = 1)

Card # Format Field Name Remarks
1-S Literal TITLE This is the title card for the input 

spanloads.

2-S 7F10.5 1 FSPNPT Number of points on the spanload to 
be read in for this planform.

3-S 7F10.5 1 YSPNPT Span location in physical coordinates at
 which ccl/ca is input (y is positive here!)

2 CLSPNP The spanload at YSPNPT

Note: 1. Card 3-S is read FSPNPT times
2. Cards 2-S and 3-S are read for each planform as a set.
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Sample Input: (note: it is important to put data in proper columns!)

Lamar program sample input - revised forward swept wing
  2.000    -8.000    89.50     26640.    1.0       3.0       0.0
  5.000     0.0       0.0      -8.8      0.0       0.0
  68.95     0.0       0.0       1.0
  68.95    -34.0
  49.61    -65.30     0.0       1.0
  25.64    -65.30     0.0       1.0
  22.25    -34.00
  22.25      0.00
  5.0        0.0      0.0       0.0      0.0       0.0
 -25.90      0.0      0.0       1.0
 -25.90    -34.0
  38.10    -164.0     0.0       1.0
  -2.40    -164.0     0.0       1.0
-147.90     -20.0
-147.90       0.0
1.0  10.0 20.  0.9  0.90 40.0  0.0006
 0.0       0.65      0.0       -0.10     1.0
 0.030     1.0       0.0        0.0      0.0       0.0
drag polar on canard (conv. sec) 
18.0
  0.00      0.0000
  0.10      0.0000
  0.25      0.0002
  0.30      0.00078
  0.40      0.00175
  0.50      0.00315
  0.55      0.0040
  0.60      0.00535
  0.65      0.00685
  0.70      0.00880
  0.75      0.01125
  0.80      0.01485
  0.85      0.01975
  0.88      0.02400
  0.915     0.03600
  1.00      0.0880
  1.20      0.2680
  1.80      0.9880
  drag polar
22.0
  0.000     0.0003
  0.200     0.0003
  0.300     0.0005
  0.400     0.0008
  0.500     0.00125
  0.600     0.00178
  0.700     0.00244
  0.800     0.00324
  0.900     0.00442
  0.950     0.00528
  0.970     0.00570
  0.990     0.00621
  1.000     0.00650
  1.020     0.00730
  1.040     0.00820
  1.060     0.00930
  1.080     0.01090
  1.100     0.01280
  1.125     0.02400
  1.130     0.03600
  1.200     0.20400

  2.000     2.12400
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Sample Output:
 enter name of input file: lamdes.inp

  Lamar Design Code     mods by W.H. Mason

  Lamar program sample input - revised forward swept wing                         

  plan   = 2.0  xmref =  -8.0000   cref   = 89.5000
  tdklue = 1.0  case  =   3.0      spnklu = 0.0
  sref   =   26640.0000

         1st REFERENCE PLANFORM HAS  5 CURVES
         ROOT CHORD HEIGHT =     -8.8000

         POINT   X        Y       SWEEP    DIHEDRAL
                REF      REF      ANGLE     ANGLE
           1  76.9500   0.0000   0.00000   0.00000    
           2  76.9500 -34.0000  31.71155   0.00000    
           3  57.6100 -65.3000  90.00000   0.00000    
           4  33.6400 -65.3000  -6.18142   0.00000    
           5  30.2500 -34.0000   0.00000   0.00000    
           6  30.2500   0.0000

         2nd REFERENCE PLANFORM HAS  5 CURVES
         ROOT CHORD HEIGHT =      0.0000

         POINT   X        Y       SWEEP    DIHEDRAL
                REF      REF      ANGLE     ANGLE
           1 -17.9000   0.0000   0.00000   0.00000    
           2 -17.9000 -34.0000 -26.21138   0.00000    
           3  46.1000-164.0000  90.00000   0.00000    
           4   5.6000-164.0000 -45.29687   0.00000    
           5-139.9000 -20.0000   0.00000   0.00000    
           6-139.9000   0.0000

         scw    = 10.0      vic = 20.0
         xitmax = 40.0   epsmax =  0.00060

        CONFIGURATION NO.      1.
        delta ord shift for moment =    -8.0000

        CURVE  1 IS SWEPT  0.0000 DEGREES ON PLANFORM  1
        CURVE  1 IS SWEPT  0.0000 DEGREES ON PLANFORM  2

         BREAK POINTS FOR THIS CONFIGURATION

       POINT   X        Y        Z       SWEEP  DIHEDRAL
                                         ANGLE    ANGLE
         1  76.9500   0.0000  -8.8000   0.0000   0.0000
         2  76.9500 -20.0000  -8.8000   0.0000   0.0000
         3  76.9500 -34.0000  -8.8000  31.7116   0.0000
         4  57.6100 -65.3000  -8.8000  90.0000   0.0000
         5  33.6400 -65.3000  -8.8000  -6.1814   0.0000
         6  30.2500 -34.0000  -8.8000   0.0000   0.0000
         7  30.2500   0.0000  -8.8000
         SECOND PLANFORM BREAK POINTS
         1 -17.9000   0.0000   0.0000   0.0000   0.0000
         2 -17.9000 -34.0000   0.0000 -26.2114   0.0000
         3  -2.4908 -65.3000   0.0000 -26.2114   0.0000
         4  46.1000-164.0000   0.0000  90.0000   0.0000
         5   5.6000-164.0000   0.0000 -45.2969   0.0000
         6-139.9000 -20.0000   0.0000   0.0000   0.0000
         7-139.9000   0.0000   0.0000
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           280 HORSESHOE VORTICES USED
          PLANFORM     TOTAL        SPANWISE
             1           80             8
             2          200            20

           10. HORSESHOE VORTICES IN EACH CHORDWISE ROW

         xcfw  = 0.00     xcft   =  0.65      fkon   =   0.00
         ficam = 1.00     punch  =  0.00      crbmnt =   0.000
         cmb   = -.10     iflag  =   1

         relax = 0.03     fioutw =  1.00      cd0    =   0.0000
         firbm = 0.00     yrbm   =  0.0000    zrbm   =   0.0000

         drag polar on canard (conv. sec)                                             
   

         there are  1.0 polars on this surface

          18.0   points this polar  planform 1

                  qcl      qcd
                0.0000    0.0000
                0.1000    0.0000
                0.2500    0.0002
                0.3000    0.0008
                0.4000    0.0018
                0.5000    0.0032
                0.5500    0.0040
                0.6000    0.0054
                0.6500    0.0069
                0.7000    0.0088
                0.7500    0.0113
                0.8000    0.0148
                0.8500    0.0198
                0.8800    0.0240
                0.9150    0.0360
                1.0000    0.0880
                1.2000    0.2680
                1.8000    0.9880

           drag polar                                                                 
   

         there are  1.0 polars on this surface

          22.0   points this polar  planform 2

                  qcl      qcd
                0.0000    0.0003
                0.2000    0.0003
                0.3000    0.0005
                0.4000    0.0008
                0.5000    0.0012
                0.6000    0.0018
                0.7000    0.0024
                0.8000    0.0032
                0.9000    0.0044
                0.9500    0.0053
                0.9700    0.0057
                0.9900    0.0062
                1.0000    0.0065
                1.0200    0.0073
                1.0400    0.0082
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                1.0600    0.0093
                1.0800    0.0109
                1.1000    0.0128
                1.1250    0.0240
                1.1300    0.0360
                1.2000    0.2040
                2.0000    2.1240

  LM = 70  IL = 71  JM = 72  IM = 73  TSPAN =-164.000    TSPANA = -65.300
  BOTL = 164.000    BOL  = 65.300     SNN   =  1.6400    DELTYB =  3.2800
  NMA(KBOT) = 50    KBOT = 2          NMA(KBIT) = 20     KBIT   =  1

           induced drag cd = 0.06815     pressure drag cdpt = 0.01665

           induced drag cd = 0.06818     pressure drag cdpt = 0.01441

           induced drag cd = 0.06827     pressure drag cdpt = 0.01255

           induced drag cd = 0.06839     pressure drag cdpt = 0.01139

           induced drag cd = 0.06850     pressure drag cdpt = 0.01053

           induced drag cd = 0.06863     pressure drag cdpt = 0.00976

           induced drag cd = 0.06876     pressure drag cdpt = 0.00915

           induced drag cd = 0.06885     pressure drag cdpt = 0.00886

           induced drag cd = 0.06893     pressure drag cdpt = 0.00868

           induced drag cd = 0.06898     pressure drag cdpt = 0.00856

           induced drag cd = 0.06902     pressure drag cdpt = 0.00847

           induced drag cd = 0.06905     pressure drag cdpt = 0.00841

           induced drag cd = 0.06907     pressure drag cdpt = 0.00836

           induced drag cd = 0.06909     pressure drag cdpt = 0.00832

           induced drag cd = 0.06911     pressure drag cdpt = 0.00829

           induced drag cd = 0.06913     pressure drag cdpt = 0.00826

           induced drag cd = 0.06915     pressure drag cdpt = 0.00823

           induced drag cd = 0.06916     pressure drag cdpt = 0.00821

           induced drag cd = 0.06917     pressure drag cdpt = 0.00819

           induced drag cd = 0.06918     pressure drag cdpt = 0.00817

           induced drag cd = 0.06919     pressure drag cdpt = 0.00816

           induced drag cd = 0.06920     pressure drag cdpt = 0.00815

           induced drag cd = 0.06921     pressure drag cdpt = 0.00814

           induced drag cd = 0.06921     pressure drag cdpt = 0.00813

           induced drag cd = 0.06922     pressure drag cdpt = 0.00812

           induced drag cd = 0.06923     pressure drag cdpt = 0.00811
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           induced drag cd = 0.06923     pressure drag cdpt = 0.00810

           induced drag cd = 0.06924     pressure drag cdpt = 0.00810

           induced drag cd = 0.06924     pressure drag cdpt = 0.00809

           induced drag cd = 0.06924     pressure drag cdpt = 0.00809

           induced drag cd = 0.06925     pressure drag cdpt = 0.00808

         pressure drag iteration has converged 

              k     eps       cl        cdi       cdp     cdi+cdp
              1  28.66362   0.90000   0.06815   0.01665   0.08480
              2   0.05789   0.90000   0.06818   0.01441   0.08260
              3   0.05278   0.90000   0.06827   0.01255   0.08082
              4   0.04274   0.90000   0.06839   0.01139   0.07978
              5   0.03408   0.90000   0.06850   0.01053   0.07903
              6   0.03155   0.90000   0.06863   0.00976   0.07839
              7   0.02773   0.90000   0.06876   0.00915   0.07791
              8   0.02043   0.90000   0.06885   0.00886   0.07772
              9   0.01549   0.90000   0.06893   0.00868   0.07761
             10   0.01218   0.90000   0.06898   0.00856   0.07754
             11   0.00994   0.90000   0.06902   0.00847   0.07749
             12   0.00847   0.90000   0.06905   0.00841   0.07746
             13   0.00724   0.90000   0.06907   0.00836   0.07743
             14   0.00616   0.90000   0.06909   0.00832   0.07741
             15   0.00519   0.90000   0.06911   0.00829   0.07740
             16   0.00442   0.90000   0.06913   0.00826   0.07739
             17   0.00371   0.90000   0.06915   0.00823   0.07738
             18   0.00310   0.90000   0.06916   0.00821   0.07737
             19   0.00263   0.90000   0.06917   0.00819   0.07736
             20   0.00221   0.90000   0.06918   0.00817   0.07736
             21   0.00183   0.90000   0.06919   0.00816   0.07735
             22   0.00154   0.90000   0.06920   0.00815   0.07735
             23   0.00131   0.90000   0.06921   0.00814   0.07734
             24   0.00112   0.90000   0.06921   0.00813   0.07734
             25   0.00095   0.90000   0.06922   0.00812   0.07734
             26   0.00084   0.90000   0.06923   0.00811   0.07734
             27   0.00076   0.90000   0.06923   0.00810   0.07733
             28   0.00069   0.90000   0.06924   0.00810   0.07733
             29   0.00064   0.90000   0.06924   0.00809   0.07733
             30   0.00061   0.90000   0.06924   0.00809   0.07733
             31   0.00057   0.90000   0.06925   0.00808   0.07733

  induced + pressure drag was minimized on this run

  ref. chord =    89.500  c average   =    81.2195  true area =  32771.566
  ref. area  = 26640.000  b/2         =   164.0000  ref ar    =  4.0384
  true ar    =    3.2828  Mach number =     0.9000

         first  planform   cl =   0.17126  cm =   0.11493  cb =  -0.01502
         second planform   cl =   0.72874  cm =  -0.21493  cb =  -0.18341

  1st planform   CL = 0.1713   CDP = 0.0042   CM =  0.1150   CB = -0.0151
  2nd planform   CL = 0.7292   CDP = 0.0038   CM = -0.2149   CB =  0.0000

           no root bending moment constraint

         CL DES  = 0.90000    CL COMPUTED =  0.9005    CM = -0.0999
         CD I    = 0.06925    E           =  0.9230
         CDPRESS = 0.00804    CDTOTAL     =  0.07729
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   first planform 

               Y       CL*C/CAVE     C/CAVE        CL          CD
           -61.2000     0.21189     0.33178     0.63862     0.00651
           -53.0000     0.33566     0.40510     0.82857     0.01765
           -44.8000     0.41311     0.47842     0.86348     0.02166
           -37.3500     0.46740     0.54503     0.85757     0.02082
           -29.9000     0.49499     0.57498     0.86088     0.02129
           -22.9000     0.50260     0.57498     0.87411     0.02317
           -15.9000     0.50504     0.57498     0.87835     0.02377
            -5.9000     0.50631     0.57498     0.88056     0.02419

  second planform

          -159.9000     0.33879     0.52480     0.64556     0.00208
          -151.7000     0.53136     0.57711     0.92072     0.00478
          -143.5000     0.64513     0.62942     1.02495     0.00752
          -135.3000     0.72403     0.68173     1.06206     0.00946
          -127.1000     0.78509     0.73404     1.06954     0.01006
          -118.9000     0.83563     0.78635     1.06267     0.00951
          -110.7000     0.87760     0.83866     1.04644     0.00855
          -102.5000     0.91055     0.89096     1.02198     0.00739
           -94.3000     0.93428     0.94327     0.99047     0.00622
           -86.1000     0.94681     0.99558     0.95101     0.00530
           -77.9000     0.94347     1.04789     0.90036     0.00443
           -69.5500     0.90911     1.10116     0.82559     0.00354
           -61.2000     0.82859     1.15442     0.71775     0.00258
           -53.0000     0.74419     1.20673     0.61670     0.00189
           -44.8000     0.67721     1.25904     0.53788     0.00145
           -37.3500     0.63142     1.30656     0.48327     0.00117
           -29.9000     0.60043     1.37894     0.43543     0.00096
           -22.9000     0.58289     1.46602     0.39760     0.00079
           -15.9000     0.57323     1.50210     0.38162     0.00074
            -5.9000     0.56730     1.50210     0.37767     0.00073

         mean camber lines to obtain the spanload

         (subsonic linear theory)

         y=  -61.2000      y/(b/2) =   -0.3732      chord=   26.9474

         slopes, dz/dx, at control points, from front to rear
         x/c        dz/dx
       0.0750     0.1295  
       0.1750     0.0672  
       0.2750     0.0194  
       0.3750    -0.0200  
       0.4750    -0.0522  
       0.5750    -0.0775  
       0.6750    -0.0960  
       0.7750    -0.1077  
       0.8750    -0.1122  
       0.9750    -0.1081  

         mean camber shape (interpolated to 41 points)

         x/c        z/c     delta x    delta z    (z-zle)/c
       0.0000    -0.0299     0.0000    -0.8067     0.0000
       0.0250    -0.0332     0.6737    -0.8944    -0.0040
       0.0500    -0.0365     1.3474    -0.9831    -0.0080
       0.0750    -0.0398     2.0211    -1.0717    -0.0121
       0.1000    -0.0429     2.6947    -1.1558    -0.0159
       0.1250    -0.0457     3.3684    -1.2310    -0.0195
       0.1500    -0.0480     4.0421    -1.2945    -0.0226
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       0.1750    -0.0499     4.7158    -1.3456    -0.0252
       0.2000    -0.0514     5.3895    -1.3857    -0.0275
       0.2250    -0.0526     6.0632    -1.4166    -0.0294
       0.2500    -0.0534     6.7368    -1.4399    -0.0310
       0.2750    -0.0540     7.4105    -1.4563    -0.0323
       0.3000    -0.0544     8.0842    -1.4660    -0.0334
       0.3250    -0.0545     8.7579    -1.4689    -0.0343
       0.3500    -0.0544     9.4316    -1.4651    -0.0349
       0.3750    -0.0540    10.1053    -1.4548    -0.0353
       0.4000    -0.0534    10.7790    -1.4383    -0.0354
       0.4250    -0.0525    11.4526    -1.4160    -0.0353
       0.4500    -0.0515    12.1263    -1.3884    -0.0351
       0.4750    -0.0503    12.8000    -1.3556    -0.0346
       0.5000    -0.0489    13.4737    -1.3181    -0.0339
       0.5250    -0.0474    14.1474    -1.2760    -0.0331
       0.5500    -0.0456    14.8211    -1.2297    -0.0322
       0.5750    -0.0438    15.4948    -1.1794    -0.0310
       0.6000    -0.0418    16.1684    -1.1254    -0.0298
       0.6250    -0.0396    16.8421    -1.0679    -0.0284
       0.6500    -0.0374    17.5158    -1.0074    -0.0269
       0.6750    -0.0350    18.1895    -0.9440    -0.0253
       0.7000    -0.0326    18.8632    -0.8781    -0.0236
       0.7250    -0.0301    19.5369    -0.8100    -0.0218
       0.7500    -0.0275    20.2105    -0.7400    -0.0200
       0.7750    -0.0248    20.8842    -0.6682    -0.0181
       0.8000    -0.0221    21.5579    -0.5950    -0.0161
       0.8250    -0.0193    22.2316    -0.5205    -0.0141
       0.8500    -0.0165    22.9053    -0.4452    -0.0120
       0.8750    -0.0137    23.5790    -0.3696    -0.0100
       0.9000    -0.0109    24.2527    -0.2942    -0.0079
       0.9250    -0.0081    24.9263    -0.2196    -0.0059
       0.9500    -0.0054    25.6000    -0.1458    -0.0039
       0.9750    -0.0027    26.2737    -0.0728    -0.0020
       1.0000     0.0000    26.9474     0.0000     0.0000

         y=  -53.0000      y/(b/2) =   -0.3232      chord=   32.9022

         slopes, dz/dx, at control points, from front to rear
         x/c        dz/dx
       0.0750     0.0783  
       0.1750    -0.0034  
       0.2750    -0.0572  
       0.3750    -0.0982  
       0.4750    -0.1306  
       0.5750    -0.1557  
       0.6750    -0.1740  
       0.7750    -0.1854  
       0.8750    -0.1898  
       0.9750    -0.1845  

         mean camber shape (interpolated to 41 points)

         x/c        z/c     delta x    delta z    (z-zle)/c
       0.0000    -0.1036     0.0000    -3.4093     0.0000
       0.0250    -0.1056     0.8226    -3.4745    -0.0046
       0.0500    -0.1076     1.6451    -3.5414    -0.0092
       0.0750    -0.1097     2.4677    -3.6080    -0.0138
       0.1000    -0.1115     3.2902    -3.6674    -0.0182
       0.1250    -0.1128     4.1128    -3.7122    -0.0222
       0.1500    -0.1136     4.9353    -3.7381    -0.0255
       0.1750    -0.1138     5.7579    -3.7444    -0.0283
       0.2000    -0.1135     6.5804    -3.7339    -0.0306
       0.2250    -0.1128     7.4030    -3.7102    -0.0325
       0.2500    -0.1117     8.2256    -3.6761    -0.0340
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       0.2750    -0.1104     9.0481    -3.6333    -0.0353
       0.3000    -0.1089     9.8707    -3.5819    -0.0363
       0.3250    -0.1070    10.6932    -3.5220    -0.0371
       0.3500    -0.1050    11.5158    -3.4534    -0.0376
       0.3750    -0.1026    12.3383    -3.3766    -0.0379
       0.4000    -0.1001    13.1609    -3.2920    -0.0379
       0.4250    -0.0973    13.9834    -3.2003    -0.0377
       0.4500    -0.0943    14.8060    -3.1020    -0.0373
       0.4750    -0.0911    15.6285    -2.9975    -0.0367
       0.5000    -0.0878    16.4511    -2.8872    -0.0359
       0.5250    -0.0842    17.2737    -2.7715    -0.0350
       0.5500    -0.0806    18.0962    -2.6505    -0.0339
       0.5750    -0.0767    18.9188    -2.5247    -0.0327
       0.6000    -0.0728    19.7413    -2.3945    -0.0313
       0.6250    -0.0687    20.5639    -2.2601    -0.0298
       0.6500    -0.0645    21.3864    -2.1219    -0.0282
       0.6750    -0.0602    22.2090    -1.9804    -0.0265
       0.7000    -0.0558    23.0315    -1.8358    -0.0247
       0.7250    -0.0513    23.8541    -1.6886    -0.0228
       0.7500    -0.0468    24.6766    -1.5391    -0.0209
       0.7750    -0.0422    25.4992    -1.3875    -0.0189
       0.8000    -0.0375    26.3218    -1.2341    -0.0168
       0.8250    -0.0328    27.1443    -1.0792    -0.0147
       0.8500    -0.0281    27.9669    -0.9233    -0.0125
       0.8750    -0.0233    28.7894    -0.7671    -0.0104
       0.9000    -0.0186    29.6120    -0.6114    -0.0082
       0.9250    -0.0139    30.4345    -0.4569    -0.0061
       0.9500    -0.0092    31.2571    -0.3038    -0.0041
       0.9750    -0.0046    32.0796    -0.1517    -0.0020
       1.0000     0.0000    32.9022     0.0000     0.0000
  

Note this output is repeated for each span station. Most other stations are omitted

         y=   -5.9000      y/(b/2) =   -0.0360      chord=  122.0000

         slopes, dz/dx, at control points, from front to rear
         x/c        dz/dx
       0.0750    -0.0501  
       0.1750    -0.0505  
       0.2750    -0.0495  
       0.3750    -0.0500  
       0.4750    -0.0537  
       0.5750    -0.0623  
       0.6750    -0.0814  
       0.7750    -0.0975  
       0.8750    -0.1077  
       0.9750    -0.1097  

         mean camber shape (interpolated to 41 points)

         x/c        z/c     delta x    delta z    (z-zle)/c
       0.0000    -0.0697     0.0000    -8.5090     0.0000
       0.0250    -0.0685     3.0500    -8.3562    -0.0005
       0.0500    -0.0672     6.1000    -8.2034    -0.0010
       0.0750    -0.0660     9.1500    -8.0506    -0.0015
       0.1000    -0.0647    12.2000    -7.8975    -0.0020
       0.1250    -0.0635    15.2500    -7.7440    -0.0024
       0.1500    -0.0622    18.3000    -7.5900    -0.0029
       0.1750    -0.0609    21.3500    -7.4358    -0.0034
       0.2000    -0.0597    24.4000    -7.2818    -0.0039
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       0.2250    -0.0584    27.4500    -7.1286    -0.0044
       0.2500    -0.0572    30.5000    -6.9763    -0.0049
       0.2750    -0.0559    33.5500    -6.8249    -0.0054
       0.3000    -0.0547    36.6000    -6.6742    -0.0059
       0.3250    -0.0535    39.6500    -6.5237    -0.0064
       0.3500    -0.0522    42.7000    -6.3728    -0.0069
       0.3750    -0.0510    45.7500    -6.2210    -0.0074
       0.4000    -0.0497    48.8000    -6.0676    -0.0079
       0.4250    -0.0485    51.8500    -5.9121    -0.0084
       0.4500    -0.0472    54.9000    -5.7537    -0.0088
       0.4750    -0.0458    57.9500    -5.5919    -0.0092
       0.5000    -0.0445    61.0000    -5.4262    -0.0096
       0.5250    -0.0431    64.0500    -5.2558    -0.0100
       0.5500    -0.0416    67.1000    -5.0791    -0.0102
       0.5750    -0.0401    70.1500    -4.8940    -0.0105
       0.6000    -0.0385    73.2000    -4.6978    -0.0106
       0.6250    -0.0368    76.2500    -4.4878    -0.0106
       0.6500    -0.0349    79.3000    -4.2627    -0.0105
       0.6750    -0.0330    82.3500    -4.0221    -0.0103
       0.7000    -0.0309    85.4000    -3.7669    -0.0100
       0.7250    -0.0287    88.4500    -3.4982    -0.0095
       0.7500    -0.0264    91.5000    -3.2174    -0.0089
       0.7750    -0.0240    94.5500    -2.9253    -0.0083
       0.8000    -0.0215    97.6000    -2.6231    -0.0076
       0.8250    -0.0189   100.6500    -2.3115    -0.0067
       0.8500    -0.0163   103.7000    -1.9920    -0.0059
       0.8750    -0.0137   106.7500    -1.6662    -0.0049
       0.9000    -0.0110   109.8000    -1.3359    -0.0040
       0.9250    -0.0082   112.8500    -1.0031    -0.0030
       0.9500    -0.0055   115.9000    -0.6690    -0.0020
       0.9750    -0.0027   118.9500    -0.3345    -0.0010
       1.0000     0.0000   122.0000     0.0000     0.0000

     twist table

     i        y        y/(b/2)      twist
     1   -61.20000    -0.37317     1.71469
     2   -53.00000    -0.32317     5.91587
     3   -44.80000    -0.27317     7.36720
     4   -37.35000    -0.22774    10.25835
     5   -29.90000    -0.18232     9.47910
     6   -22.90000    -0.13963     7.60813
     7   -15.90000    -0.09695     6.49868
     8    -5.90000    -0.03598     5.91663
     9  -159.89999    -0.97500    14.45816
    10  -151.70001    -0.92500    16.44655
    11  -143.50000    -0.87500    14.38027
    12  -135.30002    -0.82500    12.36750
    13  -127.10001    -0.77500    10.75520
    14  -118.90002    -0.72500     9.51973
    15  -110.70002    -0.67500     8.46040
    16  -102.50002    -0.62500     7.34168
    17   -94.30003    -0.57500     6.13154
    18   -86.10003    -0.52500     4.67249
    19   -77.90003    -0.47500     2.88238
    20   -69.55002    -0.42409     1.36595
    21   -61.20000    -0.37317     3.52797
    22   -53.00000    -0.32317     4.51491
    23   -44.80000    -0.27317     4.49845
    24   -37.35000    -0.22774     3.79378
    25   -29.90000    -0.18232     3.77474
    26   -22.90000    -0.13963     3.11226
    27   -15.90000    -0.09695     3.52109
    28    -5.90000    -0.03598     3.98970
STOP 
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Sample output:

 Program LIDRAG

 enter name of input data file
b2ldg.inp

    LIDRAG - LIFT INDUCED DRAG ANALYSIS

     INPUT SPANLOAD

        N     Y/(B/2)      CCLCA
        1     0.00000     0.58435
        2     0.01805     0.58435
        3     0.06388     0.57919
        4     0.11943     0.56800
        5     0.17664     0.55739
        6     0.23385     0.54709
        7     0.30271     0.52459
        8     0.37158     0.48623
        9     0.42713     0.44590
       10     0.48269     0.40097
       11     0.53925     0.36490
       12     0.59581     0.34718
       13     0.65137     0.33280
       14     0.70693     0.31865
       15     0.76248     0.30225
       16     0.81804     0.27971
       17     0.86735     0.24229
       18     0.91667     0.18494
       19     0.97222     0.09480
       20     1.00000     0.00000

    Span e =    0.94708     CL =    0.399

STOP 

D-18 Applied Computational Aerodynamics

Tuesday, January 21, 1997



D.5 Program FRICTION

FRICTION provides an estimate of laminar and turbulent skin friction suitable for use in aircraft

preliminary design. It is an entirely new program, but has its roots in a program by Ron Hen-

drickson at Grumman. It runs on any computer. The input requires geometric information and ei-

ther the Mach and altitude combination, or the Mach and Reynolds number at which the results

are desired. The skin friction is found using the Eckert Reference Temperature method for lami-

nar flow and the van Driest II formula for turbulent flow. The basic formulas are valid from sub-

sonic to hypersonic speeds, but the implementation makes assumptions that limit the validity to

moderate supersonic speeds (about Mach 3). The key assumption is that the vehicle surface is at

the adiabatic wall temperature (the user can easily modify this assumption). Form factors are

used to estimate the effect of thickness on drag, and a composite formula is used to include the

effect of a partial run of laminar flow. Because the methods aren’t described in detail in the text,

details are provided here.

Laminar flow

The approach used is known as the Eckert Reference Temperature Method, and this particu-

lar version is the one given by F.M. White in Viscous Fluid Flow, McGraw-Hill, New York,

1974, pp. 589-590. In this method the incompressible skin friction formula is used, with the fluid

properties chosen at a specified reference temperature, which includes both Mach number and

wall temperature effects.

First, assumptions are made for the fluid properties:* Prandtl number, Pr = 0.72, Recovery

factor, r = Pr1/2, specific heat ratio, γ = 1.4, and edge temperature, Te = 390 (°R). Then, for a

given edge Mach number, Me, and ratio of wall temperature to adiabatic wall temperature

TW/TAW; compute:

.

Remember that

and then compute the reference temperature:

* These values can be changed easily by modifying the source code. 
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The Chapman-Rubesin constant based on the reference temperature and Sutherland’s viscosity

law is then computed from:

where K = 200°R for air.

Finally, the local friction coefficient (τw/q) is found from the standard Blasius formula, with

C* added, 

and

which comes from

Recall that CF accounts for one side of the plate only, so that if both sides are required for a drag

estimate, then the skin friction coeficient, CD, is twice CF because the reference area is based on

one side only, i.e., Sref ≈ 1/2 Swet.

Note that the results are not sensitive to the value of edge temperature for low Mach numbers,

and therefore, an exact specification of Te is not required. This method is implemented in sub-

routine lamcf.

Turbulent flow

For turbulent flow the so-called van Driest II Method is employed. This method was selected

based on the recommendation of E.J. Hopkins and M. Inouye, contained in “An Evaluation of

Theories for Predicting Turbulent Skin Friction and Heat Transfer on Flat Plates at Supersonic

and Hypersonic Mach Numbers,” AIAA J., Vol. 9, No. 6, June 1971, pp. 993-1003. The particu-

lar algorithm is taken from NASA TN D-6945, “Charts for Predicting Turbulent Skin Friction

From the Van Driest Method (II),” also by E.J. Hopkins, and dated October 1972.

Again, assumptions are made for the fluid properties: turbulent flow recovery factor, r = .88,

specific heat ratio, γ = 1.4, and edge temperature, Te = 222 (°K). Then, for a given edge Mach

number, Me, and ratio of wall temperature to adiabatic wall temperature TW/TAW the calculation

is started by computing the following constants:
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where 

and

which is the Keyes viscosity law.

Finally, 

The analysis proceeds using barred quantities to denote “incompressible” variables, which are in-

termediate variables not used except to obtain the final results. Given the Reynolds number, Rex,

an iteration is used to obtain the final results. Proceed as follows, finding
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now solve 

for . 

Use as an initial guess

.

Then, Newton’s method is applied to the problem:

which becomes for this equation:

Once this iteration is completed, and  is known, 

Note that this value applies to one side of a plate only, so it must be doubled if the friction on

both sides is desired to account for the proper reference areas. Here again, the results are not sen-

sitive to the value of edge temperature for low Mach numbers, and the default value should be

adequate for most cases. This formula is implemented in routine turbcf.

Composite formula

When the flow is laminar and then transitions to turbulent, an estimate of the skin friction is

available from a composite of the laminar and turbulent skin friction formulas using Schlicting’s

formula (see T. Cebeci and P. Bradshaw, Momentum Transfer in Boundary Layers, McGraw-

Hill, New York, 1977, pp. 187). Given the transition position, xc/L and ReL, compute

and compute the laminar skin friction based on Rec and the turbulent skin friction twice, based

on both Reynolds numbers and then find the value that includes both laminar and turbulent flow

from:
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Several formulas are available, are all roughly equivalent, and have been evaluated extensively

for incompressible flow. They are only approximate for compressible flow.

Form factors

To include the effects of thickness, it has been found that the skin friction formulas should be

adjusted through the use of form factors. Two different factors are used in this code. For wing-

like shapes, 

where t/c is the thickness ratio of of particular component. For bodies,

where d/l is the ratio of diameter to length. This is the reciprocal of the fineness ratio.

Program Operation:

Running the program, you will be prompted for the name of an input data set, the maximum

length is 15 characters. The output is sent to the screen, but can be sent to a file by changing the

value of IWRIT to something other than 6 in the main program. The sample data case on the disk

is F15.FRICTION.

INPUT

Card Field Columns Variable Description
 1 1 1-60 Title Card

 2 1 1-10 SREF Full Scale reference Area

2 11-20 SCALE 1./SCALE, i.e. 1/10 scale is input as 10.

3 21-30 FNCOMP number of component cards to be read in (15 max).

4 31-41 FINMD input mode: = 0.0, input Mach and altitude 
= 1.0, input Mach and Reynolds No. 
          per unit length

 3 1 1-16 COMP(i) Component Name

2 21-30 SWET(I) Wetted Area (i.e., top and bottom sides of the wing,
and both left and right sides, the total area that is 
exposed to the air)
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3 31-40 REFL Reference Length

4 41-50 TC(I) t/c for planar surf. or d/l (1/F) for body of revolution

5 51-60 FICODE Component type clue
= 0.: Planar surface
= 1.: Body of revolution

   6 61-70 FTRANS Transition location
= 0. : means boundary layer is all turbulent 
= 1. :     "           "            "     "   "  laminar.
    values between 0 and 1 approximate the value of
    the friction of the laminar/turbulent boundary layer

           at the specified length fraction of the component.

Note: card 3 is repeated NCOMP times

Card Field Columns Variable Description

 4 1 1-10 XME Mach number

2 11-20 XINPUT if FINMD = 0.0, this is the Altitude (in 1000 feet)
if FINMD = 1.0, this is the Reynolds no. per unit length
                            in millions

Note: Card 4 is repeated for each value of Mach and altitude desired. The program stops when
either the end of the data is reached or a Mach number of zero is read. 

Output: The input is echoed to allow for easy check of data and to keep all information together.
Then the drag calaculation for each M,h or M,Re/L is made. First, the reference areas, lengths,
thicknesses, form factors and the transition position are output. These values are fixed for each
combination of Mach and Reynolds number. Next, for each case the Reynolds number of each
component and the basic skin friction are found. Then the skin friction times the wetted area and
the skin friction times the wetted area and form factor are found. Finally, the latter is divided by
the reference area and the contribution to the total drag in terms of a drag coefficient for the par-
ticular component, CDCOMP, is then found. These columns are summed, and the bottom value
under the CDCOMP column is the total skin friction and form drag coefficient. After all the con-
ditions are computed, a summary of results is presented as a table at the end of the output.

Sample input for program FRICTION:

     F - 15  AIRCRAFT
608.      1.         7.        0.0
FUSELAGE            550.00    54.65     .05500    1.0       0.0
CANOPY              75.00     15.0      .12000    1.0       0.0
NACELLE             600.00    35.0      .04000    1.0       0.0
GLV/SPONSON         305.00    35.5      .117      1.0       0.0
OUTB'D WING         698.00    12.7      .05000    0.0       0.0
HORIZ. TAIL         222.00    8.3       .05000    0.0       0.0
TWIN   V. T.        250.00    6.7       .0450     0.0       0.0
     0.200    35.000
     1.200    35.000
     2.000    35.000
     0.000     0.000
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Sample output from program friction:

Enter name of data set:
f15frict.inp

    FRICTION - Skin Friction and Form Drag Program
    W.H. Mason, Department of Aerospace and Ocean Engineering
    Virginia Tech, Blacksburg, VA 24060   email: mason@aoe.vt.edu
    version:   September 13, 1996

    CASE TITLE:     F - 15  AIRCRAFT                                       

    SREF =   608.00000  MODEL SCALE =  1.000  NO. OF COMPONENTS = 7
    input mode =  0  (mode=0: input M,h;  mode=1: input M, Re/L)

   COMPONENT TITLE    SWET (FT2)  REFL(FT)   TC  ICODE FRM FCTR FTRANS
   FUSELAGE            550.0000   54.650   0.055   1   1.0205   0.0000
   CANOPY               75.0000   15.000   0.120   1   1.0744   0.0000
   NACELLE             600.0000   35.000   0.040   1   1.0124   0.0000
   GLV/SPONSON         305.0000   35.500   0.117   1   1.0712   0.0000
   OUTB'D WING         698.0000   12.700   0.050   0   1.0903   0.0000
   HORIZ. TAIL         222.0000    8.300   0.050   0   1.0903   0.0000
   TWIN   V. T.        250.0000    6.700   0.045   0   1.0812   0.0000

      TOTAL SWET =    2700.0000

    REYNOLDS NO./FT =0.480E+06   Altitude =  35000.00   XME =  0.200

      COMPONENT        RN        CF     CF*SWET   CF*SWET*FF   CDCOMP
   FUSELAGE         0.262E+08  0.00251  1.38212     1.41047   0.00232
   CANOPY           0.720E+07  0.00309  0.23164     0.24889   0.00041
   NACELLE          0.168E+08  0.00269  1.61561     1.63573   0.00269
   GLV/SPONSON      0.170E+08  0.00269  0.81944     0.87782   0.00144
   OUTB'D WING      0.609E+07  0.00318  2.21681     2.41701   0.00398
   HORIZ. TAIL      0.398E+07  0.00342  0.75829     0.82678   0.00136
   TWIN   V. T.     0.321E+07  0.00355  0.88656     0.95855   0.00158
                                  SUM = 7.91048     8.37525   0.01378

   FRICTION DRAG: CDF = 0.01301           FORM DRAG: CDFORM = 0.00076

    REYNOLDS NO./FT =0.288E+07   Altitude =  35000.00   XME =  1.200

      COMPONENT        RN        CF     CF*SWET   CF*SWET*FF   CDCOMP
   FUSELAGE         0.157E+09  0.00175  0.96201     0.98175   0.00161
   CANOPY           0.432E+08  0.00211  0.15826     0.17004   0.00028
   NACELLE          0.101E+09  0.00186  1.11769     1.13160   0.00186
   GLV/SPONSON      0.102E+09  0.00186  0.56700     0.60740   0.00100
   OUTB'D WING      0.366E+08  0.00216  1.51055     1.64698   0.00271
   HORIZ. TAIL      0.239E+08  0.00231  0.51314     0.55949   0.00092
   TWIN   V. T.     0.193E+08  0.00239  0.59777     0.64631   0.00106
                                  SUM = 5.42643     5.74356   0.00945

   FRICTION DRAG: CDF = 0.00893           FORM DRAG: CDFORM = 0.00052
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   REYNOLDS NO./FT =0.480E+07   Altitude =  35000.00   XME =  2.000

      COMPONENT        RN        CF     CF*SWET   CF*SWET*FF   CDCOMP
   FUSELAGE         0.262E+09  0.00140  0.76912     0.78490   0.00129
   CANOPY           0.720E+08  0.00169  0.12643     0.13585   0.00022
   NACELLE          0.168E+09  0.00149  0.89337     0.90449   0.00149
   GLV/SPONSON      0.170E+09  0.00149  0.45321     0.48550   0.00080
   OUTB'D WING      0.609E+08  0.00173  1.20667     1.31564   0.00216
   HORIZ. TAIL      0.398E+08  0.00185  0.40980     0.44681   0.00073
   TWIN   V. T.     0.321E+08  0.00191  0.47731     0.51607   0.00085
                                  SUM = 4.33591     4.58926   0.00755

   FRICTION DRAG: CDF = 0.00713           FORM DRAG: CDFORM = 0.00042

    SUMMARY

     J    XME     Altitude      RE/FT       CDF     CDFORM   CDF+CDFORM
     1   0.200   0.350E+05    0.480E+06   0.01301   0.00076   0.01378
     2   1.200   0.350E+05    0.288E+07   0.00893   0.00052   0.00945
     3   2.000   0.350E+05    0.480E+07   0.00713   0.00042   0.00755

    END OF CASE

STOP 
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D.6 VLMpc

This manual describes the input for the pc version of John Lamar’s vortex lattice program.
This program is identical to the program given in reference 2. An advanced version described in
reference 4 is also available. The input data sets differ slightly between the two versions.

The code is called VLMpcv2.f on the disk, and has been modified for WATFOR. This
means that the output field length is limited to eighty columns. In WATFOR you may also need
to invoke the NOCHECK option to prevent the program from halting because of undefined vari-
ables. The code is provided with two OPEN statements near the beginning of the main program:

OPEN(5,file=infile, status=old)
OPEN(6,file=outfil, status=new)

such that the input data is defined on the file infile, and the output is placed in file outfil. The
user is prompted for the names of these files at the start of execution. Users should customize the
code to fit their preferences. The disk also contains a sample input file, YF23.IN, and a sample
output file, YF23.OUT. 

The theory is described in references 1, 2 and 3, and the user’s manual provided here is basi-
cally the instructions from references 1 and 2, with minor corrections and clarifications. Refer-
ence 4 describes the advanced version, VLM4.997.

References:

1. Margason, R.J., and Lamar, J.E., “Vortex-Lattice FORTRAN Program for Estimating Subson-
ic Aerodynamic Characteristics of Complex Planforms,” NASA TN D-6142, Feb., 1971.

2. Lamar, J.E., and Gloss, B. B. “Subsonic Aerodynamic Characteristics of Interacting Lifting
Surfaces with Separated Flow around Sharp Edges Predicted by a Vortex-Lattice Method,”
NASA TN D-7921, Sept., 1975.

3. Lamar, J.E., and Frink, N.T., “Experimental and Analytic Study of the Longitudinal Aerody-
namic Characteristics of Analytically and Empirically Designed Strake-Wing Configurations
at Subcritical Speeds, “ NASA TP-1803, June 1981.

4. Lamar, J.E., and Herbert, H.E., “Production Version of the Extended NASA-Langley Vortex
Lattice FORTRAN Computer Code,” - Vol. I - User’s Guide,  NASA TM 83303,  April 1982.

VLMpc User’s Guide-  (from references 1, 2, and 4)

This manual contains the output details for the pc version of the NASA-Langley Vortex
Lattice Computer Program described in reference 2. The NASA - Langley Vortex Lattice
FORTRAN Program (VLMpc) is designed to estimate the subsonic aerodynamic characteristics
of up to two complex planforms.  The concepts embodied in this program are mostly detailed in
references 1 and 2.

MODELING THE CONFIGURATION

The configuration can be modeled with up to two planforms, all of which must extend to the
plane of symmetry (Y = 0.0).  The fuselage is represented by its planar projection; experience to
date indicates that this produces acceptable global forces and moments for most wing-body-tail
configurations. 

Winglets can be modeled, but the dihedral angle must be less than 90.0 degrees and greater
than -90.0 degrees.  Both upper (positive dihedral) and lower (negative dihedral) winglets can be
accounted for in this code.  The program uses as its solution surface the chord plane which may
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be inclined due to dihedral.  Moreover, the only out of "X-Y plane" displacement specifically
allowed for is dihedral.  Local camber and twist is assumed to be small and can be represented
by its slope projection to the local solution surface.  The wind and body axes are assumed to be
coincidental in the code.

RUNNING THE PROGRAM

INPUT DATA SETUP

The input data to VLM is organized into two distinct groups - group 1 defines the reference
planform(s), and group 2 defines the details for the particular solution.  An example input fol-
lows the description of the input and output. The individual details of the items in the deck layout
are given in the following sections.

GROUP 1 DATA

This group of data defines the planform(s) projected into the X-Y plane, with all the
coordinates being given for the left half of the configuration (negative y values!).  The axis
system is shown in Figure 1.  The Y = 0 intercept coincides with the plane of symmetry and is
positive to the right of this plane.  The X = 0 intercept is taken to occur along the symmetry
plane of the configuration; X is positive pointing into the wind. 

Important tips for modeling configurations:

Good results require that a few common rules of thumb be used in selecting the planform
break points. The number of line segments should be minimized. Breakpoints should line up
streamwise on front and rear portions of each planform, and should line up between plan-
forms. Streamwise tips should be used, and small spanwise distances should be avoided by
making edges streamwise if they are actually very highly swept.
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It is important to note that each planform can only go out to a maximum y value once, and
then return to the centerline. The program assumes that each planform is actuually a wing.
Most numerical input for the group 1 data uses an 8F10.6 format . The input is as follows:

0. (Cols. 1-80) Title Card

1.  (Cols. 1-10) PLAN - Number of planforms for this configuration; PLAN can assume
values of 1.0, or 2.0.

  
2.  (Cols.11-20) TOTAL - Number of sets of group 2 data specified for this configuration.   
3.  (Cols.21-30) CREF - Reference chord of the configuration.  This chord is used only  to

nondimensionalize the pitching-moment terms and must be greater than zero.
  
4.  (Cols.31-40) SREF - Reference area; this is used only to nondimensionalize the comput-

ed output data such as lift and pitching moment and must always be greater than zero.

5. (Col. 41-50) CG - Center of gravity location with respect to the origin of the coordinate
system. All moment computations are referenced to this location.

  
The data required to define the planform(s) is provided in the next set of group 1 cards as
follows (the number of line segments is equal to the number of points minus one):

1.  (Cols.1-10) AAN - Number of line segments used to define the left half of the planform
(does not include the innermost streamwise).  A maximum of 24 line segments may be
used per planform, and each planform must extend to the plane of symmetry. ANN is the
number of defining point minus one.

2.  (Cols.11-20) XS - X location of the pivot; use 0.0 for a fixed planform.

3.  (Cols.21-30) YS - Y location of the pivot; use 0.0 for a fixed planform.

4.  (Cols.31-40) RTCDHT - Vertical distance of the particular planform being read in with
respect to the reference planform root chord height; use 0. for the reference planform.

The rest of this set of data describes the breakpoints used to define the AAN line segments on
this planform. The format is 4F9.4. There are (AAN+1) breakpoints and all data subsequently
described are required on all except the last card of this set; the last card uses only the first two
variables in the following list:

1.  (Cols.1-9) XREG(I) - X location of the ith breakpoint.  The first breakpoint is located at
the most inboard location of the leading edge for the left-hand side of this planform.  The
other breakpoints are numbered around the planform perimeter in increasing order for
each intersection of lines in a counterclockwise direction.

2.  (Cols.10-18) YREG(I) - Y location of the ith breakpoint.  Once the absolute value of Y
starts to decrease, it cannot be increased.

3.  (Cols.19-27) DIH(I) - Dihedral angle (degrees) in the Y-Z plane of the line from
breakpoint of i to i+1, positive upward.  Note that along a streamwise line, the dihedral
angle is not defined, so use 0.0. for these lines.  Note the sign of the dihedral angle is the
same along the leading and trailing edges.

4.  (Cols.28-36) AMCD - The move code; this number indicates whether the line s is on the
movable panel of a variable-sweep wing.  Use 1.0 for a fixed line (defaults to 1.0  if not
set), or 2.0 for a movable line.
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GROUP 2 DATA

There are four sections of group 2 data.  Each section may be required or optional, depending
on the previous input, and each may have one or more input cards (lines of input).  Each section
is described individually. Care must be taken to make sure the data is in the proper column.

Section one data (always required).

[1 Card - Format (8F5.2, F10.4,F5.1,F10.4,F5.1)]

1.  (Cols.1-5) CONFIG - An arbitrary configuration designation of up to 4  digits.

2. (Cols.6-10) SCW - The number of chordwise horseshoe vortices to be used at a
spanwise station for each planform.  The maximum value for this variable is 20.  If
varying values of chordwise horseshoe vortices are desired due to either multiple
planforms or large discontinuities in chord across the span, the user can input a value of
0. that will cause the program to expect user-supplied data at this point in the input
stream.  The data are in the form of a table that contains the number of chordwise
horseshoe vortices from the tip to root, and is called TBLSCW(I).  This SCW=0. option
can only be used for planforms without dihedral and for coplanar configurations.                                        

3.  (Cols.11-15) VIC - The nominal number of spanwise stations at which chordwise
horseshoe vortices will be located.  This variable must not cause more than 50 spanwise
stations to be used by the program in describing the left half of the configuration.  In
addition, the product of the stations spanwise and SCW cannot exceed 200. If  SCW is
0., then the sum of the values in TBLSCW(I) cannot exceed 200.  The use of variable
VIC is discussed in references 1 and 2.  VIC should always be  greater than, or equal to,
10. so that the near-field drag or vortex flow forces on cambered configurations can be
properly computed.

4.  (Cols.16-20) MACH - Mach number; use a value other than 0.0 only if the Prandtl-
Glauert compressibility correction factor is to be applied.  The value used should be
less than that of the critical Mach number.

5.  (Cols.21-25) CLDES - Desired lift coefficient, CL,d.  The number specified here is
used to obtain the span load distribution at a particular lift coefficient.  If the drag polar
is required over a CL range from -0.1 to 1.0, use CLDES = 11.

6.  (Cols.26-30) PTEST - Clp
 indicator; if the damping-in-roll parameter is desired, use 1.0

for this quantity.  Except for the Delta Cp and Clp, all other aerodynamic data will be
omitted.  Use a 0. if Clp is not required.  The definition is the standard one, as in Etkin,
with units of radians per second:              

7. (Cols.31-35) QTEST -CLq  and Cmq indicator; if these stability derivatives are desired,
use a 1.0 for this quantity.  Except for Delta Cp, CLq, and Cmq, all other aerodynamic
data will be omitted.  It should be noted that both PTEST and QTEST cannot be set
equal to 1. simultaneously for a particular configuration.  Use 0. if CLq and Cmq are not
required. The definition is the standard one, as in Etkin:
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8.  (Cols. 36-40) TWIST(1) - Twist code for the first planform.  If this planform has no
twist and/or camber, use a value of 0.; otherwise, specify a value of 1.

9.  (Cols.41-50) SA(1) - Variable sweep angle for the first planform.  Specify the leading
edge sweep-angle (in degrees) for the first movable line adjacent to the fixed portion of
the planform.  For a fixed planform, this quantity may be omitted.

10.  (Cols.51-55) TWIST(2) - same, for the second planform.

11.  (Cols.56-65) SA(2) - same, for the second planform.

12. (Cols.66-70) ATPCOD - Set to 0., it will cause only linear aerodynamic results to be
printed out.  Set to 1., this will cause the program to print out the contributions to the
lift, drag and moment from the separated flow around the leading/side edges.

Section two data is required when ATPCOD=1.*  This section sets up the limits of integration
used in the computations of the wing leading-edge and side-edge suction values.  Normally these
limits would be the wing root and the wing tip. However, other values could be used. Note: if
section four data is used, this data may come after section four data - experiment if you try to use
this combination.

[1 Card - Format (4F10.6)]
                           
Card 1:

1.  (Cols.1-10) YINNER(1) - Represents the Y inner for the first planform.

2.  (Cols.11-20) YOUTER(1) - Represents the Y outer for the first planform.

3.  (Cols.21-30) YINNER(2) - Represents the Y inner for the second planform.

4 (Cols. 31-40), YOUTER(2) - Represents the Y outer for the second planform.

Section three data is required when SCW=0.  This section determines the number of span
stations for each planform, and the number of chordwise control points along each span station.
This option is rarely used.

[Multiple card sets per planform - Format (F5.1,n(/16F5.1))]

Card 1:

(Cols.1-5) STA - Number of spanwise stations of horseshoe vortices on the left half
of the planform.  This variable sets the number of TBLSCW values read in for that
planform.

* Watch out about the order of input if both twist and vortex lift are used. Some students have
reported problems with this. Actually, this is a somewhat rare calculation. Both twist and
vortex lift should be run separately to the user’s satisfaction before they are run together.
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Cards 2-n:

(Cols. 1-5,6-10,etc) TBLSCW(I) - Number of horseshoe vortices at each spanwise
station beginning at the station nearest the tip of the planform and proceeding
toward the station nearest the root.

These sets of STA and TBLSCW(I) cards are repeated for each planform. The sum of all the
STA values cannot exceed 100.

Section four data is required for any planform having a nonzero value for TWIST(I).  This
section determines the mean camber line slopes or angles of attack across the planform. Be care-
ful here. Experience has shown that students find the proper input of this data to be very tricky.

[Multiple cards per planform - Format (8F10.6,n(8F10.6))]                               
 

(Cols.1-10,11-20,etc.)  ALP - Local streamwise angles of attack, eg. camber or flap
deflection, in radians.  These are the values at the control point for each horseshoe vortex
on the planform when the innermost streamwise edge of the reference planform has an
angle of attack of 0. degrees.  The volume of this data will usually require several input
cards.  For the first value on the first card, use the local angle of attack for the horseshoe
vortex nearest the first planform leading edge at the tip; for the second value, use the
angle of attack for the horseshoe vortex immediately behind in the chordwise direction.
Continue in the same manner for the rest of the horseshoe vortices at the tip.  Begin a new
card for the next inboard station and input the data in the same chordwise manner.
Repeat for all successive inboard spanwise stations on that planform.  For each planform
with twist/camber, start the data on a new card and specify the data from the tip and
proceed chordwise and then inboard, as detailed above.

OUTPUT DATA

The printed results of this computer program appear in two parts: geometry data and
aerodynamic data.

GEOMETRY DATA 

The geometry data are described in the order that they are found on the printout.

The first group of the data describes the basic configuration: it states the numbers of lines
used to describe each planform, the root chord height, pivot position, and then lists the
breakpoints, sweep and dihedral angles, and move codes.  These data are basically a listing of
input data except that the sweep angle is computed from the input.

The second group of data describes the particular configuration for which the aerodynamic
data are being computed.  Included are the configuration designation, sweep position, a listing of
the breakpoints of the planform (X,Y, and Z), the sweep and dihedral angles, and the move
codes.  The data are listed primarily for variable-sweep wings to provide a definition of the
planform where the outer panel sweep is different from that of the reference planform. The num-
ber of horseshoe vortices are then described. In this code a maximum of 200 vortices can be
used.

The third group of data presents a detailed description of the horseshoe vortices used to
represent the configuration.  These data are listed in two sets of five columns each describing one
elemental panel of the configuration (see Figure 2) in the same order that the twist and/or camber
angles of attack are to be provided. 
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 The following items of data are presented for each elemental panel. 

For set one:

1.  X C/4 - X location of quarter-chord at the horseshoe vortex midspan.

2.  X 3C/4 - X location of three-quarter-chord at the horseshoe vortex midspan.  This is the
X location of the control point.

3.  Y - Y location of the horseshoe vortex midspan.

4. Z - Z location of the horseshoe vortex midspan.

5.  S - Semiwidth of horseshoe vortex.

Set two:

1.  X C/4 - X location of quarter-chord at the horseshoe vortex midspan. (same as set one)

2.  C/4 SWEEP ANGLE - Sweep angle of the quarter-chord of the elemental panel and
horseshoe vortex.

3.  DIHEDRAL ANGLE - Dihedral angle of elemental panel.

4.  LOCAL ALPHA IN RADIANS - Local angle of attack in radians at control point (X @
3C/4,Y,Z).
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5.  DELTA CP AT DESIRED CL - ∆Cp or Net Cp normal to the surface at  dihedral for
each elemental panel when the total lift is CL,d. This is located across the panel as an

average. It corresponds to the incremental lift associated with the bound vortex strength
of the particular panel:

The fourth group of data presents the following geometric results:

1.  REF.CHORD - Reference chord of the configuration.

2.  C AVERAGE - Average chord, cav, true configuration area divided by true span.

3. TRUE AREA - True area computed from the configuration listed in second group of
geometry data.

4.  REFERENCE AREA - User input reference area.

5.  B/2 - Maximum semispan of all planforms listed in second group of geometry data.

6.  REF. AR - Reference aspect ratio computed from the reference planform area and true
span.

7.  TRUE AR - True aspect ratio computed from the true planform area and true span.

8.  MACH NUMBER - Mach number.

AERODYNAMIC DATA

If PTEST = 1. or QTEST = 1. on the configuration card, then either Clp or CLq and Cmq are

computed and printed, followed by program termination.  Otherwise, the aerodynamic data are
described by at least two groups of results.  The first is always present, but the second depends
on what is requested on the configuration card.  The following items of the first group of data are
given in the order that they are found on the printout.  Note that CL ALPHA, CL(TWIST),
CM/CL, CMO, CDI/CL**2 are based on the specified reference dimensions.  Many of the items
that follow are for the complete configuration.

1.   DESIRED CL - Desired lift coefficient, CL, d, specified in Input Data for
complete configuration.

2.   COMPUTED ALPHA - Angle of attack at which the desired lift is developed:
CL, d/(CL ALPHA) + ALPHA at CL=O.

3.   CL(WB) -  That portion of desired lift coefficient developed by the planform with
the maximum span when multiple planforms are specified.  When one planform is
specified, this is the desired lift coefficient.  (If two planforms have the same
span, and this value is equal to the maximum, the planform used here is the latter
one read in).

4.   CDI AT CL(WB) - Induced drag coefficient for lift coefficient in the previous
item.  When two or more planforms are specified, this is the induced drag
coefficient of only the planform with the maximum span. This result is based on
the far-field solution.

5.   CDI/(CL(WB)**2) - Induced drag parameter computed from the two previous
items.
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6.   1/(PI*AR REF) - Induced drag parameter for an elliptic load distribution based on
reference aspect ratio.

7.   CL ALPHA - Lift-curve slope per radian, and per degree.

8.   CL(TWIST) - Lift coefficient due to twist and/or camber at zero angle of attack
(CL,tc).

9.   ALPHA AT CL=O - Angle of attack at zero lift in degrees; nonzero only when
twist and/or camber is specified.

10.  Y CP - Spanwise distance in fraction of semispan from root chord to center of
pressure on the left wing panel.      

11.  CM/CL - Longitudinal stability parameter based on a moment center about the
reference point. This is the negative of the static margin:

and the value of  can be found from .
      
12.  CMO - Pitching-moment coefficient at CL=O. 

For each spanwise station, the following data are presented; from the left tip towards the
root:

1.   2Y/B - Location of midpoint of each spanwise station in fraction of wing
semispan.

The next two columns of data describe the additional (or angle of attack) wing loading at a lift
coefficient of 1.  (based on the total lift achieved and the true configuration area).  The third
column is the chord ratio result, and the other columns detail specific kinds of span loadings and
local centers of pressure for the configuration. 

2.   SL COEF - span-load coefficient, clc/CLcav.

3.   CL RATIO - Ratio of local lift to total lift, cl/CL.

4.   C RATIO - Ratio of local chord to average chord, c/cav.

5.   LOAD DUE TO TWIST - Distribution of span-load coefficient due to twist and
camber at 0° angle of attack for the configuration.

6.   ADD. LOAD AT CL= - Distribution of additional span-load coefficient re-
quired to produce zero lift when combined with lift due to twist and camber.
This distribution is computed at CL,tc.

7.   BASIC LOAD AT CL=0 - Basic span-load-coefficient distribution at zero lift
coefficient.  These data are the difference of the previous two columns of data.

8.   SPAN LOAD AT DESIRED CL - Distribution of the combination of the basic
span-load and additional span-load coefficients at the desired CL.

9.   AT CL DES - X LOCATION OF LOCAL CENT PR - The X location of the
local center of pressure for the resulting span load at CL,d as a function of 2Y/b.
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The other options available as group two aerodynamic data are accessed based on the values of
CLDES and ATPCOD.  For instance, with CLDES=11., and ATPCOD=0.0, the program will
produce a drag polar, CDI at CL(WB) versus CL(WB), based on the linear aerodynamics in the
middle of the first part of group one aerodynamic data.  This, and other combinations, are given
in the table below, along with their purposes:

Next, the induced drag, leading-edge thrust, and suction coefficient characteristics at each
spanwise station are computed from a near-field solution for the total loading at CL,d and
presented.

1. 2y/b - the spanwise location for these results

2.   L.E. SWEEP ANGLE - Leading-edge sweep angle in degrees.

3.   CDII C/2B - Nondimensional section induced-drag-coefficient term.

4.   CT C/2B - Nondimensional section leading-edge thrust-coefficient term.

5.   CS C/2B - Nondimensional section leading-edge suction in coefficient term.

Next, the total coefficients are given:

CDII/CL**2 -  Total drag coefficient over (CL,d)**2.

CT - Total leading-edge thrust coefficient.

CS - Total leading-edge suction coefficient.

 Additional printout is produced for vortex flows.  In particular, Kp and Kv values, and
respective centroids in both chordwise and spanwise directions, and the associated limits of
integration for the leading- edge and side-edge values of Kv.  (The item entitled "Sum of the
positive side edge contributions" which appears here on the printout is indicative of the
contribution to the side-edge forces for that particular planform which were oppositely-signed to
those that contributed in a manner to increase Kv,se.  The value of Kv,se does contain these posi-
tive contributions provided the sweep angle is positive.  They should not be, and therefore are
not added in for the planform with a swept forward leading edge).  Furthermore, aerodynamic
performance values for each planform and for the entire configuration will be listed over an
angle of attack range by the use of the Polhamus Suction Analogy.  The headings are explained
below: See the references for detailed explanations of these terms.

KP Kp
KVLE Kv,le
KV SE Kv,se
ALPHA α
CN  CN,tot
CLP CL,p
CLVLE CL,vle
CLVSE Kv,se  |sinα|  |sinα|  cos α
CMP pitching-moment coefficient due to CL,p
CMVLE pitching-moment coefficient due to CL,vle
CMVSE pitching-moment coefficient due to CL,vse
CM total pitching moment
CD CL,tot  x  tanα
CL**2/(PI*AR) (CL,tot)2 /(Pi*(Aspect Ratio))
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SAMPLE INPUT, - as developed by Bob Narducci to investigate the YF-23.

YF-23 Flaps Down
2.        1.        26.8917   950.0     0.0
6.0       0.        0.        0.
 37.80    0.0       0.0       1.
 22.73    -4.35     0.        1.
 14.69    -4.35     0.        1.
 00.11    -21.75    0.        1.
-03.24    -21.75    0.        1.
-14.96    -7.86     0.        1.
-14.96    0.
8.        0.        0.        0.
-14.96    0.        0.        1.
-14.96    -7.86     43.       1.
-22.00    -16.90    0.        1.
-24.51    -16.90    43.       1.
-29.50    -10.71    43.       1.
-27.02    -7.86     0.        1.
-28.36    -6.86     0.        1.
-25.68    -3.85     0.        1.
-29.20    0.
23.  6.   13.  .30  .53  0.   0.   0.   0.        1.   0.        0.
.1745     .1745     .1745     .1745     .1745     .1745
.1745     .1745     .1745     .1745     .1745     .1745
.1745     .1745     .1745     .1745     .1745     .1745
.1745     .1745     .1745     .1745     .1745     .1745
.1745     .1745     .1745     .1745     .1745     .1745
.1745     .1745     .1745     .1745     .1745     .1745
.1745     .1745     .1745     .1745     .1745     .1745
.0000     .0000     .0000     .0000     .0000     .0000
.0000     .0000     .0000     .0000     .0000     .0000
.0000     .0000     .0000     .0000     .0000     .0000
.0000     .0000     .0000     .0000     .0000     .0000
.0000     .0000     .0000     .0000     .0000     .0000
.0000     .0000     .0000     .0000     .0000     .0000

SAMPLE OUTPUT: The output is lengthy, but included here to help students check their codes.

This is what shows up on the screen:

enter name of data set: yf23.in
enter name of output file: yf23out.manual

  all output is routed to disk file
  computing may take quite some time

STOP 
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The output file yf23out.manual is:

               vortex lattice aerodynamic computation program
              nasa-lrc no. a2794 by j.e. lamar and b.b. gloss

                modified for watfor77 with 72 column output

YF-23 Flaps Down                                                      

                              geometry data

                  first  reference planform has  6 curves

   center of gravity =   0.00000
   root chord height =   0.00000
   variable sweep pivot position    x(s) =   0.00000   y(s) =   0.00000

                break points for the reference planform

  point        x           y         sweep      dihedral    move
              ref         ref        angle       angle      code

      1    37.80000     0.00000    73.89906     0.00000       1
      2    22.73000    -4.35000    90.00000     0.00000       1
      3    14.69000    -4.35000    39.96069     0.00000       1
      4     0.11000   -21.75000    90.00000     0.00000       1
      5    -3.24000   -21.75000   -40.15675     0.00000       1
      6   -14.96000    -7.86000     0.00000     0.00000       1
      7   -14.96000     0.00000

                 second  reference planform has  8 curves

   center of gravity =   0.00000
   root chord height =   0.00000
   variable sweep pivot position    x(s) =   0.00000   y(s) =   0.00000

                break points for the reference planform

  point        x           y         sweep      dihedral    move
              ref         ref        angle       angle      code

      1   -14.96000     0.00000     0.00000     0.00000       1
      2   -14.96000    -7.86000    37.91007    43.00000       1
      3   -22.00000   -16.90000    90.00000     0.00000       1
      4   -24.51000   -16.90000   -38.87364    43.00000       1
      5   -29.50000   -10.71000    41.02898    43.00000       1
      6   -27.02000    -7.86000   -53.26718     0.00000       1
      7   -28.36000    -6.86000    41.68077     0.00000       1
      8   -25.68000    -3.85000   -42.43623     0.00000       1
      9   -29.20000     0.00000
1

                 configuration no.     23.

          curve  1 is swept    73.89906 degrees on planform  1

          curve  1 is swept     0.00000 degrees on planform  2
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                  break points for this configuration

 point      x           y           z        sweep      dihedral   move
                                             angle       angle     code

   1    37.80000     0.00000     0.00000    73.89906     0.00000     1
   2    24.46218    -3.85000     0.00000    73.89906     0.00000     1
   3    22.73000    -4.35000     0.00000    90.00000     0.00000     1
   4    14.69000    -4.35000     0.00000    39.96069     0.00000     1
   5    12.58679    -6.86000     0.00000    39.96069     0.00000     1
   6     9.36076   -10.71000     0.00000    39.96069     0.00000     1
   7     4.17397   -16.90000     0.00000    39.96069     0.00000     1
   8     0.11000   -21.75000     0.00000    90.00000     0.00000     1
   9    -3.24000   -21.75000     0.00000   -40.15676     0.00000     1
  10   -14.96000    -7.86000     0.00000     0.00000     0.00000     1
  11   -14.96000     0.00000     0.00000

                      second planform breakpoints 

   1   -14.96000     0.00000     0.00000     0.00000     0.00000     1
   2   -14.96000    -4.35000     0.00000     0.00000     0.00000     1
   3   -14.96000    -7.86000     0.00000    37.91007    43.00000     1
   4   -22.00000   -16.90000    -8.42994    90.00000     0.00000     1
   5   -24.51000   -16.90000    -8.42994   -38.87364    43.00000     1
   6   -29.50000   -10.71000    -2.65767    41.02898    43.00000     1
   7   -27.02000    -7.86000     0.00000   -53.26718     0.00000     1
   8   -28.36000    -6.86000     0.00000    41.68077     0.00000     1
   9   -25.68000    -3.85000     0.00000   -42.43624     0.00000     1
  10   -29.20000     0.00000     0.00000

     168 horseshoe vortices used on the left half of the configuration

                    planform       total       spanwise

                         1           90             15
                         2           78             13

                6. horseshoe vortices in each chordwise row
1
                            aerodynamic data

                        configuration no.    23.

 static longitudinal aerodynamic coefficients are computed

  panel      x            x           y           z           s
    no.      c/4         3c/4

     1     0.61276     0.21636   -20.91346     0.00000     0.83654
     2    -0.18004    -0.57644   -20.91346     0.00000     0.83654
     3    -0.97284    -1.36924   -20.91346     0.00000     0.83654
     4    -1.76564    -2.16204   -20.91346     0.00000     0.83654
     5    -2.55845    -2.95485   -20.91346     0.00000     0.83654
     6    -3.35125    -3.74765   -20.91346     0.00000     0.83654
     7     1.89745     1.26658   -19.24039     0.00000     0.83654
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     8     0.63571     0.00484   -19.24039     0.00000     0.83654
     9    -0.62603    -1.25690   -19.24039     0.00000     0.83654
    10    -1.88776    -2.51863   -19.24039     0.00000     0.83654
    11    -3.14950    -3.78037   -19.24039     0.00000     0.83654
    12    -4.41124    -5.04211   -19.24039     0.00000     0.83654
    13     3.11717     2.26369   -17.65192     0.00000     0.75192
    14     1.41021     0.55673   -17.65192     0.00000     0.75192
    15    -0.29675    -1.15023   -17.65192     0.00000     0.75192
    16    -2.00371    -2.85719   -17.65192     0.00000     0.75192
    17    -3.71067    -4.56415   -17.65192     0.00000     0.75192
    18    -5.41763    -6.27110   -17.65192     0.00000     0.75192
    19     4.33688     3.26079   -16.06346     0.00000     0.83654
    20     2.18470     1.10861   -16.06346     0.00000     0.83654
    21     0.03253    -1.04356   -16.06346     0.00000     0.83654
    22    -2.11965    -3.19574   -16.06346     0.00000     0.83654
    23    -4.27183    -5.34792   -16.06346     0.00000     0.83654
    24    -6.42401    -7.50010   -16.06346     0.00000     0.83654
    25     5.62157     4.31101   -14.39038     0.00000     0.83654
    26     3.00046     1.68990   -14.39038     0.00000     0.83654
    27     0.37934    -0.93122   -14.39038     0.00000     0.83654
    28    -2.24177    -3.55233   -14.39038     0.00000     0.83654
    29    -4.86289    -6.17345   -14.39038     0.00000     0.83654
    30    -7.48401    -8.79456   -14.39038     0.00000     0.83654
    31     6.90626     5.36123   -12.71731     0.00000     0.83654
    32     3.81621     2.27118   -12.71731     0.00000     0.83654
    33     0.72616    -0.81887   -12.71731     0.00000     0.83654
    34    -2.36390    -3.90892   -12.71731     0.00000     0.83654
    35    -5.45395    -6.99897   -12.71731     0.00000     0.83654
    36    -8.54400   -10.08903   -12.71731     0.00000     0.83654
    37     7.99810     6.25380   -11.29539     0.00000     0.58538
    38     4.50950     2.76521   -11.29539     0.00000     0.58538
    39     1.02091    -0.72339   -11.29539     0.00000     0.58538
    40    -2.46768    -4.21198   -11.29539     0.00000     0.58538
    41    -5.95628    -7.70058   -11.29539     0.00000     0.58538
    42    -9.44487   -11.18917   -11.29539     0.00000     0.58538
    43     9.08994     7.14637    -9.87346     0.00000     0.83654
    44     5.20280     3.25923    -9.87346     0.00000     0.83654
    45     1.31566    -0.62790    -9.87346     0.00000     0.83654
    46    -2.57147    -4.51504    -9.87346     0.00000     0.83654
    47    -6.45861    -8.40218    -9.87346     0.00000     0.83654
    48   -10.34575   -12.28931    -9.87346     0.00000     0.83654
    49    10.18414     8.04087    -8.44846     0.00000     0.58846
    50     5.89760     3.75432    -8.44846     0.00000     0.58846
    51     1.61105    -0.53222    -8.44846     0.00000     0.58846
    52    -2.67549    -4.81876    -8.44846     0.00000     0.58846
    53    -6.96203    -9.10530    -8.44846     0.00000     0.58846
    54   -11.24857   -13.39184    -8.44846     0.00000     0.58846
    55    11.03750     8.77685    -7.36000     0.00000     0.50000
    56     6.51620     4.25554    -7.36000     0.00000     0.50000
    57     1.99489    -0.26576    -7.36000     0.00000     0.50000
    58    -2.52641    -4.78706    -7.36000     0.00000     0.50000
    59    -7.04772    -9.30837    -7.36000     0.00000     0.50000
    60   -11.56902   -13.82967    -7.36000     0.00000     0.50000
    61    12.11076     9.75678    -6.02346     0.00000     0.83654
    62     7.40281     5.04883    -6.02346     0.00000     0.83654
    63     2.69485     0.34087    -6.02346     0.00000     0.83654
    64    -2.01311    -4.36709    -6.02346     0.00000     0.83654
    65    -6.72107    -9.07505    -6.02346     0.00000     0.83654
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    66   -11.42903   -13.78301    -6.02346     0.00000     0.83654
    67    13.11855    10.67694    -4.76846     0.00000     0.41846
    68     8.23532     5.79371    -4.76846     0.00000     0.41846
    69     3.35210     0.91049    -4.76846     0.00000     0.41846
    70    -1.53113    -3.97274    -4.76846     0.00000     0.41846
    71    -6.41435    -8.85597    -4.76846     0.00000     0.41846
    72   -11.29758   -13.73919    -4.76846     0.00000     0.41846
    73    21.98959    18.77658    -4.10000     0.00000     0.25000
    74    15.56357    12.35056    -4.10000     0.00000     0.25000
    75     9.13756     5.92455    -4.10000     0.00000     0.25000
    76     2.71154    -0.50147    -4.10000     0.00000     0.25000
    77    -3.71447    -6.92748    -4.10000     0.00000     0.25000
    78   -10.14049   -13.35350    -4.10000     0.00000     0.25000
    79    25.59691    22.07023    -3.01346     0.00000     0.83654
    80    18.54354    15.01685    -3.01346     0.00000     0.83654
    81    11.49016     7.96347    -3.01346     0.00000     0.83654
    82     4.43679     0.91010    -3.01346     0.00000     0.83654
    83    -2.61659    -6.14328    -3.01346     0.00000     0.83654
    84    -9.66997   -13.19666    -3.01346     0.00000     0.83654
    85    31.98795    27.90552    -1.08846     0.00000     1.08846
    86    23.82309    19.74066    -1.08846     0.00000     1.08846
    87    15.65823    11.57580    -1.08846     0.00000     1.08846
    88     7.49337     3.41094    -1.08846     0.00000     1.08846
    89    -0.67149    -4.75393    -1.08846     0.00000     1.08846
    90    -8.83636   -12.91879    -1.08846     0.00000     1.08846

  second planform horseshoe vortex descriptions

    91   -21.66854   -21.95851   -16.28819    -7.85942     0.83654
    92   -22.24848   -22.53845   -16.28819    -7.85942     0.83654
    93   -22.82842   -23.11839   -16.28819    -7.85942     0.83654
    94   -23.40836   -23.69833   -16.28819    -7.85942     0.83654
    95   -23.98830   -24.27827   -16.28819    -7.85942     0.83654
    96   -24.56824   -24.85822   -16.28819    -7.85942     0.83654
    97   -20.79644   -21.24802   -15.06458    -6.71838     0.83654
    98   -21.69960   -22.15118   -15.06458    -6.71838     0.83654
    99   -22.60276   -23.05434   -15.06458    -6.71838     0.83654
   100   -23.50591   -23.95749   -15.06458    -6.71838     0.83654
   101   -24.40907   -24.86065   -15.06458    -6.71838     0.83654
   102   -25.31223   -25.76381   -15.06458    -6.71838     0.83654
   103   -19.92434   -20.53753   -13.84097    -5.57735     0.83654
   104   -21.15072   -21.76390   -13.84097    -5.57735     0.83654
   105   -22.37709   -22.99028   -13.84097    -5.57735     0.83654
   106   -23.60347   -24.21665   -13.84097    -5.57735     0.83654
   107   -24.82984   -25.44303   -13.84097    -5.57735     0.83654
   108   -26.05622   -26.66940   -13.84097    -5.57735     0.83654
   109   -19.05225   -19.82704   -12.61736    -4.43631     0.83654
   110   -20.60184   -21.37664   -12.61736    -4.43631     0.83654
   111   -22.15143   -22.92623   -12.61736    -4.43631     0.83654
   112   -23.70102   -24.47582   -12.61736    -4.43631     0.83654
   113   -25.25062   -26.02541   -12.61736    -4.43631     0.83654
   114   -26.80021   -27.57500   -12.61736    -4.43631     0.83654
   115   -18.15451   -19.09567   -11.35778    -3.26173     0.88572
   116   -20.03682   -20.97798   -11.35778    -3.26173     0.88572
   117   -21.91913   -22.86029   -11.35778    -3.26173     0.88572
   118   -23.80145   -24.74260   -11.35778    -3.26173     0.88572
   119   -25.68376   -26.62491   -11.35778    -3.26173     0.88572
   120   -27.56607   -28.50722   -11.35778    -3.26173     0.88572
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   121   -17.21404   -18.23609   -10.09819    -2.08715     0.83654
   122   -19.25814   -20.28019   -10.09819    -2.08715     0.83654
   123   -21.30224   -22.32430   -10.09819    -2.08715     0.83654
   124   -23.34634   -24.36839   -10.09819    -2.08715     0.83654
   125   -25.39045   -26.41250   -10.09819    -2.08715     0.83654
   126   -27.43455   -28.45660   -10.09819    -2.08715     0.83654
   127   -16.09888   -17.11008    -8.67319    -0.75832     1.11190
   128   -18.12127   -19.13247    -8.67319    -0.75832     1.11190
   129   -20.14366   -21.15486    -8.67319    -0.75832     1.11190
   130   -22.16605   -23.17725    -8.67319    -0.75832     1.11190
   131   -24.18844   -25.19963    -8.67319    -0.75832     1.11190
   132   -26.21083   -27.22202    -8.67319    -0.75832     1.11190
   133   -15.49042   -16.55125    -7.36000     0.00000     0.50000
   134   -17.61208   -18.67292    -7.36000     0.00000     0.50000
   135   -19.73375   -20.79458    -7.36000     0.00000     0.50000
   136   -21.85542   -22.91625    -7.36000     0.00000     0.50000
   137   -23.97708   -25.03792    -7.36000     0.00000     0.50000
   138   -26.09875   -27.15958    -7.36000     0.00000     0.50000
   139   -15.48730   -16.54190    -6.02346     0.00000     0.83654
   140   -17.59650   -18.65109    -6.02346     0.00000     0.83654
   141   -19.70569   -20.76029    -6.02346     0.00000     0.83654
   142   -21.81489   -22.86949    -6.02346     0.00000     0.83654
   143   -23.92408   -24.97868    -6.02346     0.00000     0.83654
   144   -26.03328   -27.08788    -6.02346     0.00000     0.83654
   145   -15.44074   -16.40222    -4.76846     0.00000     0.41846
   146   -17.36370   -18.32518    -4.76846     0.00000     0.41846
   147   -19.28666   -20.24814    -4.76846     0.00000     0.41846
   148   -21.20962   -22.17110    -4.76846     0.00000     0.41846
   149   -23.13258   -24.09406    -4.76846     0.00000     0.41846
   150   -25.05555   -26.01703    -4.76846     0.00000     0.41846
   151   -15.41594   -16.32782    -4.10000     0.00000     0.25000
   152   -17.23971   -18.15159    -4.10000     0.00000     0.25000
   153   -19.06347   -19.97536    -4.10000     0.00000     0.25000
   154   -20.88724   -21.79912    -4.10000     0.00000     0.25000
   155   -22.71100   -23.62289    -4.10000     0.00000     0.25000
   156   -24.53477   -25.44665    -4.10000     0.00000     0.25000
   157   -15.43854   -16.39561    -3.01346     0.00000     0.83654
   158   -17.35267   -18.30974    -3.01346     0.00000     0.83654
   159   -19.26681   -20.22388    -3.01346     0.00000     0.83654
   160   -21.18095   -22.13802    -3.01346     0.00000     0.83654
   161   -23.09509   -24.05216    -3.01346     0.00000     0.83654
   162   -25.00923   -25.96630    -3.01346     0.00000     0.83654
   163   -15.51187   -16.61560    -1.08846     0.00000     1.08846
   164   -17.71934   -18.82308    -1.08846     0.00000     1.08846
   165   -19.92681   -21.03055    -1.08846     0.00000     1.08846
   166   -22.13429   -23.23802    -1.08846     0.00000     1.08846
   167   -24.34176   -25.44550    -1.08846     0.00000     1.08846
   168   -26.54923   -27.65297    -1.08846     0.00000     1.08846

  panel      x          c/4       dihedral      local       delta
    no.                 sweep       angle        alpha       cp at
                        angle                    in rad       cl=
                                                    
     1     0.61276    37.51921     0.00000     0.00000     1.93466
     2    -0.18004    25.99276     0.00000     0.00000     0.80132
     3    -0.97284    11.71110     0.00000     0.00000     0.44417
     4    -1.76564    -4.17472     0.00000     0.00000     0.26877
     5    -2.55845   -19.45708     0.00000     0.00000     0.16716
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     6    -3.35125   -32.35670     0.00000     0.00000     0.09160
     7     1.89745    37.51921     0.00000     0.00000     1.76990
     8     0.63571    25.99275     0.00000     0.00000     0.76368
     9    -0.62603    11.71110     0.00000     0.00000     0.45451
    10    -1.88776    -4.17472     0.00000     0.00000     0.28471
    11    -3.14950   -19.45708     0.00000     0.00000     0.17716
    12    -4.41124   -32.35670     0.00000     0.00000     0.09637
    13     3.11717    37.51921     0.00000     0.00000     1.61448
    14     1.41021    25.99276     0.00000     0.00000     0.70163
    15    -0.29675    11.71110     0.00000     0.00000     0.42928
    16    -2.00371    -4.17472     0.00000     0.00000     0.27496
    17    -3.71067   -19.45708     0.00000     0.00000     0.17320
    18    -5.41763   -32.35670     0.00000     0.00000     0.09524
    19     4.33688    37.51921     0.00000     0.00000     1.47893
    20     2.18470    25.99276     0.00000     0.00000     0.65076
    21     0.03253    11.71110     0.00000     0.00000     0.40415
    22    -2.11965    -4.17472     0.00000     0.00000     0.26327
    23    -4.27183   -19.45708     0.00000     0.00000     0.16857
    24    -6.42401   -32.35670     0.00000     0.00000     0.09444
    25     5.62157    37.51921     0.00000     0.00000     1.35651
    26     3.00046    25.99275     0.00000     0.00000     0.60063
    27     0.37934    11.71110     0.00000     0.00000     0.37829
    28    -2.24177    -4.17472     0.00000     0.00000     0.25096
    29    -4.86289   -19.45708     0.00000     0.00000     0.16475
    30    -7.48401   -32.35670     0.00000     0.00000     0.09603
    31     6.90626    37.51921     0.00000     0.00000     1.25084
    32     3.81621    25.99275     0.00000     0.00000     0.55670
    33     0.72616    11.71110     0.00000     0.00000     0.35540
    34    -2.36390    -4.17472     0.00000     0.00000     0.24065
    35    -5.45395   -19.45708     0.00000     0.00000     0.16334
    36    -8.54400   -32.35670     0.00000     0.00000     0.10177
    37     7.99810    37.51921     0.00000     0.00000     1.17259
    38     4.50950    25.99275     0.00000     0.00000     0.52388
    39     1.02091    11.71110     0.00000     0.00000     0.33913
    40    -2.46768    -4.17472     0.00000     0.00000     0.23444
    41    -5.95628   -19.45708     0.00000     0.00000     0.16514
    42    -9.44487   -32.35670     0.00000     0.00000     0.11344
    43     9.08994    37.51922     0.00000     0.00000     1.10114
    44     5.20280    25.99276     0.00000     0.00000     0.49372
    45     1.31566    11.71110     0.00000     0.00000     0.32473
    46    -2.57147    -4.17472     0.00000     0.00000     0.22932
    47    -6.45861   -19.45708     0.00000     0.00000     0.16777
    48   -10.34575   -32.35669     0.00000     0.00000     0.13011
    49    10.18414    37.51921     0.00000     0.00000     1.03049
    50     5.89760    25.99276     0.00000     0.00000     0.46250
    51     1.61105    11.71110     0.00000     0.00000     0.31155
    52    -2.67549    -4.17472     0.00000     0.00000     0.22487
    53    -6.96203   -19.45708     0.00000     0.00000     0.17004
    54   -11.24857   -32.35670     0.00000     0.00000     0.15708
    55    11.03750    38.76506     0.00000     0.00000     0.99032
    56     6.51620    33.55879     0.00000     0.00000     0.44531
    57     1.99489    27.64136     0.00000     0.00000     0.30956
    58    -2.52641    21.00937     0.00000     0.00000     0.22725
    59    -7.04772    13.73368     0.00000     0.00000     0.17350
    60   -11.56902     5.97943     0.00000     0.00000     0.18265
    61    12.11076    38.76506     0.00000     0.00000     0.95236
    62     7.40281    33.55879     0.00000     0.00000     0.43009
    63     2.69485    27.64136     0.00000     0.00000     0.31413
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    64    -2.01311    21.00937     0.00000     0.00000     0.23344
    65    -6.72107    13.73368     0.00000     0.00000     0.17482
    66   -11.42903     5.97943     0.00000     0.00000     0.20034
    67    13.11855    38.76506     0.00000     0.00000     0.88945
    68     8.23532    33.55879     0.00000     0.00000     0.42661
    69     3.35210    27.64136     0.00000     0.00000     0.33185
    70    -1.53113    21.00937     0.00000     0.00000     0.23456
    71    -6.41435    13.73368     0.00000     0.00000     0.15684
    72   -11.29758     5.97943     0.00000     0.00000     0.21695
    73    21.98959    73.23754     0.00000     0.00000     0.21302
    74    15.56357    69.96743     0.00000     0.00000     0.38221
    75     9.13756    65.21040     0.00000     0.00000     0.38601
    76     2.71154    57.79776     0.00000     0.00000     0.29039
    77    -3.71447    45.29755     0.00000     0.00000     0.25414
    78   -10.14049    23.41484     0.00000     0.00000     0.19888
    79    25.59691    73.23754     0.00000     0.00000     0.28844
    80    18.54354    69.96743     0.00000     0.00000     0.19152
    81    11.49016    65.21040     0.00000     0.00000     0.36631
    82     4.43679    57.79776     0.00000     0.00000     0.30348
    83    -2.61659    45.29755     0.00000     0.00000     0.23120
    84    -9.66997    23.41484     0.00000     0.00000     0.20109
    85    31.98795    73.23754     0.00000     0.00000     0.21732
    86    23.82309    69.96743     0.00000     0.00000     0.16858
    87    15.65823    65.21040     0.00000     0.00000     0.25630
    88     7.49337    57.79776     0.00000     0.00000     0.30933
    89    -0.67149    45.29755     0.00000     0.00000     0.23234
    90    -8.83636    23.41482     0.00000     0.00000     0.19074

  second planform horseshoe vortex descriptions

    91   -21.66854    35.47837    43.00000     0.17450     2.07234
    92   -22.24848    24.15973    43.00000     0.17450     0.86344
    93   -22.82842    10.44929    43.00000     0.17450     0.50181
    94   -23.40836    -4.55831    43.00000     0.17450     0.31432
    95   -23.98830   -18.97688    43.00000     0.17450     0.19781
    96   -24.56824   -31.30072    43.00000     0.17450     0.10867
    97   -20.79644    35.47836    43.00000     0.17450     1.86622
    98   -21.69960    24.15975    43.00000     0.17450     0.79905
    99   -22.60276    10.44927    43.00000     0.17450     0.48369
   100   -23.50591    -4.55835    43.00000     0.17450     0.31020
   101   -24.40907   -18.97688    43.00000     0.17450     0.19537
   102   -25.31223   -31.30072    43.00000     0.17450     0.10614
   103   -19.92434    35.47837    43.00000     0.17450     1.62276
   104   -21.15072    24.15975    43.00000     0.17450     0.69665
   105   -22.37709    10.44928    43.00000     0.17450     0.42654
   106   -23.60347    -4.55832    43.00000     0.17450     0.27531
   107   -24.82984   -18.97687    43.00000     0.17450     0.17295
   108   -26.05622   -31.30070    43.00000     0.17450     0.09307
   109   -19.05225    35.47837    43.00000     0.17450     1.39650
   110   -20.60184    24.15974    43.00000     0.17450     0.60027
   111   -22.15143    10.44929    43.00000     0.17450     0.36950
   112   -23.70102    -4.55834    43.00000     0.17450     0.23890
   113   -25.25062   -18.97689    43.00000     0.17450     0.14921
   114   -26.80021   -31.30070    43.00000     0.17450     0.07915
   115   -18.15451    35.47837    43.00000     0.17450     1.17860
   116   -20.03682    24.15975    43.00000     0.17450     0.50846
   117   -21.91913    10.44929    43.00000     0.17450     0.31541
   118   -23.80145    -4.55835    43.00000     0.17450     0.20462
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   119   -25.68376   -18.97689    43.00000     0.17450     0.12671
   120   -27.56607   -31.30071    43.00000     0.17450     0.06503
   121   -17.21404    38.04567    43.00000     0.17450     1.01268
   122   -19.25814    38.58307    43.00000     0.17450     0.44608
   123   -21.30224    39.11254    43.00000     0.17450     0.28734
   124   -23.34634    39.63417    43.00000     0.17450     0.19345
   125   -25.39045    40.14806    43.00000     0.17450     0.12395
   126   -27.43455    40.65429    43.00000     0.17450     0.06535
   127   -16.09888    38.04567    43.00000     0.17450     0.83667
   128   -18.12127    38.58307    43.00000     0.17450     0.39566
   129   -20.14366    39.11254    43.00000     0.17450     0.27313
   130   -22.16605    39.63417    43.00000     0.17450     0.19673
   131   -24.18844    40.14806    43.00000     0.17450     0.13605
   132   -26.21083    40.65429    43.00000     0.17450     0.07985
   133   -15.49042    -3.19570     0.00000     0.00000     0.56637
   134   -17.61208   -15.59796     0.00000     0.00000     0.42340
   135   -19.73375   -26.67953     0.00000     0.00000     0.31785
   136   -21.85542   -35.97340     0.00000     0.00000     0.23703
   137   -23.97708   -43.50610     0.00000     0.00000     0.16547
   138   -26.09875   -49.53985     0.00000     0.00000     0.09394
   139   -15.48730     2.12462     0.00000     0.00000     0.38372
   140   -17.59650    10.50852     0.00000     0.00000     0.33354
   141   -19.70569    18.46350     0.00000     0.00000     0.27610
   142   -21.81489    25.74715     0.00000     0.00000     0.21449
   143   -23.92408    32.23863     0.00000     0.00000     0.15167
   144   -26.03328    37.92108     0.00000     0.00000     0.08438
   145   -15.44074     2.12462     0.00000     0.00000     0.34990
   146   -17.36370    10.50851     0.00000     0.00000     0.29853
   147   -19.28666    18.46349     0.00000     0.00000     0.25906
   148   -21.20962    25.74714     0.00000     0.00000     0.21134
   149   -23.13258    32.23862     0.00000     0.00000     0.15849
   150   -25.05555    37.92108     0.00000     0.00000     0.09723
   151   -15.41594     2.12462     0.00000     0.00000     0.35024
   152   -17.23971    10.50852     0.00000     0.00000     0.28116
   153   -19.06347    18.46350     0.00000     0.00000     0.24782
   154   -20.88724    25.74714     0.00000     0.00000     0.20712
   155   -22.71100    32.23864     0.00000     0.00000     0.16006
   156   -24.53477    37.92108     0.00000     0.00000     0.10421
   157   -15.43854    -2.18164     0.00000     0.00000     0.32319
   158   -17.35267   -10.78430     0.00000     0.00000     0.24905
   159   -19.26681   -18.92465     0.00000     0.00000     0.22019
   160   -21.18095   -26.34637     0.00000     0.00000     0.18542
   161   -23.09509   -32.92787     0.00000     0.00000     0.14319
   162   -25.00923   -38.65982     0.00000     0.00000     0.09029
   163   -15.51187    -2.18164     0.00000     0.00000     0.29260
   164   -17.71934   -10.78430     0.00000     0.00000     0.22016
   165   -19.92681   -18.92465     0.00000     0.00000     0.19116
   166   -22.13429   -26.34637     0.00000     0.00000     0.15602
   167   -24.34176   -32.92787     0.00000     0.00000     0.11287
   168   -26.54923   -38.65981     0.00000     0.00000     0.06313

     ref. chord      c average     true area    reference area
       26.89170       31.36179     1364.23767      950.00000

         b/2           ref. ar        true ar       mach number
       21.75000        1.99184        1.38704        0.30000
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     complete configuration
                               lift    induced drag(far field solution)
         cl   computed alpha   cl(wb)   cdi at cl(wb)   cdi/(cl(wb)**2)

       0.5300     7.6834       0.3851      0.0238           0.1608

                 complete configuration characteristics

        cl  alpha       cl(twist)  alpha     y cp      cm/cl      cmo
    per rad   per deg             at cl=0
    3.11731   0.05441   0.11197  -2.05798  -0.42053   0.06834  -0.07080

         additional loading
     with cl based on s(true)                 -at cl des-

                                 load    add.  basic  span   x loc
                                 dueto  load   load   load    of
stat  2y/b    sl     cl     c    twist  at cl  at cl  at cl  local
             coef  ratio  ratio           =      =    desir  cent of
                                        0.112    0           press

  1 -0.962  0.310  2.045  0.152  0.003  0.024 -0.021  0.094  -0.162
  2 -0.885  0.471  1.950  0.241  0.006  0.037 -0.031  0.143   0.575
  3 -0.812  0.588  1.802  0.327  0.008  0.046 -0.038  0.179   1.273
  4 -0.739  0.687  1.669  0.412  0.010  0.054 -0.044  0.210   1.949
  5 -0.662  0.775  1.545  0.501  0.012  0.060 -0.048  0.238   2.630
  6 -0.585  0.850  1.438  0.591  0.016  0.066 -0.051  0.263   3.257
  7 -0.519  0.909  1.362  0.667  0.019  0.071 -0.052  0.284   3.709
  8 -0.454  0.963  1.295  0.744  0.023  0.075 -0.052  0.303   4.081
  9 -0.388  1.011  1.233  0.820  0.028  0.079 -0.051  0.322   4.316
 10 -0.338  1.046  1.209  0.865  0.031  0.082 -0.050  0.336   4.526
 11 -0.277  1.075  1.193  0.901  0.033  0.084 -0.051  0.346   5.045
 12 -0.219  1.092  1.168  0.934  0.034  0.085 -0.052  0.351   5.530
 13 -0.189  1.100  0.895  1.229  0.033  0.086 -0.053  0.353   6.950
 14 -0.139  1.109  0.822  1.349  0.033  0.086 -0.053  0.356   8.812
 15 -0.050  1.117  0.715  1.562  0.033  0.087 -0.054  0.358  11.245

  contribution of the second planform to span load distribution

 16 -0.749  0.116  1.047  0.111  0.041  0.009  0.032  0.075 -22.261
 17 -0.693  0.164  0.948  0.173  0.061  0.013  0.048  0.108 -21.759
 18 -0.636  0.189  0.806  0.235  0.073  0.015  0.059  0.129 -21.242
 19 -0.580  0.200  0.676  0.296  0.082  0.016  0.066  0.140 -20.719
 20 -0.522  0.200  0.555  0.360  0.086  0.016  0.070  0.144 -20.183
 21 -0.464  0.187  0.479  0.391  0.084  0.015  0.070  0.139 -19.541
 22 -0.399  0.164  0.423  0.387  0.076  0.013  0.063  0.124 -18.709
 23 -0.338  0.174  0.429  0.406  0.071  0.014  0.058  0.122 -18.903
 24 -0.277  0.148  0.366  0.404  0.054  0.012  0.043  0.097 -19.224
 25 -0.219  0.133  0.363  0.368  0.045  0.010  0.035  0.084 -19.037
 26 -0.189  0.128  0.366  0.349  0.041  0.010  0.031  0.079 -18.872
 27 -0.139  0.124  0.339  0.366  0.038  0.010  0.028  0.074 -19.025
 28 -0.050  0.126  0.297  0.422  0.036  0.010  0.027  0.073 -19.428
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 induced drag,leading edge thrust , suction coefficient characteristics
          computed at the desired cl from a near field solution

                            section coefficients
                      l.e. sweep
 station       2y/b     angle     cdii c/2b   ct c/2b    cs c/2b
   1        -0.96154   39.96069    0.00412    0.00085    0.00111
   2        -0.88462   39.96069    0.00182    0.00507    0.00661
   3        -0.81158   39.96069    0.00042    0.00821    0.01071
   4        -0.73855   39.96069    0.00101    0.00912    0.01190
   5        -0.66163   39.96069    0.00187    0.00962    0.01255
   6        -0.58470   39.96069    0.00286    0.00985    0.01285
   7        -0.51933   39.96069    0.00392    0.00978    0.01276
   8        -0.45395   39.96069    0.00499    0.00967    0.01261
   9        -0.38844   39.96069    0.00581    0.00975    0.01272
  10        -0.33839   39.96069    0.00675    0.00940    0.01226
  11        -0.27694   39.96069    0.00795    0.00872    0.01138
  12        -0.21924   39.96069    0.00884    0.00813    0.01389
  13        -0.18851   73.89906    0.00974    0.00733    0.02002
  14        -0.13855   73.89906    0.01161    0.00557    0.02009
  15        -0.05004   73.89906    0.02071   -0.00342   -0.01233

 contribution of the second planform to the chord or drag force

  16        -0.74888   37.91007    0.00645    0.00292    0.00370
  17        -0.69262   37.91007    0.00477    0.00715    0.00906
  18        -0.63637   37.91007    0.00430    0.00984    0.01247
  19        -0.58011   37.91007    0.00588    0.00953    0.01208
  20        -0.52220   37.91007    0.00755    0.00832    0.01054
  21        -0.46428   37.91007    0.00901    0.00640    0.00812
  22        -0.39877   37.91007    0.00956    0.00324    0.00400
  23        -0.33839    0.00000    0.00665    0.00124    0.00128
  24        -0.27694    0.00000    0.00449    0.00034    0.00034
  25        -0.21924    0.00000    0.00408    0.00003    0.00003
  26        -0.18851    0.00000    0.00389   -0.00001   -0.00001
  27        -0.13855    0.00000    0.00361    0.00002    0.00002
  28        -0.05004    0.00000    0.00331    0.00022    0.00022

                          total coefficients

          cdii/cl**2=   0.15439     ct=   0.04177     cs=   0.05673
1

           end of file encountered after configuration    23.
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E.1 FOILGEN

This program is used for airfoil geometry generation. For airfoils with analytically defined ordi-
nates, this program produces airfoil definition data sets in the format required for PANELv2.
This includes NACA 4-digit, 4-digit modified and 5-digit airfoils. In addition, the NACA 6 and
6A camber lines are available. The user can combine any combination of thickness and camber
lines available within these shapes. This provides a wide range of airfoil definitions. The pro-
gram runs interactively, and a sample terminal session is provided here to illustrate its use.

From terminal session:

    NACA Airfoil Ordinate Generation
    W.H. Mason, March 15, 1992

    Thickness Distribution Options:

        1 - NACA 4 Digit Series
        2 - NACA Modified 4 Digit Series

      Select 1 or 2 :2

     Input Max Thickness,  T/C =.18

     X/C Position of Max Thickness =.4

     Input leading edge parameter:

     Choose values from 0 to 9 - 
      (6 is the 4 Series value)  7

    Leading Edge Radius, rle/C = 0.04859

    Trailing Edge Angle is 31.60 degrees
     [this is the TOTAL included angle]

    Camber Distribution Options:

      1 - NACA 4 Digit Series
      2 - NACA 5 Digit Series
      3 - NACA 6 & 6A  Series

     Select 1,2 or 3: 3

     Design Lift Coefficient = .2

     Input X/C for constant loading, A = .8

    6A-series camber line ? (Y/N):y

     Choose output option :

      1 - Point by point
      2 - Distribution

        Select 1 or 2:2

      Select type of distribution:

E-2 Applied Computational Aerodynamics

Tuesday, January 21, 1997



      1 - Even Spacing
      2 - Full Cosine
          (Concentrated at both LE & TE)
      3 - Half Cosine
          (Concentrated at LE)

         Choose 1, 2, or 3 :1

      Number of points in distribution,
                         (131 maximum) =21

I     X/C    YT/C    DYT/X   YC/C    DYC/C   XU/C(%)  YU/C(%)  XL/C(%) YL/C(%)
 1  0.0000  0.0000 99.9999  0.0000  0.0000   0.0000   0.0000   0.0000   0.0000
 2  0.0500  0.0529  0.3774  0.0036  0.0543   4.7133   5.6407   5.2867  -4.9195
 3  0.1000  0.0665  0.2020  0.0060  0.0412   9.7259   7.2420  10.2741  -6.0498
 4  0.1500  0.0747  0.1343  0.0078  0.0331  14.7529   8.2487  15.2471  -6.6872
 5  0.2000  0.0804  0.0969  0.0093  0.0269  19.7837   8.9702  20.2163  -7.1099
 6  0.2500  0.0846  0.0706  0.0105  0.0217  24.8161   9.5086  25.1839  -7.4057
 7  0.3000  0.0875  0.0478  0.0115  0.0172  29.8495   9.9018  30.1505  -7.6046
 8  0.3500  0.0894  0.0249  0.0122  0.0130  34.8839  10.1599  35.1161  -7.7119
 9  0.4000  0.0900  0.0000  0.0128  0.0090  39.9189  10.2786  40.0811  -7.7207
10  0.4500  0.0893 -0.0261  0.0131  0.0051  44.9543  10.2487  45.0457  -7.6202
11  0.5000  0.0874 -0.0518  0.0133  0.0012  49.9894  10.0698  50.0106  -7.4096
12  0.5500  0.0842 -0.0769  0.0133 -0.0028  55.0236   9.7439  54.9764  -7.0915
13  0.6000  0.0797 -0.1017  0.0130 -0.0071  60.0564   9.2725  59.9436  -6.6692
14  0.6500  0.0740 -0.1259  0.0125 -0.0118  65.0871   8.6561  64.9129  -6.1465
15  0.7000  0.0671 -0.1498  0.0118 -0.0172  70.1156   7.8941  69.8844  -5.5287
16  0.7500  0.0591 -0.1731  0.0108 -0.0241  75.1424   6.9835  74.8576  -4.8231
17  0.8000  0.0498 -0.1960  0.0093 -0.0361  80.1796   5.9136  79.8204  -4.0441
18  0.8500  0.0395 -0.2184  0.0072 -0.0469  85.1847   4.6629  84.8153  -3.2200
19  0.9000  0.0280 -0.2404  0.0047 -0.0480  90.1343   3.2641  89.8657  -2.3264
20  0.9500  0.0154 -0.2619  0.0023 -0.0480  95.0740   1.7693  94.9260  -1.3120
21  1.0000  0.0018 -0.2830  0.0000  0.0000 100.0000   0.1800 100.0000  -0.1800
I     X/C    YT/C    DYT/X   YC/C    DYC/C   XU/C(%)  YU/C(%)  XL/C(%) YL/C(%)

 send output to a file? (Y/N):
y

 enter file name:
testout.txt

 enter file title:
NACA 18% thick, xt=.4, I=7, 6A series cam, CLI = .2

    Another case?
n

STOP 

The disk file generated from the session shown above is:

 NACA 18% thick, xt=.4, I=7, 6A series cam, CLI = .2                          
 21.000000 21.000000
  Upper Surface
  0.000000  0.000000
  0.047133  0.056407
  0.097259  0.072420
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  0.147529  0.082487
  0.197837  0.089702
  0.248161  0.095086
  0.298495  0.099018
  0.348839  0.101599
  0.399189  0.102786
  0.449543  0.102487
  0.499894  0.100698
  0.550236  0.097439
  0.600564  0.092725
  0.650871  0.086561
  0.701156  0.078941
  0.751424  0.069835
  0.801796  0.059136
  0.851847  0.046629
  0.901343  0.032641
  0.950740  0.017693
  1.000000  0.001800
  Lower Surface
  0.000000  0.000000
  0.052867 -0.049195
  0.102741 -0.060498
  0.152471 -0.066872
  0.202163 -0.071099
  0.251839 -0.074057
  0.301505 -0.076046
  0.351161 -0.077119
  0.400811 -0.077207
  0.450457 -0.076202
  0.500106 -0.074096
  0.549764 -0.070915
  0.599436 -0.066692
  0.649129 -0.061465
  0.698844 -0.055287
  0.748576 -0.048231
  0.798204 -0.040441
  0.848153 -0.032200
  0.898657 -0.023264
  0.949260 -0.013120
  1.000000 -0.001800
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E.2 LADSON

This is the NASA program that provides a reasonable approximation to the NACA 6 and 6A se-
ries airfoils. It was written by Charles Ladson and Cuyler Brooks (Ref E.2-1).  Originally it ran
on the NASA CDC computer. It has been ported to run on a personal computer (Macintosh).
Only minor modifications were made to produce a program to generate a set of ordinates in the
form required as standard input by the programs described in App. D.

The program is only an approximation to the ordinates because there is no simple algebraic for-
mula available to describe the thickness distribution. I spoke briefly to Charles Ladson some
years ago, and he said that he thought it would be impossible to generate a more accurate pro-
gram. When he was doing this work he investigated the availability of more detailed notes on
these airfoils and discovered that all the records have been destroyed. The only information
available is that contained in the actual NACA reports. However, this program is much more ac-
curate than attempts to simulate the 6 and 6A series thickness envelope by using a modified
NACA 4-digit airfoil formula. The program was developed to handles thicknesses from 6 to 15
percent.

Figure E.2-1 compares the program predictions with the official ordinates - which are given in
Ref E.2-2, for 64-series airfoils. If the thickness distribution could be obtained by scaling a refer-
ence airfoil, each curve would be a straight flat line. Note especially that below thickness of
around six percent the program deviates significantly from the tabulated values. 

One other possible problem is the value at the trailing edge. Originally further processing was re-
quired to find the value. The program was modified to linearly extrapolate the values near the
trailing edge to get the final values. This was the approach recommended by Ladson. This is
done in the new routine added to generate the file of points, stdout. The user should check this
approximation if the results appear to be in error at the trailing edge.

References

E.2-1. Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for NACA 6- and 6A-Series Airfoils,” NASA TM X-3069, Sept., 1974.

E.2-2. Patterson, E.W., and Braslow, A.L., “Ordinates and Theoretical Pressure Distribution
Data for NACA 6- and 6A- Series Airfoil Sections with Thicknesses from 2 to 21 and
from 2 to 15 Percent Chord Respectively,” NASA R-84, 1961.
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a. x/c = 0.10

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values.

b. x/c = 0.075

c. x/c = 0.050

d. x/c = 0.025
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e. x/c = 0.0125

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values. (continued)

f. x/c = 0.0075

g. x/c = 0.0050

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values. (concluded)

Input Description

The user first creates a data file as described below. Then, the program runs interactively. It que-
ries the user for the name of the input data file. After the airfoil ordinates are found, the user is
asked for the name of the output file containing the ordinates in standard format.  The file names
can be up to twenty characters long. Because the program was developed in the era of cards, it is
critically important that the input be placed in the specified column.
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Card Field Variable Description
1. 2-80 TITLE Case title card. Any values can be used, from columns 2 to 80

2. Airfoil and camber line series designations as follows:

NACA airfoil thickness family: card designation column
63-series 63 9,10
64-series 64 9,10
65-series 65 9,10
66-series 66 9,10
67-series 67 9,10
63A-series 63A 8,9,10
64A-series 64A 8,9,10
65A-series 65A 8,9,10

NACA Camber line card designation column
NACA 6-series 63 19,20

64 19,20
65 19,20
66 19,20

NACA 6A-series 63A 18,19,20
64A 18,19,20
65A 18,19,20

Airfoil Parameter card (Note cards 3 to 6 are in floating point mode. Numbers are entered with a
decimal point.

3. 1-10 TOC Thickness to chord ratio of airfoil, i.e., 0.120

11-20 LER Published leading-edge radius may be entered if 
desired (not used in program)

21-30 CHD model chord  used for listing ordinates in dimensional units

31-40 CLI Design lift coefficient (i.e., 0.20)
set to 0.0 for a symmetrical airfoil

41-50 A mean line chordwise loading (use 0.8 for 6A-series airfoils)

51-60 CMBNMR number of mean lines to be summed, up to a max of nine
(if only one, leave blank or insert 1.0)

and as required:

Card Field Variable Description
4. 1-10 CLI design lift for second mean line

11-20 A loading for second mean line
21-30 CLI design lift for third mean line
31-40 A loading for third mean line
41-50 CLI design lift for fourth mean line
51-60 A loading for fourth mean line
61-70 CLI design lift for fifth mean line
71-80 A loading for fifth mean line
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Card Field Variable Description
5. 1-10 CLI design lift for sixth mean line

11-20 A loading for sixth mean line
21-30 CLI design lift for seventh mean line
31-40 A loading for seventh mean line
41-50 CLI design lift for eighth mean line
51-60 A loading for eighth mean line
61-70 CLI design lift for ninth mean line
71-80 A loading for ninth mean line

6. 1-10 CLI design lift for tenth mean line
11-20 A loading for tenth mean line

Sample input:

   NACA 65(1)213 A=0.5,CL=0.2
        65        65
 0.130     0.00      1.0       0.2         0.5     1.0

Output

The program files also contain the sample output of the program. Because the program was writ-
ten many years ago, it uses 133 column output, and doesn’t fit on a normal page. The output file
corresponds to the input data set given above and also available in the program files. This case
should be verified before further use of the program.

Eighty values of the upper and lower surface are contained in the disk file. The following is the
file generated from the sample input listed above. All numbers are output in 2F10.6 format.

   NACA 65(1)213 A=0.5,CL=0.2                                           
 80.000000 80.000000
  UPPER SURFACE
  0.000000  0.000000
  0.000294  0.004049
  0.000862  0.005724
  0.001472  0.007026
  0.002106  0.008120
  0.002756  0.009078
  0.003416  0.009940
  0.004095  0.010729
  0.004801  0.011465
  0.005750  0.012363
  0.006706  0.013187
  0.007668  0.013957
  0.008635  0.014674
  0.009605  0.015351
  0.010578  0.015999
  0.013509  0.017790
  0.018419  0.020432
  0.023349  0.022801
  0.028292  0.024990
  0.033243  0.027041
  0.038202  0.028978
  0.043167  0.030816
  0.048138  0.032564
  0.053113  0.034230
  0.058093  0.035824
  0.063077  0.037355
  0.068064  0.038829
  0.073053  0.040252
  0.078045  0.041628
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  0.083040  0.042963
  0.088036  0.044256
  0.093035  0.045510
  0.098035  0.046725
  0.108042  0.049051
  0.118054  0.051242
  0.138096  0.055281
  0.158154  0.058909
  0.178228  0.062180
  0.198314  0.065122
  0.218410  0.067761
  0.238517  0.070119
  0.258632  0.072209
  0.278755  0.074040
  0.298885  0.075621
  0.319022  0.076953
  0.339166  0.078041
  0.359316  0.078893
  0.379473  0.079505
  0.399636  0.079849
  0.419807  0.079905
  0.439987  0.079653
  0.460179  0.079093
  0.480389  0.078208
  0.500661  0.076988
  0.520914  0.075401
  0.541078  0.073489
  0.561197  0.071293
  0.581282  0.068840
  0.601339  0.066166
  0.621370  0.063297
  0.641379  0.060250
  0.661367  0.057038
  0.681337  0.053682
  0.701290  0.050202
  0.721229  0.046629
  0.741156  0.042982
  0.761071  0.039263
  0.780978  0.035493
  0.800877  0.031693
  0.820771  0.027893
  0.840662  0.024115
  0.860553  0.020383
  0.880445  0.016732
  0.900341  0.013196
  0.920244  0.009825
  0.940156  0.006682
  0.960082  0.003866
  0.980027  0.001528
  0.990009  0.000616
  1.000000 -0.000015
  LOWER SURFACE
  0.000000  0.000000
  0.001206 -0.003782
  0.002138 -0.005234
  0.003028 -0.006330
  0.003894 -0.007228
  0.004744 -0.008000
  0.005584 -0.008681
  0.006405 -0.009295
  0.007199 -0.009859
  0.008250 -0.010536
  0.009294 -0.011145
  0.010332 -0.011704
  0.011365 -0.012216
  0.012395 -0.012692
  0.013422 -0.013143
  0.016491 -0.014363
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  0.021581 -0.016110
  0.026651 -0.017640
  0.031708 -0.019033
  0.036757 -0.020325
  0.041798 -0.021536
  0.046833 -0.022676
  0.051862 -0.023751
  0.056887 -0.024766
  0.061907 -0.025730
  0.066923 -0.026652
  0.071936 -0.027533
  0.076947 -0.028381
  0.081955 -0.029197
  0.086960 -0.029988
  0.091964 -0.030750
  0.096965 -0.031487
  0.101964 -0.032198
  0.111958 -0.033552
  0.121946 -0.034818
  0.141904 -0.037129
  0.161846 -0.039182
  0.181772 -0.041014
  0.201686 -0.042644
  0.221590 -0.044089
  0.241483 -0.045366
  0.261368 -0.046480
  0.281245 -0.047440
  0.301115 -0.048251
  0.320978 -0.048913
  0.340834 -0.049428
  0.360684 -0.049806
  0.380527 -0.050043
  0.400364 -0.050111
  0.420192 -0.049996
  0.440012 -0.049680
  0.459821 -0.049171
  0.479611 -0.048463
  0.499339 -0.047570
  0.519085 -0.046504
  0.538922 -0.045258
  0.558802 -0.043842
  0.578717 -0.042267
  0.598660 -0.040559
  0.618629 -0.038730
  0.638620 -0.036789
  0.658632 -0.034743
  0.678662 -0.032603
  0.698709 -0.030384
  0.718770 -0.028110
  0.738843 -0.025795
  0.758928 -0.023432
  0.779021 -0.021039
  0.799122 -0.018629
  0.819228 -0.016226
  0.839337 -0.013846
  0.859446 -0.011507
  0.879554 -0.009237
  0.899658 -0.007062
  0.919755 -0.005023
  0.939843 -0.003175
  0.959916 -0.001603
  0.979971 -0.000444
  0.989990 -0.000089
  1.000000 -0.000015
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E.5 BUMP

This subroutine illustrates a means of making smooth changes to airfoil shapes. It is included

in PANELv2. It is designed to place a “bump” on the airfoil contour.  The shape change

starts gradually with zero curvature at point . The bump is setup to be asymmetric about

the bump midpoint, , and to blend back into the baseline shape with zero curvature at

point . However, if an asymmetric bump is used, the curvature will be discontinuous at

the bump maximum.  The following plot defines the nomenclature, as well as plotting the

output of the sample main program presented below. 

The related slope and curvature are given in the next graph.
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The equation of the bump is:

 

where

or

This function is often called a “cubic bump” although it is clearly a sixth order polynomial.

The user should examine the subroutine to understand the transformation between the local

variable xd  and the global variable xin.

Listing of subroutine bump.f:

      subroutine bump(xb1,xb2,xb3,dtc,xmax,xin,ymod,ymodp,ymodpp)
c
c     so-called cubic bump function
c
c     used to make mods to aero surfaces
c
c     W.H. Mason, December 1989
c
c     xb1    - start of bump (dimensional)
c     xb2    - location of maximum bump height (dimensional)
c     xb3    - end of bump (dimensional)
c
c     dtc    - magnitude of bump
c     xmax   - reference length of geometry
c
c     xin    - input location to get bump value
c     ymod   - bump height
c     ymodp  - first derivative of bump wrt xin
c     ymodpp - second derivative of bump wrt xin

      x      = xin/xmax
      x1     = xb1/xmax
      x2     = xb2/xmax
      x3     = xb3/xmax
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      xd     = 0.0
      dxddx  = 0.0
      if ( x .ge. x1 .and. x .le. x2) then

               xd = (x - x1)/2.0/(x2 - x1)
               dxddx = 1./2./(x2 - x1)
               endif

      if ( x .gt. x2 .and. x .le. x3) then

               xd = (x + x3 - 2.0*x2)/2.0/(x3 - x2)
               dxddx = 1./2./(x3 - x2)
               endif

      ymod   = -64.*dtc*xd**3*(xd - 1.0)**3

      ymodp  = -64.*dtc*3.0*dxddx*xd**2*
     1          (xd - 1.0)**2*(2.0*xd - 1.0)
      ymodpp = -64.*dtc*6.0*dxddx**2*xd*(xd - 1.0)*
     1          (5.0*xd**2 - 5.0*xd + 1.0)

      return
      end

This is a sample main program that can be used to check subroutine bump.

c
c     example of use of bump function
c     this is one way to modify an airfoil
c     w.h. mason, Feb. 12, 1994

c     set input parameters

      xb1    = 0.1
      xb2    = 0.4
      xb3    = 0.6

      dtc    = 0.50

      xmax   = 1.0

      write(6, 90) xb1,xb2,xb3,dtc
   90 format(/3x,'bump example'//
     1        3x,'xb1 = ',f7.4,3x,'xb2 = ',f7.4,3x,
     2           'xb3 = ',f7.4/3x,'dtc = ',f7.4/
     3       /4x,'i',7x,'x/c',7x,'delta y',4x,
     4           'd(dy)/dx'3x,'d2(dy)/dy2')

      do 10 i = 1,101
      xc      = 0.01*(i-1)
      call bump(xb1,xb2,xb3,dtc,xmax,xc,ymod,ymodp,ymodpp)
   10 write(6,100) i,xc,ymod,ymodp, ymodpp

  100 format(i5,4f12.5)

      stop
      end
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sample output from the sample main program and subroutine bump.f

  bump example

  xb1 =  0.1000   xb2 =  0.4000   xb3 =  0.6000
  dtc =  0.5000

   i       x/c       delta y    d(dy)/dx   d2(dy)/dy2
   1     0.00000     0.00000     0.00000     0.00000
   2     0.01000     0.00000     0.00000     0.00000
   3     0.02000     0.00000     0.00000     0.00000
   4     0.03000     0.00000     0.00000     0.00000
   5     0.04000     0.00000     0.00000     0.00000
   6     0.05000     0.00000     0.00000     0.00000
   7     0.06000     0.00000     0.00000     0.00000
   8     0.07000     0.00000     0.00000     0.00000
   9     0.08000     0.00000     0.00000     0.00000
  10     0.09000     0.00000     0.00000     0.00000
  11     0.10000     0.00000     0.00000     0.00000
  12     0.11000     0.00014     0.04154     8.02448
  13     0.12000     0.00107     0.15505    14.41646
  14     0.13000     0.00343     0.32490    19.31666
  15     0.14000     0.00771     0.53686    22.86090
  16     0.15000     0.01426     0.77803    25.18004
  17     0.16000     0.02333     1.03680    26.40000
  18     0.17000     0.03502     1.30277    26.64177
  19     0.18000     0.04938     1.56676    26.02140
  20     0.19000     0.06633     1.82070    24.65000
  21     0.20000     0.08573     2.05761    22.63374
  22     0.21000     0.10740     2.27156    20.07387
  23     0.22000     0.13107     2.45760    17.06667
  24     0.23000     0.15645     2.61171    13.70350
  25     0.24000     0.18319     2.73077    10.07078
  26     0.25000     0.21094     2.81250     6.25000
  27     0.26000     0.23931     2.85540     2.31770
  28     0.27000     0.26791     2.85872    -1.65453
  29     0.28000     0.29635     2.82240    -5.60000
  30     0.29000     0.32423     2.74702    -9.45699
  31     0.30000     0.35117     2.63374   -13.16873
  32     0.31000     0.37679     2.48430   -16.68333
  33     0.32000     0.40074     2.30089   -19.95391
  34     0.33000     0.42270     2.08618   -22.93848
  35     0.34000     0.44237     1.84320   -25.60000
  36     0.35000     0.45948     1.57536   -27.90638
  37     0.36000     0.47380     1.28635   -29.83045
  38     0.37000     0.48515     0.98010   -31.35000
  39     0.38000     0.49336     0.66075   -32.44773
  40     0.39000     0.49834     0.33259   -33.11131
  41     0.40000     0.50000     0.00000   -33.33333
  42     0.41000     0.49626    -0.74625   -73.87733
  43     0.42000     0.48515    -1.47015   -70.53750
  44     0.43000     0.46700    -2.14989   -65.06483
  45     0.44000     0.44237    -2.76480   -57.60000
  46     0.45000     0.41199    -3.29590   -48.33986
  47     0.46000     0.37679    -3.72645   -37.53750
  48     0.47000     0.33784    -4.04253   -25.50236
  49     0.48000     0.29635    -4.23360   -12.60004
  50     0.49000     0.25361    -4.29304     0.74764
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  51     0.50000     0.21094    -4.21875    14.06247
  52     0.51000     0.16967    -4.01368    26.81011
  53     0.52000     0.13107    -3.68640    38.39995
  54     0.53000     0.09630    -3.25169    48.18510
  55     0.54000     0.06633    -2.73105    55.46249
  56     0.55000     0.04187    -2.15332    59.47264
  57     0.56000     0.02333    -1.55520    59.39999
  58     0.57000     0.01068    -0.98183    54.37266
  59     0.58000     0.00343    -0.48735    43.46253
  60     0.59000     0.00046    -0.13547    25.68523
  61     0.60000     0.00000     0.00000     0.00000
  62     0.61000     0.00000     0.00000     0.00000
  63     0.62000     0.00000     0.00000     0.00000
  64     0.63000     0.00000     0.00000     0.00000
  65     0.64000     0.00000     0.00000     0.00000
  66     0.65000     0.00000     0.00000     0.00000
  67     0.66000     0.00000     0.00000     0.00000
  68     0.67000     0.00000     0.00000     0.00000
  69     0.68000     0.00000     0.00000     0.00000
  70     0.69000     0.00000     0.00000     0.00000
  71     0.70000     0.00000     0.00000     0.00000
  (rest of the output deleted)
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E.6 POSTp

This program reads the data set generated by PANELv2, and generates a data file containing the

tables needed to make a boundary layer analysis. Although these tables are designed to be used

by the boundary layer program CBLv2, it does not make the complete data set for CBLv2. The

user has to construct the initial data input. The program is provided to automate the most tedious

aspects of the input preparation.

The program reads the PANELv2 output data file.  Recall that the solution is given continu-

ously starting at the lower surface trailing edge, moving forward around the leading edge, and

then moving aft on the upper surface to the trailing edge. Using this data the arc length is calcu-

lated and the stagnation point found. If the stagnation point does not occur at an input point, the

stagnation point value of the arc length is estimated, and a point is added. The user is then asked

to name the output file. The output file is generated as a table of arc length and pressure coeffi-

cient values for the lower surface, followed by a table of arc length and pressure coefficient val-

ues for the upper surface. 

As an example, and to verify the code, we give a sample input, the screen output and a listing

of the disk data file. Note that the disk file contains an additional column, set to zero. This is the

value of the surface heat flux for use in the boundary layer calculation. We assume that the wall

is adiabatic, and the heat flux is zero. The arc length is normalized by the chord length, assumed

to be unity. The output format of the tables is 3F10.6.

Sample input:
 
  NACA 2412 with 5 deg flap at .75                                               
     Alpha    CL        cmc4      CD
    5.0000    1.2116   -0.1172   -0.0015
          98.0000000
              X/C                 Y/C                  Cp                 U/UE
           1.0000000          -0.0218722           0.4457454          -0.7444828
           0.9989193          -0.0218588           0.3699587          -0.7937514
           0.9956822          -0.0218183           0.3248610          -0.8216684
           0.9903033          -0.0217497           0.2959175          -0.8390962
           0.9828073          -0.0216514           0.2764678          -0.8506070
           0.9732280          -0.0215215           0.2633044          -0.8583097
           0.9616088          -0.0213579           0.2546606          -0.8633304
           0.9480022          -0.0211583           0.2494899          -0.8663198
           0.9324694          -0.0209209           0.2471926          -0.8676447
           0.9150801          -0.0206440           0.2474237          -0.8675116
           0.8959120          -0.0203265           0.2500552          -0.8659936
           0.8750503          -0.0199681           0.2552201          -0.8630063
           0.8525876          -0.0195686           0.2634676          -0.8582147
           0.8286229          -0.0191286           0.2764418          -0.8506222
           0.8032618          -0.0186488           0.3003036          -0.8364786
           0.7766151          -0.0181297           0.3571291          -0.8017923
           0.7487994          -0.0176765           0.3026126          -0.8350973
           0.7199356          -0.0196039           0.2852925          -0.8454037
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           0.6901487          -0.0215702           0.2705841          -0.8540585
           0.6595672          -0.0235606           0.2596269          -0.8604494
           0.6283228          -0.0255578           0.2511996          -0.8653325
           0.5965492          -0.0275420           0.2446724          -0.8690959
           0.5643821          -0.0294907           0.2397471          -0.8719248
           0.5319584          -0.0313784           0.2363357          -0.8738789
           0.4994153          -0.0331776           0.2345359          -0.8749080
           0.4668901          -0.0348579           0.2347106          -0.8748082
           0.4345195          -0.0363877           0.2381573          -0.8728360
           0.4024391          -0.0377340           0.2431501          -0.8699712
           0.3710229          -0.0389221           0.2475556          -0.8674355
           0.3401839          -0.0399931           0.2525682          -0.8645414
           0.3100253          -0.0409071           0.2589526          -0.8608411
           0.2806665          -0.0416239           0.2673756          -0.8559348
           0.2522234          -0.0421045           0.2785123          -0.8494043
           0.2248088          -0.0423124           0.2930953          -0.8407763
           0.1985313          -0.0422143           0.3119721          -0.8294745
           0.1734958          -0.0417806           0.3361298          -0.8147823
           0.1498030          -0.0409861           0.3667493          -0.7957705
           0.1275494          -0.0398104           0.4052571          -0.7711958
           0.1068267          -0.0382380           0.4533792          -0.7393381
           0.0877222          -0.0362578           0.5131727          -0.6977301
           0.0703175          -0.0338633           0.5869251          -0.6427090
           0.0546887          -0.0310520           0.6766533          -0.5686358
           0.0409059          -0.0278245           0.7823370          -0.4665437
           0.0290324          -0.0241841           0.8964363          -0.3218132
           0.0191246          -0.0201360           0.9877394          -0.1107275
           0.0112310          -0.0156868           0.9593768           0.2015521
           0.0053924          -0.0108432           0.5824928           0.6461480
           0.0016409          -0.0056122          -0.4040008           1.1849054
           0.0000000           0.0000000          -1.7449023           1.6567746
           0.0005002           0.0058259          -2.6745226           1.9169044
           0.0031628           0.0116941          -2.9049768           1.9761014
           0.0079837           0.0175852          -2.7717383           1.9420964
           0.0149496           0.0234709          -2.5445025           1.8826849
           0.0240374           0.0293150          -2.3239744           1.8231770
           0.0352145           0.0350744          -2.1347101           1.7705113
           0.0484385           0.0407000          -1.9771560           1.7254437
           0.0636571           0.0461390          -1.8458352           1.6869603
           0.0808082           0.0513357          -1.7348001           1.6537231
           0.0998199           0.0562337          -1.6390182           1.6245055
           0.1206108           0.0607775          -1.5545312           1.5982901
           0.1430902           0.0649138          -1.4783340           1.5742725
           0.1671584           0.0685932          -1.4081639           1.5518260
           0.1927072           0.0717714          -1.3423257           1.5304658
           0.2196209           0.0744106          -1.2795517           1.5098184
           0.2477766           0.0764795          -1.2188853           1.4895923
           0.2770449           0.0779549          -1.1595500           1.4695407
           0.3072913           0.0788213          -1.1008238           1.4494219
           0.3383766           0.0790714          -1.0417638           1.4289030
           0.3701580           0.0787058          -0.9795462           1.4069635
           0.4024706           0.0777333          -0.9185968           1.3851342
           0.4349543           0.0762537          -0.8643457           1.3654104
           0.4677068           0.0743547          -0.8154098           1.3473715
           0.5005847           0.0720664          -0.7705135           1.3306065
           0.5334447           0.0694218          -0.7292154           1.3149964
           0.5661440           0.0664560          -0.6915128           1.3005817
           0.5985411           0.0632060          -0.6577775           1.2875471
           0.6304962           0.0597102          -0.6291239           1.2763714
           0.6618723           0.0560078          -0.6085705           1.2682943
           0.6925348           0.0521391          -0.6073793           1.2678246
           0.7223530           0.0481446          -0.6721267           1.2931074
           0.7512006           0.0439604          -0.5213552           1.2334323
           0.7789551           0.0374099          -0.4203068           1.1917663
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           0.8054997           0.0309641          -0.3440065           1.1593130
           0.8307229           0.0246744          -0.2788006           1.1308407
           0.8545192           0.0185923          -0.2196457           1.1043757
           0.8767895           0.0127683          -0.1642191           1.0789899
           0.8974414           0.0072517          -0.1111093           1.0540917
           0.9163895           0.0020905          -0.0593664           1.0292553
           0.9335560          -0.0026691          -0.0082251           1.0041041
           0.9488706          -0.0069838           0.0429915           0.9782681
           0.9622707          -0.0108130           0.0950488           0.9512892
           0.9737022          -0.0141200           0.1489126           0.9225440
           0.9831185          -0.0168725           0.2061138           0.8910029
           0.9904819          -0.0190429           0.2693959           0.8547539
           0.9957626          -0.0206093           0.3448462           0.8094157

           0.9989396          -0.0215556           0.4457439           0.7444838

Output to screen:

    PGM POSTP  - POST PROCESS DATA FROM PGM. PANELv2

    ECHO OF INPUT DATA:

 Enter name of file to be read:
postp.test

  Input data:
 NACA 2412 with 5 deg flap at .75                                              
     Alpha    CL        cmc4      CD                                           
  5.00000   1.21160  -0.11720  -0.00150
         98.0000000
              X/C                 Y/C                  Cp                 U/UE 
      1   1.0000000          -0.0218722           0.4457454          -0.7444828
      2   0.9989193          -0.0218588           0.3699587          -0.7937514
      3   0.9956822          -0.0218183           0.3248610          -0.8216684
      4   0.9903033          -0.0217497           0.2959175          -0.8390962
      5   0.9828073          -0.0216514           0.2764678          -0.8506070
      6   0.9732280          -0.0215215           0.2633044          -0.8583097
      7   0.9616088          -0.0213579           0.2546606          -0.8633304
      8   0.9480022          -0.0211583           0.2494899          -0.8663198
      9   0.9324694          -0.0209209           0.2471926          -0.8676447
     10   0.9150801          -0.0206440           0.2474237          -0.8675116
     11   0.8959120          -0.0203265           0.2500552          -0.8659936
     12   0.8750503          -0.0199681           0.2552201          -0.8630063
     13   0.8525876          -0.0195686           0.2634676          -0.8582147
     14   0.8286229          -0.0191286           0.2764418          -0.8506222
     15   0.8032618          -0.0186488           0.3003036          -0.8364786
     16   0.7766151          -0.0181297           0.3571291          -0.8017923
     17   0.7487994          -0.0176765           0.3026126          -0.8350973
     18   0.7199356          -0.0196039           0.2852925          -0.8454037
     19   0.6901487          -0.0215702           0.2705841          -0.8540585
     20   0.6595672          -0.0235606           0.2596269          -0.8604494
     21   0.6283228          -0.0255578           0.2511996          -0.8653325
     22   0.5965492          -0.0275420           0.2446724          -0.8690959
     23   0.5643821          -0.0294907           0.2397471          -0.8719248
     24   0.5319584          -0.0313784           0.2363357          -0.8738789
     25   0.4994153          -0.0331776           0.2345359          -0.8749080
     26   0.4668901          -0.0348579           0.2347106          -0.8748082
     27   0.4345195          -0.0363877           0.2381573          -0.8728360
     28   0.4024391          -0.0377340           0.2431501          -0.8699712
     29   0.3710229          -0.0389221           0.2475556          -0.8674355
     30   0.3401839          -0.0399931           0.2525682          -0.8645414
     31   0.3100253          -0.0409071           0.2589526          -0.8608411
     32   0.2806665          -0.0416239           0.2673756          -0.8559348
     33   0.2522234          -0.0421045           0.2785123          -0.8494043
     34   0.2248088          -0.0423124           0.2930953          -0.8407763
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     35   0.1985313          -0.0422143           0.3119721          -0.8294745
     36   0.1734958          -0.0417806           0.3361298          -0.8147823
     37   0.1498030          -0.0409861           0.3667493          -0.7957705
     38   0.1275494          -0.0398104           0.4052571          -0.7711958
     39   0.1068267          -0.0382380           0.4533792          -0.7393381
     40   0.0877222          -0.0362578           0.5131727          -0.6977301
     41   0.0703175          -0.0338633           0.5869251          -0.6427090
     42   0.0546887          -0.0310520           0.6766533          -0.5686358
     43   0.0409059          -0.0278245           0.7823370          -0.4665437
     44   0.0290324          -0.0241841           0.8964363          -0.3218132
     45   0.0191246          -0.0201360           0.9877394          -0.1107275
     46   0.0112310          -0.0156868           0.9593768           0.2015521
     47   0.0053924          -0.0108432           0.5824928           0.6461480
     48   0.0016409          -0.0056122          -0.4040008           1.1849054
     49   0.0000000           0.0000000          -1.7449023           1.6567746
     50   0.0005002           0.0058259          -2.6745226           1.9169044
     51   0.0031628           0.0116941          -2.9049768           1.9761014
     52   0.0079837           0.0175852          -2.7717383           1.9420964
     53   0.0149496           0.0234709          -2.5445025           1.8826849
     54   0.0240374           0.0293150          -2.3239744           1.8231770
     55   0.0352145           0.0350744          -2.1347101           1.7705113
     56   0.0484385           0.0407000          -1.9771560           1.7254437
     57   0.0636571           0.0461390          -1.8458352           1.6869603
     58   0.0808082           0.0513357          -1.7348001           1.6537231
     59   0.0998199           0.0562337          -1.6390182           1.6245055
     60   0.1206108           0.0607775          -1.5545312           1.5982901
     61   0.1430902           0.0649138          -1.4783340           1.5742725
     62   0.1671584           0.0685932          -1.4081639           1.5518260
     63   0.1927072           0.0717714          -1.3423257           1.5304658
     64   0.2196209           0.0744106          -1.2795517           1.5098184
     65   0.2477766           0.0764795          -1.2188853           1.4895923
     66   0.2770449           0.0779549          -1.1595500           1.4695407
     67   0.3072913           0.0788213          -1.1008238           1.4494219
     68   0.3383766           0.0790714          -1.0417638           1.4289030
     69   0.3701580           0.0787058          -0.9795462           1.4069635
     70   0.4024706           0.0777333          -0.9185968           1.3851342
     71   0.4349543           0.0762537          -0.8643457           1.3654104
     72   0.4677068           0.0743547          -0.8154098           1.3473715
     73   0.5005847           0.0720664          -0.7705135           1.3306065
     74   0.5334447           0.0694218          -0.7292154           1.3149964
     75   0.5661440           0.0664560          -0.6915128           1.3005817
     76   0.5985411           0.0632060          -0.6577775           1.2875471
     77   0.6304962           0.0597102          -0.6291239           1.2763714
     78   0.6618723           0.0560078          -0.6085705           1.2682943
     79   0.6925348           0.0521391          -0.6073793           1.2678246
     80   0.7223530           0.0481446          -0.6721267           1.2931074
     81   0.7512006           0.0439604          -0.5213552           1.2334323
     82   0.7789551           0.0374099          -0.4203068           1.1917663
     83   0.8054997           0.0309641          -0.3440065           1.1593130
     84   0.8307229           0.0246744          -0.2788006           1.1308407
     85   0.8545192           0.0185923          -0.2196457           1.1043757
     86   0.8767895           0.0127683          -0.1642191           1.0789899
     87   0.8974414           0.0072517          -0.1111093           1.0540917
     88   0.9163895           0.0020905          -0.0593664           1.0292553
     89   0.9335560          -0.0026691          -0.0082251           1.0041041
     90   0.9488706          -0.0069838           0.0429915           0.9782681
     91   0.9622707          -0.0108130           0.0950488           0.9512892
     92   0.9737022          -0.0141200           0.1489126           0.9225440
     93   0.9831185          -0.0168725           0.2061138           0.8910029
     94   0.9904819          -0.0190429           0.2693959           0.8547539
     95   0.9957626          -0.0206093           0.3448462           0.8094157
     96   0.9989396          -0.0215556           0.4457439           0.7444838

       STAGNATION PT. SEARCH
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        J      X/C        Y/C        SARC     UE/UINF       CP

       40   0.087722  -0.036258   0.913194  -0.697730   0.513173
       41   0.070317  -0.033863   0.930764  -0.642709   0.586925
       42   0.054689  -0.031052   0.946645  -0.568636   0.676653
       43   0.040906  -0.027825   0.960803  -0.466544   0.782337
       44   0.029032  -0.024184   0.973225  -0.321813   0.896436
       45   0.019125  -0.020136   0.983934  -0.110727   0.987739
       46   0.011231  -0.015687   0.993005   0.201552   0.959377
       47   0.005392  -0.010843   1.000607   0.646148   0.582493
       48   0.001641  -0.005612   1.007069   1.184905  -0.404001
       49   0.000000   0.000000   1.012945   1.656775  -1.744902
       50   0.000500   0.005826   1.018822   1.916904  -2.674523

       STAG PT: XSP= 0.016326  YSP=-0.018558   SSP=0.987150  JS=45  JLE=49

       E1     =   0.0032163     E2    =   0.0058546
       ISTAGP =   1

       OUTPUT OF POSTp RESULTS

 send output to a file? (Y/N):
y

 enter file name:
postp.out

       ALPHA    =    5.00000
       MACH NO. =    0.10000
       CL       =    1.21160
       CMC4     =   -0.11720
       CD       =   -0.00150
       No. of upper surface values in x/c, Cp table =   52
       No. of lower surface values in x/c, Cp table =   46

    lower surface

       J      X/C        Y/C        S/C       U/UINF       CP
       1   0.016326  -0.018558   0.000000   0.000000   1.000000
       2   0.019125  -0.020136   0.003216  -0.110727   0.987739
       3   0.029032  -0.024184   0.013925  -0.321813   0.896436
       4   0.040906  -0.027825   0.026347  -0.466544   0.782337
       5   0.054689  -0.031052   0.040505  -0.568636   0.676653
       6   0.070317  -0.033863   0.056386  -0.642709   0.586925
       7   0.087722  -0.036258   0.073956  -0.697730   0.513173
       8   0.106827  -0.038238   0.093164  -0.739338   0.453379
       9   0.127549  -0.039810   0.113946  -0.771196   0.405257
      10   0.149803  -0.040986   0.136232  -0.795771   0.366749
      11   0.173496  -0.041781   0.159938  -0.814782   0.336130
      12   0.198531  -0.042214   0.184977  -0.829475   0.311972
      13   0.224809  -0.042312   0.211255  -0.840776   0.293095
      14   0.252223  -0.042105   0.238671  -0.849404   0.278512
      15   0.280667  -0.041624   0.267118  -0.855935   0.267376
      16   0.310025  -0.040907   0.296486  -0.860841   0.258953
      17   0.340184  -0.039993   0.326658  -0.864541   0.252568
      18   0.371023  -0.038922   0.357516  -0.867436   0.247556
      19   0.402439  -0.037734   0.388954  -0.869971   0.243150
      20   0.434519  -0.036388   0.421063  -0.872836   0.238157
      21   0.466890  -0.034858   0.453470  -0.874808   0.234711
      22   0.499415  -0.033178   0.486039  -0.874908   0.234536
      23   0.531958  -0.031378   0.518631  -0.873879   0.236336
      24   0.564382  -0.029491   0.551110  -0.871925   0.239747
      25   0.596549  -0.027542   0.583336  -0.869096   0.244672
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      26   0.628323  -0.025558   0.615171  -0.865332   0.251200
      27   0.659567  -0.023561   0.646480  -0.860449   0.259627
      28   0.690149  -0.021570   0.677126  -0.854059   0.270584
      29   0.719936  -0.019604   0.706978  -0.845404   0.285293
      30   0.748799  -0.017677   0.735910  -0.835097   0.302613
      31   0.776615  -0.018130   0.763733  -0.801792   0.357129
      32   0.803262  -0.018649   0.790385  -0.836479   0.300304
      33   0.828623  -0.019129   0.815751  -0.850622   0.276442
      34   0.852588  -0.019569   0.839719  -0.858215   0.263468
      35   0.875050  -0.019968   0.862186  -0.863006   0.255220
      36   0.895912  -0.020327   0.883050  -0.865994   0.250055
      37   0.915080  -0.020644   0.902221  -0.867512   0.247424
      38   0.932469  -0.020921   0.919613  -0.867645   0.247193
      39   0.948002  -0.021158   0.935147  -0.866320   0.249490
      40   0.961609  -0.021358   0.948755  -0.863330   0.254661
      41   0.973228  -0.021521   0.960376  -0.858310   0.263304
      42   0.982807  -0.021651   0.969956  -0.850607   0.276468
      43   0.990303  -0.021750   0.977452  -0.839096   0.295918
      44   0.995682  -0.021818   0.982832  -0.821668   0.324861
      45   0.998919  -0.021859   0.986069  -0.793751   0.369959
      46   1.000000  -0.021872   0.987150  -0.744483   0.445745

    upper surface

       J      X/C        Y/C        S/C       U/UINF       CP
       1   0.016326  -0.018558   0.000000   0.000000   1.000000
       2   0.011231  -0.015687   0.005855   0.201552   0.959377
       3   0.005392  -0.010843   0.013457   0.646148   0.582493
       4   0.001641  -0.005612   0.019919   1.184905  -0.404001
       5   0.000000   0.000000   0.025795   1.656775  -1.744902
       6   0.000500   0.005826   0.031672   1.916904  -2.674523
       7   0.003163   0.011694   0.038141   1.976101  -2.904977
       8   0.007984   0.017585   0.045770   1.942096  -2.771738
       9   0.014950   0.023471   0.054900   1.882685  -2.544502
      10   0.024037   0.029315   0.065711   1.823177  -2.323974
      11   0.035214   0.035074   0.078289   1.770511  -2.134710
      12   0.048439   0.040700   0.092662   1.725444  -1.977156
      13   0.063657   0.046139   0.108826   1.686960  -1.845835
      14   0.080808   0.051336   0.126748   1.653723  -1.734800
      15   0.099820   0.056234   0.146382   1.624506  -1.639018
      16   0.120611   0.060778   0.167665   1.598290  -1.554531
      17   0.143090   0.064914   0.190523   1.574273  -1.478334
      18   0.167158   0.068593   0.214871   1.551826  -1.408164
      19   0.192707   0.071771   0.240618   1.530466  -1.342326
      20   0.219621   0.074411   0.267661   1.509818  -1.279552
      21   0.247777   0.076480   0.295894   1.489592  -1.218885
      22   0.277045   0.077955   0.325200   1.469541  -1.159550
      23   0.307291   0.078821   0.355459   1.449422  -1.100824
      24   0.338377   0.079071   0.386546   1.428903  -1.041764
      25   0.370158   0.078706   0.418330   1.406963  -0.979546
      26   0.402471   0.077733   0.450657   1.385134  -0.918597
      27   0.434954   0.076254   0.483175   1.365410  -0.864346
      28   0.467707   0.074355   0.515983   1.347371  -0.815410
      29   0.500585   0.072066   0.548940   1.330606  -0.770513
      30   0.533445   0.069422   0.581907   1.314996  -0.729215
      31   0.566144   0.066456   0.614740   1.300582  -0.691513
      32   0.598541   0.063206   0.647300   1.287547  -0.657777
      33   0.630496   0.059710   0.679446   1.276371  -0.629124
      34   0.661872   0.056008   0.711040   1.268294  -0.608571
      35   0.692535   0.052139   0.741946   1.267825  -0.607379
      36   0.722353   0.048145   0.772030   1.293107  -0.672127
      37   0.751201   0.043960   0.801185   1.233432  -0.521355
      38   0.778955   0.037410   0.829706   1.191766  -0.420307
      39   0.805500   0.030964   0.857022   1.159313  -0.344007
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      40   0.830723   0.024674   0.883018   1.130841  -0.278801
      41   0.854519   0.018592   0.907579   1.104376  -0.219646
      42   0.876790   0.012768   0.930598   1.078990  -0.164219
      43   0.897441   0.007252   0.951975   1.054092  -0.111109
      44   0.916390   0.002090   0.971613   1.029255  -0.059366
      45   0.933556  -0.002669   0.989427   1.004104  -0.008225
      46   0.948871  -0.006984   1.005338   0.978268   0.042992
      47   0.962271  -0.010813   1.019274   0.951289   0.095049
      48   0.973702  -0.014120   1.031175   0.922544   0.148913
      49   0.983118  -0.016872   1.040985   0.891003   0.206114
      50   0.990482  -0.019043   1.048661   0.854754   0.269396
      51   0.995763  -0.020609   1.054170   0.809416   0.344846
      52   0.998940  -0.021556   1.057485   0.744484   0.445744

STOP 

Output disk data file:
 NACA 2412 with 5 deg flap at .75                                              
    5.00000    0.10000    1.21160   -0.11720   -0.00150

     lower surface
    s/c        Cp       dT/dy
  0.000000  1.000000  0.000000
  0.003216  0.987739  0.000000
  0.013925  0.896436  0.000000
  0.026347  0.782337  0.000000
  0.040505  0.676653  0.000000
  0.056386  0.586925  0.000000
  0.073956  0.513173  0.000000
  0.093164  0.453379  0.000000
  0.113946  0.405257  0.000000
  0.136232  0.366749  0.000000
  0.159938  0.336130  0.000000
  0.184977  0.311972  0.000000
  0.211255  0.293095  0.000000
  0.238671  0.278512  0.000000
  0.267118  0.267376  0.000000
  0.296486  0.258953  0.000000
  0.326658  0.252568  0.000000
  0.357516  0.247556  0.000000
  0.388954  0.243150  0.000000
  0.421063  0.238157  0.000000
  0.453470  0.234711  0.000000
  0.486039  0.234536  0.000000
  0.518631  0.236336  0.000000
  0.551110  0.239747  0.000000
  0.583336  0.244672  0.000000
  0.615171  0.251200  0.000000
  0.646480  0.259627  0.000000
  0.677126  0.270584  0.000000
  0.706978  0.285293  0.000000
  0.735910  0.302613  0.000000
  0.763733  0.357129  0.000000
  0.790385  0.300304  0.000000
  0.815751  0.276442  0.000000
  0.839719  0.263468  0.000000
  0.862186  0.255220  0.000000
  0.883050  0.250055  0.000000
  0.902221  0.247424  0.000000
  0.919613  0.247193  0.000000
  0.935147  0.249490  0.000000
  0.948755  0.254661  0.000000
  0.960376  0.263304  0.000000
  0.969956  0.276468  0.000000
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  0.977452  0.295918  0.000000
  0.982832  0.324861  0.000000
  0.986069  0.369959  0.000000
  0.987150  0.445745  0.000000

     upper surface
    s/c        Cp       dT/dy
  0.000000  1.000000  0.000000
  0.005855  0.959377  0.000000
  0.013457  0.582493  0.000000
  0.019919 -0.404001  0.000000
  0.025795 -1.744902  0.000000
  0.031672 -2.674523  0.000000
  0.038141 -2.904977  0.000000
  0.045770 -2.771738  0.000000
  0.054900 -2.544502  0.000000
  0.065711 -2.323974  0.000000
  0.078289 -2.134710  0.000000
  0.092662 -1.977156  0.000000
  0.108826 -1.845835  0.000000
  0.126748 -1.734800  0.000000
  0.146382 -1.639018  0.000000
  0.167665 -1.554531  0.000000
  0.190523 -1.478334  0.000000
  0.214871 -1.408164  0.000000
  0.240618 -1.342326  0.000000
  0.267661 -1.279552  0.000000
  0.295894 -1.218885  0.000000
  0.325200 -1.159550  0.000000
  0.355459 -1.100824  0.000000
  0.386546 -1.041764  0.000000
  0.418330 -0.979546  0.000000
  0.450657 -0.918597  0.000000
  0.483175 -0.864346  0.000000
  0.515983 -0.815410  0.000000
  0.548940 -0.770513  0.000000
  0.581907 -0.729215  0.000000
  0.614740 -0.691513  0.000000
  0.647300 -0.657777  0.000000
  0.679446 -0.629124  0.000000
  0.711040 -0.608571  0.000000
  0.741946 -0.607379  0.000000
  0.772030 -0.672127  0.000000
  0.801185 -0.521355  0.000000
  0.829706 -0.420307  0.000000
  0.857022 -0.344007  0.000000
  0.883018 -0.278801  0.000000
  0.907579 -0.219646  0.000000
  0.930598 -0.164219  0.000000
  0.951975 -0.111109  0.000000
  0.971613 -0.059366  0.000000
  0.989427 -0.008225  0.000000
  1.005338  0.042992  0.000000
  1.019274  0.095049  0.000000
  1.031175  0.148913  0.000000
  1.040985  0.206114  0.000000
  1.048661  0.269396  0.000000
  1.054170  0.344846  0.000000
  1.057485  0.445744  0.000000
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E.7 STDATM

This subroutine computes the 1976 standard atmosphere. It is used in program FRICTION. It

covers an altitude range from sea level to 86 kilometers (282,152 ft.). The results are found in ei-

ther English or metric units depending on the value of one of the input flags. The 1976 and 1962

standard atmospheres are identical for the first 51 kilometers above sea level.

Method of Computation

Given the geometric altitude Zin (in dimensions of either meters or feet), convert to kilom-

eters. The geopotential altitude H is then found from:

where r0 = 6356.766 kilometers (the radius of the Earth in kilometers) and Z = C1 Zin, where C1

= 0.001 if Zin is in meters, and C1 = 0.0003048 if Zin is in feet. The 1962 standard atmosphere

used a much more complicated and slightly more accurate relationship.

The inverse relation is given by

.

Once the geopotential altitude is found, the temperature is computed. The standard day tem-

perature profile is defined by seven layers, where within each layer the temperature is found by

the linear relation (T is given in degrees Kelvin):

and ,  and  are the values at the base of the particular layer. The following table de-

fines these constants, as well as the ratio of pressure to sea level pressure, which is also needed.

i (Km) (°K) (°K/Km) P/Psl Z(ft.)

1 0. 288.15 -6.5 1.0 0
2 11. 216.65 0.0 2.2336x10-1 36,152.
3 20. 216.65 +1.0 5.4032x10-2 65,824
4 32. 228.65 +2.8 8.5666x10-3 105,518
5 47. 270.65 0.0 1.0945x10-3 155,348
6 51. 270.65 -2.8 6.6063x10-4 168,676
7 71. 214.65 -2.0 3.9046x10-5 235,571
- 82. - - - 282,152
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Once the temperature is determined, the pressure is computed using the hydrostatics equation

and the perfect gas law. The resulting formulas are:

where  in consistent units. The remaining fundamental property is the

density, which is found using the equation of state as:

.

Additional parameters of interest in aerodynamics are:

i) The speed of sound

ii) The coefficient of viscosity, found from Sutherland’s Law:

where S = 110.4°K and β depends on the system of units and is defined below.

iii) The Reynolds number per unit length and Mach:

iv) The actual temperature, pressure and density:
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and v) the dynamic pressure normalized by the Mach number:

.

The sea level properties and other required constants are defined in the following table.

Metric English

Tsl 288.15 °K 518.67° R
Psl 1.01325x105 N/m2 2116.22 lb/ft2

ρsl 1.2250 Kg/m3 0.0023769 slugs/ft3

asl 340.294 m/sec 1116.45 ft/sec

µsl 1.7894x10-5 Kg/m/sec 0.37373x10-6 slugs/ft/sec

β 1.458x10-6 Kg/m/sec/K 1/2 3.0450963x10-8 slugs/ft/sec/K1/2

The ratio of specific heats, γ, is defined to be 1.40.

User instructions: the comments in the subroutine define the input and output argument list. If

the maximum altitude is exceeded, the program returns a non zero value of the validity flag.

      subroutine stdatm(z,t,p,r,a,mu,ts,rr,pp,rm,qm,kd,kk)
c
c   *********** 1976 STANDARD ATMOSPHERE SUBROUTINE **********
c
c     Mason's BASIC program, converted to FORTRAN - Sept. 1, 1989
c
c     kd -   = 0 - metric units
c           <> 0 - English units
c
c     kk -     0 - good return
c              1 - error: altitude out of table,
c                         do not use output
c
c     z  - input altitude, in feet or meters (depending on kd)
c
c     output:
c                               units:     metric        English
c     t  - temp.                           deg K          deg R
c     p  - pressure                        N/m^2          lb/ft^2
c     r  - density                         Kg/m^3         slugs/ft^3
c     a  - speed of sound                  m/sec          ft/sec
c     mu - viscosity                       Kg/m/sec       slug/ft/sec
c     
c     ts - t/t at sea level
c     rr - rho/rho at sea level
c     pp - p/p at sea level
c
c     rm - Reynolds number per             Re/M/m         Re/M/ft
c           Mach per unit of length
c     qm - dynamic pressure/Mach^2        N/m^2           lb/ft^2
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c
      real k, h, mu, ml
      KK = 0
      K  = 34.163195
      C1 = 3.048E-04
      IF (KD .eq. 0) go to 1240
      TL = 518.67
      PL = 2116.22
      RL = .0023769
      AL = 1116.45
      ML = 3.7373E-07
      BT = 3.0450963E-08
      GO TO 1260

 1240 TL = 288.15
      PL = 101325
      RL = 1.225
      C1 = .001
      AL = 340.294
      ML = 1.7894E-05
      BT = 1.458E-06

 1260 H = C1 * Z / (1 + C1 * Z / 6356.766)
      IF (H .gt. 11.0) go to 1290
      T = 288.15 - 6.5 * H
      PP = (288.15 / T) ** ( - K / 6.5)
      GO TO 1420

 1290 IF (H .gt. 20.0) go to 1310
      T = 216.65
      PP = .22336 *  EXP ( - K * (H - 11) / 216.65)
      GO TO 1420

1310  IF (H .gt. 32.0) go to 1330
      T = 216.65 + (H - 20)
      PP = .054032 * (216.65 / T) ** K
      GO TO 1420

1330  IF (H .gt. 47.0) go to 1350
      T = 228.65 + 2.8 * (H - 32)
      PP = .0085666 * (228.65 / T) ** (K / 2.8)
      GO TO 1420

1350  IF( H .gt. 51.0) go to 1370
      T = 270.65
      PP = .0010945 *  EXP ( - K * (H - 47) / 270.65)
      GO TO 1420

1370  IF (H .gt. 71.) go to 1390
      T = 270.65 - 2.8 * (H - 51)
      PP = .00066063 * (270.65 / T) ** ( - K / 2.8)
      GO TO 1420

1390  IF (H .gt. 84.852) THEN 
                              kk = 1
                              write(6,200) H
                              return
                         END IF
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      T = 214.65 - 2 * (H - 71)
      PP = 3.9046E-05 * (214.65 / T) ** ( - K / 2)

1420  RR = PP / (T / 288.15)
      MU = BT * T**1.5 / (T + 110.4)
      TS = T / 288.15
      A  = AL *  SQRT (TS)
      T  = TL * TS
      R  = RL * RR
      P  = PL * PP
      RM = R * A / MU
      QM = .7 * P

  200 format('   Out of Table in StdAtm- too high !'//
     1        4x,'H =',f12.3,'  > 84.852 km'/)

      return
      end

The following sample program and output can be used to validate your subroutine:

c     main program to check stdatm

c     loop is done twice to get output
c     suitable to include in text(80 col)

c     w.h. mason, Feb. 27, 1994

      real mu

      kd      = 1

      write(6,90)

      do 10 i = 1,21
      z       = 5000.*(i-1)

      call stdatm(z,t,p,r,a,mu,ts,rr,pp,rm,qm,kd,kk)

      if (kk .ne. 0) then
                     write(6,120)
                     stop
                     endif

      write(6,100) z,t,p,r,a,mu
   10 continue

      write(6,110)
      do 20 i = 1,21
      z       = 5000.*(i-1)

      call stdatm(z,t,p,r,a,mu,ts,rr,pp,rm,qm,kd,kk)

      if (kk .ne. 0) then
                     write(6,160)
                     stop
                     endif
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      write(6,120) z,ts,rr,pp,rm,qm
   20 continue

   90 format(/3x,'1976 Standard Atmosphere'//
     1        3x,'    alt      T       P        Rho',
     2        2x,'     a         Mu',
     4       /3x,'   (ft)   (deg R)  (psf)    (s/ft^3)',
     5        2x,' (f/s)  (slugs/ft/sec)')
  100 format(3x,f9.1,f8.2,f8.2,e12.4,f8.2,e12.4)
  110 format(/3x,'1976 Standard Atmosphere'//
     1        3x,'    alt    T/Tsl  R/Rsl',
     2        2x, 'P/Psl  Re/M/ft    q/M^2',
     4       /3x,'   (ft)',34x,'(lb/ft^2)')
  120 format(3x,f9.1,3f7.4,e10.3,f10.4)
  160 format(/4x,'error in return code from stdatm - pgm stops'/)
      stop
      end

Sample output:

  1976 Standard Atmosphere

      alt      T       P        Rho        a        Mu
     (ft)   (deg R)  (psf)    (s/ft^3)   (f/s)  (slugs/ft/sec)
        0.0  518.67 2116.22  0.2377E-02 1116.45  0.3737E-06
     5000.0  500.84 1760.88  0.2048E-02 1097.10  0.3637E-06
    10000.0  483.03 1455.60  0.1756E-02 1077.40  0.3534E-06
    15000.0  465.22 1194.79  0.1496E-02 1057.36  0.3430E-06
    20000.0  447.42  973.28  0.1267E-02 1036.93  0.3324E-06
    25000.0  429.62  786.34  0.1066E-02 1016.10  0.3217E-06
    30000.0  411.84  629.67  0.8907E-03  994.85  0.3107E-06
    35000.0  394.06  499.35  0.7382E-03  973.14  0.2995E-06
    40000.0  389.97  393.13  0.5873E-03  968.08  0.2969E-06
    45000.0  389.97  309.45  0.4623E-03  968.08  0.2969E-06
    50000.0  389.97  243.61  0.3639E-03  968.08  0.2969E-06
    55000.0  389.97  191.80  0.2865E-03  968.08  0.2969E-06
    60000.0  389.97  151.03  0.2256E-03  968.08  0.2969E-06
    65000.0  389.97  118.93  0.1777E-03  968.08  0.2969E-06
    70000.0  392.25   93.73  0.1392E-03  970.90  0.2984E-06
    75000.0  394.97   73.99  0.1091E-03  974.26  0.3001E-06
    80000.0  397.69   58.51  0.8571E-04  977.62  0.3018E-06
    85000.0  400.42   46.35  0.6743E-04  980.95  0.3035E-06
    90000.0  403.14   36.78  0.5315E-04  984.28  0.3052E-06
    95000.0  405.85   29.23  0.4196E-04  987.59  0.3070E-06
   100000.0  408.57   23.27  0.3318E-04  990.90  0.3087E-06

  1976 Standard Atmosphere

      alt    T/Tsl  R/Rsl  P/Psl  Re/M/ft    q/M^2
     (ft)                                  (lb/ft^2)
        0.0 1.0000 1.0000 1.0000 0.710E+07 1481.3538
     5000.0 0.9656 0.8617 0.8321 0.618E+07 1232.6129
    10000.0 0.9313 0.7386 0.6878 0.535E+07 1018.9235
    15000.0 0.8969 0.6295 0.5646 0.461E+07  836.3538
    20000.0 0.8626 0.5332 0.4599 0.395E+07  681.2936
    25000.0 0.8283 0.4486 0.3716 0.337E+07  550.4373
    30000.0 0.7940 0.3747 0.2975 0.285E+07  440.7683
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    35000.0 0.7598 0.3106 0.2360 0.240E+07  349.5441
    40000.0 0.7519 0.2471 0.1858 0.191E+07  275.1887
    45000.0 0.7519 0.1945 0.1462 0.151E+07  216.6139
    50000.0 0.7519 0.1531 0.1151 0.119E+07  170.5264
    55000.0 0.7519 0.1205 0.0906 0.934E+06  134.2600
    60000.0 0.7519 0.0949 0.0714 0.736E+06  105.7186
    65000.0 0.7519 0.0747 0.0562 0.579E+06   83.2541
    70000.0 0.7563 0.0586 0.0443 0.453E+06   65.6079
    75000.0 0.7615 0.0459 0.0350 0.354E+06   51.7925
    80000.0 0.7668 0.0361 0.0276 0.278E+06   40.9574
    85000.0 0.7720 0.0284 0.0219 0.218E+06   32.4446
    90000.0 0.7772 0.0224 0.0174 0.171E+06   25.7445
    95000.0 0.7825 0.0177 0.0138 0.135E+06   20.4621
   100000.0 0.7877 0.0140 0.0110 0.107E+06   16.2903

STOP 
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